首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary d-(–)-Lactate dehydrogenase (LDH) was purified to homogeneity from a cell-free extract ofLactobacillus helveticus CNRZ 32. The native enzyme was determined to have a molecular weight of 152 000 and consisted of four identical subunits of 38 000. This enzyme was NAD dependent fructose 1,6-diphosphate (FDP) and ATP independent. It was most active on pyruvate followed by -hydroxypyruvate as substrates. TheK m values for pyruvate andd-(–)-lactate were 0.64 and 68.42 mM respectively, indicating that the enzyme has a higher affinity for pyruvate. The enzyme activity was completely inhibited byp-chloromercuribenzoate (1 mM) and partially by iodoacetate, suggesting the involvement of the sulfhydryl group (-SH) in catalysis. Optima for activity by the purified enzyme were pH 4.0 and 50–60°C. Limited inhibition ofd-(–)-LDH was observed with several divalent cations. Additionally, HgCl2 was observed to strongly inhibit enzyme activity. The purified enzyme was not affected by dithiothreitol or any of the metal chelating agents examined.  相似文献   

2.
The substrate specificity of purified fructose bisphosphatase form B from Synechococcus leopoliensis (EC 3.1.3.11; cf. K-P Gerbling, M Steup, E Latzko 1985 Eur J Biochem 147: 207-215) has been investigated. Of the phosphate esters tested only fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate were hydrolyzed by the enzyme. Both sugar bisphosphates were cleaved at the carbon 1-ester. Fructose- and sedoheptulose bisphosphate stabilized the activated (i.e. tetrameric) state of the enzyme and prevented a slow inactivation that is observed in the absence of sugar bisphosphates. With the activated enzyme, kinetic constants (half-saturating substrate concentrations, maximal reaction velocity, and the catalytical constant) were similar for both fructose- and sedoheptulose bisphosphate. The data suggest that fructose bisphosphatase form B from Synechococcus leopoliensis can catalyze both bisphosphatase reactions within the reductive pentose phosphate cycle.  相似文献   

3.
Spinach chloroplast fructose bisphosphatase (EC 3.1.3.11.) exists in both oxidised and reduced forms. Only the latter has the kinetic properties that allow it to function at physiological concentrations of fructose 1,6-bisphosphate and Mg2+. Illumination of freshly prepared type A chloroplasts causes a conversion of oxidised to reduced enzyme. The rate of this conversion does not limit the rate of CO2 fixation. In the dark the reduced enzyme partially reverts back to the oxidised form. If catalase is omitted from the reaction medium the rate of CO2 fixation by chloroplasts is decreased and seems to be limited by the rate of conversion of the enzyme to the reduced form. The physiological significance of the light dependent generation of dithiol compounds (such as thioredoxin) within chloroplasts is discussed.  相似文献   

4.
The class II fructose-1,6-bisphosphatase gene of Corynebacterium glutamicum, fbp, was cloned and expressed with a N-terminal His-tag in Escherichia coli. Purified, His-tagged fructose-1,6-bisphosphatase from C. glutamicum was shown to be tetrameric, with a molecular mass of about 140 kDa for the homotetramer. The enzyme displayed Michaelis-Menten kinetics for the substrate fructose 1,6-bisphosphate with a Km value of about 14 µM and a Vmax of about 5.4 µmol min–1 mg–1 and kcat of about 3.2 s–1. Fructose-1,6-bisphosphatase activity was dependent on the divalent cations Mg2+ or Mn2+ and was inhibited by the monovalent cation Li+ with an inhibition constant of 140 µM. Fructose 6-phosphate, glycerol 3-phosphate, ribulose 1,5-bisphosphate and myo-inositol-monophosphate were not significant substrates of fructose-1,6-bisphosphatase from C. glutamicum. The enzymatic activity was inhibited by AMP and phosphoenolