首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The operation of small hydroelectric dams built on mountain streams induce changes in stream flow regimes that are manifested not only in the intensity of flow events, but also in the variability and frequency of high- and low-flow episodes. Former studies have shown the influence of flow variability upon the dynamics of a resident brown trout population, especially that related to the stream flow regime during spawning, incubation and emerging periods. As these life-stages are known to determine the population dynamics in further ages, stream flow variability appears to be a major influence on the regulation of a wild brown trout population. Thus, mean flow discharge should not be the only parameter taken into account when establishing ecological flow regimes to support rehabilitation of degraded trout populations in mountain streams. Ecological stream flow regime characteristics are proposed as a basis for the design of environmental flow regimes in mountain reaches downstream of hydroelectric or water supply dams. Case studies were conducted in a high mountain basin in Central Spain (River Tormes) for a period of 5 years showing that relationship between duration and frequency of high and low flow episodes during egg incubation could be linked to young-of-the-year recruitment and quantified in terms of flow management units. Duration and frequency of flow discharges could be manipulated so as to create favourable hydrological conditions for restoring sustainable populations of brown trout in rivers affected by flow regulation Guest editors: R. L. Welcomme & G. Marmulla Hydropower, Flood Control and Water Abstraction: Implications for Fish and Fisheries  相似文献   

2.
The recruitment dynamics and life history of migratory brown trout, Sulmo trutta L., were investigated in a small Baltic coast stream subject to recurring drought. Spawning males consisted of both mature male parr (101–206 mm t.l. ) and migrant males (205–780 mm t.l. ). Spawning females were all migrants which delayed maturity until reaching a significantly greater size on average (424–805 mm t.l. ) than migrant males. Male: female ratios were very high in spawning aggregations (9–12 males: 1 female) with males representing up to five year-classes or more. Gametes from several generations of males per spawning event may be important for maintaining the genetic viability of this population with few female spawners per year. The amount of spawning was dependent on precipitation just prior to and during the spawning period since migrants could not enter the stream under drought conditions. Migrants did not overwinter in the stream.
Drought also caused variable fry mortality following emergence in early summer. Recruitment of 0+ parr in autumn varied from c . 175 to 3000 during 3 years. Smolts were relatively young (ages 1–2) and small (≥8 cm), and were significantly longer on average than sibling parr. Yet emigration of 1-year-olds was not related to 0+ parr size the previous autumn because of overlapping growth rates.
Persistence of the migratory brown trout in this unstable environment may be the consequence of (i) life history adaptation (e.g. short freshwater residence of both juveniles and spawners), and (ii) a complementary set of individual life histories where variation in age of migrant spawners and the occurrence of mature male parr result in a stable spawner population despite inconsistent recruitment of migrants to the sea.  相似文献   

3.
The genetic structure of brown trout (Salmo trutta) populations inhabiting rivers on the island of Bornholm in the Baltic Sea was studied on a spatial and temporal scale. Low water levels in the rivers during the summer period are assumed to have a significant impact on the persistence of local populations, possibly resulting in a metapopulation structure. Extinctions may, however, also be buffered by a remnant strategy, whereby juveniles escape to river outlets during periods of drought. We compared polymorphism at seven microsatellite DNA loci in contemporary and past samples collected from 1944 to 1997. A principal component analysis, a hierarchical gene diversity analysis and assignment tests showed that the genetic composition of populations was not temporally stable, and that temporal genetic differentiation was much stronger than spatial differentiation. Genetic variability was high and stable over time. Effective population sizes (Ne) and migration rate (m) were estimated using a maximum-likelihood-based implementation of the temporal method. Ne estimates were low (ranging from 8.3 to 22.9) and estimates of m were high (between 0.23 and 0.99), in contrast to other Danish trout populations inhabiting larger and more environmentally stable rivers (Ne between 39.2 and 289.9 and m between 0.01 and 0.09). Thus, the observed spatio-temporal patterns of genetic differentiation can be explained by drift in small persisting populations, where levels of genetic variation are maintained by strong gene flow. However, observations of rivers devoid of trout suggested that population turnover also takes place. We suggest that Bornholm trout represent a metapopulation where the genetic structure primarily reflects strong drift and gene flow, combined with occasional extinction-recolonization events.  相似文献   

4.
The present paper reviews the effects of water temperature and flow on migrations, embryonic development, hatching, emergence, growth and life‐history traits in light of the ongoing climate change with emphasis on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta. The expected climate change in the Atlantic is for milder and wetter winters, with more precipitation falling as rain and less as snow, decrease in ice‐covered periods and frequent periods with extreme weather. Overall, thermal limits for salmonids are species specific. Scope for activity and growth and optimal temperature for growth increase with temperature to an optimal point before constrain by the oxygen content of the water. The optimal temperature for growth decreases with increasing fish size and varies little among populations within species, whereas the growth efficiency may be locally adapted to the temperature conditions of the home stream during the growth season. Indirectly, temperature influences age and size at smolting through its effect on growth. Time of spawning, egg hatching and emergence of the larvae vary with temperature and selective effects on time of first feeding. Traits such as age at first maturity, longevity and fecundity decrease with increasing temperature whilst egg size increases with temperature. Water flow influences the accessibility of rivers for returning adults and speed of both upstream and downstream migration. Extremes in water flow and temperature can decrease recruitment and survival. There is reason to expect a northward movement of the thermal niche of anadromous salmonids with decreased production and population extinction in the southern part of the distribution areas, migrations earlier in the season, later spawning, younger age at smolting and sexual maturity and increased disease susceptibility and mortality. Future research challenges are summarized at the end of the paper.  相似文献   

5.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake.  相似文献   

6.
1. The relative importance of density‐dependent and density‐independent processes in explaining fluctuations in natural populations has been widely debated. In particular, the importance of larval supply and whether it may control the type of regulatory processes a population experiences has proved contentious. 2. Using surveys and field experiments conducted in streams in Canterbury, New Zealand, we investigated how variation in the survival of non‐migratory Galaxias vulgaris fry was affected by density‐dependent and density‐independent processes and how this variation influenced recruitment dynamics. 3. Fry populations with high settlement densities experienced a 70–80% reduction in population size from density‐related mortality during the first fourteen days after peak settlement but thereafter the influence of density‐dependent processes on fry was weak. The impact of environmental conditions on fry populations was dependent on fry size and the magnitude of the perturbation, such that flooding effects on fry survival were most severe when fry were small. 4. In streams not affected by flooding, the size and density of introduced trout (Salmo trutta and Oncorhynchus mykiss) were the most significant factors determining the abundance of eventual recruits. A field experiment manipulating brown trout access to fry populations revealed that trout as small as 110 mm may be capable of greatly reducing and possibly preventing galaxiid recruitment. 5. Overall, the results indicated density‐dependent population regulation was only possible at sites with high native fish densities because trout were likely to be suppressing the number of potential recruits at sites with low native fish numbers. Whilst density‐dependent processes had a strong effect on fry survival following the period of peak fry abundance, density‐independent processes associated with flow and predatory trout influences on fry survival largely determined recruitment variability among galaxiid populations. Focusing conservation efforts on improving habitat to increase fry retention and reducing the impacts of trout on galaxiids would ensure more native fish populations reached their potential abundance.  相似文献   

7.
Based on data from Norwegian streams with sympatric populations of Atlantic salmon and brown trout, it is suggested that temporal segregation is the main mechanism segregating Atlantic salmon and brown trout during spawning. Peak spawning of trout was about 15 days earlier than that of salmon. Physical factors, such as water depth, water velocity and distance from the river banks segregate spawning sites of salmon and trout poorly. Gravel sizes of the redds of salmon and trout were significantly different, though with a considerable overlap, and mean egg depth of salmon and trout were 0.18 and 0.12 m, respectively, probably attributable to the different size of spawners of salmon and trout. None of the temporal or spatial parameters analysed segregate spawners of salmon and trout completely. Species determination of eggs and alevins from the redds showed no interspecific superimposition of redds. It is, therefore, concluded that low survival of hybrids after hatching does not explain the low frequency of hybrids observed in sympatric populations of salmon and trout.  相似文献   

8.
We performed an irrigation experiment to study the impact of summer drought on Pinus sylvestris establishment at its southernmost distribution limit. Watering was done during the first growing season simulating mesic summer conditions, and we monitored the consequences for survival and growth during the first growing season and the delayed consequences on the second growing season. In addition, we considered the heterogeneity created by the microhabitats, where seeds are found after dispersal (bare soil, under shrubs, and under adult pines). Summer drought was the main mortality factor in all the microhabitats. Watering increased emergence and doubled seedling survival compared to non-watered control sites. Differences were even higher when the cumulative effect on emergence and survival was considered, with an overall recruitment of 22.4% in watered plots vs. 7.9% in control. Irrigation increased growth in bare soil and under shrubs, but had scant effect on growth under pines, suggesting that radiation was the limiting factor in this microhabitat. The positive effect of irrigation on growth parameters persisted during the second growing season despite water was not added the second year, showing delayed consequences of drought on seedling performance. Summer drought thus limits Pinus sylvestris establishment in these southernmost forests by reducing both recruitment and growth. This might lead to the development of a remnant dynamic in these relict populations under the current regional increase in dryness and rainfall variability associated with global warming.  相似文献   

9.
Interactions between density‐dependent and density‐independent processes can lead to variation in both growth and survival rates. Detecting such effects, however, will often require sampling on an individual level and at the appropriate spatial and temporal scale. This study documents substantial variation in survival and growth of stream‐dwelling brown trout Salmo trutta from a small Norwegian stream. The data is based on seasonal capture–recaptures of individually marked trout on fixed stations during eight years. The fish were small‐sized, rarely reaching sizes larger than 20 cm and ages older than seven years. Density varied between 0.2–0.8 fish m?2. Variation in survival and recapture probabilities was analysed using program MARK. Apparent survival (the probability of being alive and present within the study area) generally decreased with increasing trout density and increasing drought level (measured as lowest observed water flow) during both winter and summer. Further, there was a significant interaction effect between density and water flow, indicating that density‐dependent effects on survival predominated when environmental conditions were benign (no drought), while density‐independent processes were most important under harsh environmental conditions (drought). Observed length‐at‐age during autumn indicated a more or less linear growth trajectory throughout life, and no effect of density, water flow or temperature was found. However, using the individual‐based capture–recapture data to estimated specific growth rate, significant positive effects of water flow and temperature and a negative effect of density were identified. Thus, the capture–recapture data suggest a strong potential for population regulation at the rather low densities found in this stream, and regulation may occur both through effects on survival and growth.  相似文献   

10.
11.
  1. Understanding the effects of density-dependent and density-independent factors on recruitment is often inhibited by difficulties quantifying their relative contributions in highly variable recruitment data. Use of data-driven statistical methods with data that include one or more extreme recruitment events could help overcome these difficulties.
  2. Juvenile Atlantic salmon and trout abundances in Wales have declined over the last 2 decades, and 2016 was a notably poor recruitment year in rivers around southern Europe, including England and Wales. The 2016 recruitment crash coincided with extreme winter weather conditions, leading to speculation that unusually warm temperatures and high flows adversely affect salmonid recruitment and caused the 2016 crash, although this remains untested.
  3. We developed data-driven statistical models to: (1) describe juvenile salmonid recruitment from density-dependent and density-independent factors; and (2) assess whether the density-independent factors probably contributed to the 2016 salmon recruitment crash. We compiled salmon and trout young-of-year juvenile abundances from electrofishing surveys, egg deposition estimates and river flow and air temperature data from 2001–2017 for seven Welsh rivers, broadly representative of rivers around Wales. We used river flow and air temperature data to derive ecologically and behaviourally meaningful density-independent explanatory variables.
  4. Salmonid recruitment in Wales was best described using density-dependent and density-independent factors, especially for salmon: after accounting for a concave relationship with egg deposition, salmon juvenile abundance was reduced under (1) warmer spawning temperatures that might inhibit spawning, and (2) higher flood frequencies during pre-emergence and emergence that might washout eggs or alevins. Results were less clear for trout, perhaps because they are behaviourally more plastic.
  5. Our findings provide empirical support for general and predictable effects of temperature and flow during spawning and emergence on salmonid—especially salmon—recruitment in Wales. Furthermore, we suggest that the 2016 salmon recruitment crash was caused—in part—by particularly inclement spawning and emergence conditions, which could be more common under future climate change. Our findings suggest that future salmonid stock assessment models could include the effects of density-independent variables on recruitment to improve their predictive power.
  相似文献   

12.
Dams throughout western North America have altered thermal regimes in rivers, creating cold, clear “tailwaters” in which trout populations thrive. Ongoing drought in the region has led to highly publicized reductions in reservoir storage and raised concerns about potential reductions in downstream flows. Large changes in riverine thermal regimes may also occur as reservoir water levels drop, yet this potential impact has received far less attention. We analyzed historic water temperature and fish population data to anticipate how trout may respond to future changes in the magnitude and seasonality of river temperatures. We found that summer temperatures were inversely related to reservoir water level, with warm temperatures associated with reduced storage and with dams operated as run-of-river units. Variation in rainbow trout (Oncorhynchus mykiss) recruitment was linked to water temperature variation, with a 5-fold increase in recruitment occurring at peak summer temperatures (18 °C vs. 7 °C) and a 2.5-fold increase in recruitment when peak temperatures occurred in summer rather than fall. Conversely, adult trout size was only moderately related to temperature. Rainbow and brown trout (Salmo trutta) size decreased by ~24 mm and 20 mm, respectively, as mean annual and peak summer temperatures increased. Further, rainbow trout size decreased by ~29 mm with an earlier onset of cold winter temperatures. While increased recruitment may be the more likely outcome of a warmer and drier climate, density-dependent growth constraints could exacerbate temperature-dependent growth reductions. As such, managers may consider implementing flows to reduce recruitment or altering infrastructure to maintain coldwater reservoir releases.  相似文献   

13.
Limestone applications to the catchment of one tributary to Woods Lake were highly effective in reducing stream acidity and stabilizing seasonal fluctuations in pH. The resulting improvement in stream water quality also led to a dramatic shift in reproductive strategy of the Woods Lake brook trout population. Prior to catchment liming, brook trout in Woods Lake were restricted to spawning on poor quality near shore substrate with limited ground water seepage. Reproductive success was limited by high mortality of eggs and larvae and recruitment from in lake spawning was not successful. Spawning brook trout did not utilize the tributary for spawning prior to watershed liming. Mitigation of acidity in the tributary, by catchment liming, effectively extended the spawning habitat available to the Woods Lake brook trout population and one year following treatment brook trout spawned successfully in the tributary for the first time in 6 years of observation. Significant recruitment of young trout into the lake population occurred from 1991 through 1993, although the absolute number of fish captured was relatively small. In the fall of 1993, four year classes of naturally spawned brook trout were present in the lake. Although reproductive success was enhanced by improving tributary spawning habitat in the Woods Lake basin, self maintenance of the population may be limited by low recruitment rates of young trout, due to high levels of summer mortality resulting from predation. Mitigation of this constraint would require substantially higher levels of fry production than were observed in Woods Lake and/or enhanced refugia for young trout. The results of this experiment suggest that re-establishment of tributary spawning populations of brook trout may be possible, with future reductions in acidic deposition, in acidic Adirondack lakes with limited in-lake spawning habitat.  相似文献   

14.
The influence of pulsed discharges associated with hydroelectric power generation (i.e. hydropeaking) on feeding activity and diet composition of adult brown trout (Salmo trutta) was studied during the summer by comparing two sites: upstream (control site) and downstream from a power plant (hydropeaking site). Twenty fish were captured from each study site by electrofishing at 4‐hour intervals for two consecutive days and stomach contents were collected with pulsed gastric lavage. Hydropeaking events affected brown trout feeding behaviour as well as prey availability. Feeding intensity, measured by the stomach Fullness Index, showed pronounced variations with maximum values after flow pulses, which were linked to variations in prey availability because of increased drift rates of invertebrates. In contrast, brown trout living at the control site showed smoother variations in feeding activity not linked to invertebrate drift. Overall, brown trout at the hydropeaking site had higher food consumption rates and a more generalist and heterogeneous diet than trout from the control site, indicating an opportunistic feeding behaviour during flow pulses. Therefore, the hydrological disturbance caused by hydropeaking did not appear to cause direct negative impacts on feeding of adult brown trout. However, reduced trout density and imbalanced size structure in the hydropeaking site were detected, requiring further research to clarify the spatial influence of hydropeaking on other factors that could negatively affect brown trout populations.  相似文献   

15.
Repeated liming of Hovvatn during the 1981–1995 period assured successful reintroduction of lake spawning brown trout, Salmo trutta. Poor natural recruitment to the population was associated with low survival during early life stages (before hatching) as shown by the 0.5, 3.5, 0.9 and 1.0% of live embryos found in natural redds during the 1992–1995 period, respectively. The low survival was most likely caused by the combination of shallow spawning areas (<2.0 m) and acidic runoff (pH 4.0–4.8) which overlayed the limed part of the water body during the ice covered period. It is therefore concluded that this type of episodic acidification poses a major threat to lake spawning salmonids, and that it can retard or inhibit biotic recovery towards preacidified conditions expected as a result of liming. Addition of limestone gravel (8–32 mm) onto spawning grounds was an efficient alternative liming strategy as 33–36% live embryos were found in this substrate. Conversely, the trout actively avoided additions of shellsand, a behaviour most likely caused by the small particle size of shellsand (3–7 mm) relative to natural spawning gravel.  相似文献   

16.
1. Around the year 2000, historically abundant populations of brown trout ( Salmo trutta ) and Atlantic salmon ( S. salar ) co-occurring in rivers flowing along the Cantabrian corridor of north-western Spain showed a dramatic decline to alarming levels. For one reason or another, fishing was not banned and fishing pressure continued to reduce the few survivors. Unexpectedly, the populations recovered 'naturally' in a very short time period to the extent that in 2004–06 numbers had attained population sizes comparable to those of the mid 1980s.
2. The population of brown trout in Rio Chaballos showed a boom-and-bust pattern concurrent with those observed across broader geographical scales. This study revisits a 22-year data set to explore the nature of the severe decline and rapid recovery of this population.
3. Recruitment was related to stream discharge in March that covers the emergence period and the earliest search stages for food. Coefficients of variation for discharge and recruitment increased over the years and were highly correlated with each other, demonstrating that increased temporal variability in recruitment is strongly linked to increased variability in stream discharge. In turn, recruitment appears to be the major determinant of year-class strength and hence, of population size.
4. A number of factors appeared to operate as resilience mechanisms, permitting the population to increase rapidly when environmental conditions are optimal. These include strong recruitment-discharge relationships, short life-span, small stocks of eggs or offspring required to fill the amount of space suitable for the youngest juveniles and a few females surviving to spawn for a second time.
5. Implications for fishery management and conservation are discussed in the context of the expectation that these populations will vary over the coming years within ranges similar to those in this study.  相似文献   

17.
1. Rivers in boreal forested areas were often dredged to facilitate the transport of timber resulting in channels with simplified bed structure and flow fields and reduced habitat suitability for stream organisms, especially lotic fishes. Currently, many streams are being restored to improve their physical habitat, by replacing boulders and gravel and removing constraining embankments. The most compelling justification behind stream restoration of former floatways has been the enhancement of native fish populations, specifically salmonids. 2. We examined the success of a stream management programme aimed at re‐building diminished brown trout (Salmo trutta) populations by monitoring densities of young‐of‐year and older trout in 18 managed and three reference streams during 2000–2005. Rehabilitation included in‐stream restoration combined with a 5‐year post‐restoration period of stocking young brown trout. Our space‐for‐time substitution design comprised four pre‐management, four under‐management, 10 post‐management and three reference streams. 3. Densities of young‐of‐year brown trout, indicating population establishment, were significantly higher in post‐ compared with pre‐management streams. However, density of young‐of‐year brown trout in post‐management streams was significantly lower compared with near‐pristine reference streams. Furthermore, success of managed brown trout population re‐building varied, indicating stream‐specific responses to management measures. Density of burbot (Lota lota), a native generalist predator, was associated with low recruitment of brown trout. 4. Stream‐specific responses imply that rehabilitation of brown trout populations cannot be precisely predicted thereby limiting application. Our findings support the importance of adaptive stream restoration and management, with focus on identifying factor(s) limiting the establishment of target fish populations.  相似文献   

18.
Synopsis Stocking of fish from other populations has been commonly employed for enhancement of wild brown trout, Salmo trutta, populations in north Spain. Young hatchery reared brown trout of central European origin were introduced into some Asturian rivers every year since 1984. Based on variation at the isozyme locus LDH-C1* and at the microsatellite locus BFRO 002, two genetic markers race-specific in Salmo trutta, we detected introgression of foreign genomes into native gene pools in some Spanish trout populations where only pure native individuals were present 10 years ago. We strongly suggest development of alternative management policies for conservation of Spanish natural brown trout populations without endangering the traditional recreational fisheries. Jorge I. Izquierdo, Ana G. F. Castillo: These two authors contributed equally to the article.  相似文献   

19.
First-year survival of brown trout in three Norwegian streams   总被引:1,自引:0,他引:1  
Monthly survival rates during the first year of life were estimated for the 1999 cohort of stream-resident brown trout Salmo trutta in three Norwegian streams, using capture-mark-recapture methods and the Cormack–Jolly–Seber model. It was hypothesized that reduced survival would occur during the winter. For one of the study populations, the data did support seasonal variation in survival, with monthly survival rates being lower during winter than during summer (0·65 v . 0·99). For the remaining two populations, there was no evidence for seasonal variations in monthly survival rates, but monthly survival rates were significantly different (0·87 v . 0·99). No evidence was found for size-dependent winter survival. Some marked individuals emigrated from the study sites, suggesting that survival rates were underestimated and that different survival rates among populations were partly due to different emigration rates. Net immigration of brown trout was evident at all three study sites.  相似文献   

20.
Time- and sex-specific summer survival of roe deer fawns was estimated using capture-mark-recapture methods in two enclosed populations living in contrasting conditions. The population of Trois Fontaines (eastern France) was roughly constant in size throughout the study period, while in Chizé (western France), the population experienced frequent summer droughts and numbers decreased continuously during the study. Early survival of fawns was low and highly variable over the years at both Chizé and Trois Fontaines, and demonstrated marked variations between cohorts that need to be taken into account when modelling roe deer population dynamics. In Trois Fontaines, fawn survival was positively correlated with early body growth and total rainfall in May and June. In Chizé, fawn survival decreased with increasing density and tended to increase with increasing rainfall in May and June and adult female body mass. These factors explained more than 75% of the variability in early survival observed in both populations. Variation between cohorts had different consequences for the two populations. At Trois Fontaines, cohort variation was limited to a numerical effect on early survival. However at Chizé, cohort variation was long-lasting and affected the phenotypic quality of survivors at later ages, and thereby future survival and breeding abilities (both numerical and quality effects). Male and female fawns had similar survival over their first summer in both populations. This result contrasts with the lower survival of young males often observed in ungulates. Two ultimate causes can be proposed to account for the low and variable survival of roe deer fawns over the first summer: the high energy expenditures incurred by does during each breeding attempt and/or the low absolute body size of newborn roe deer fawns. Received: 28 April 1997 / Accepted: 14 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号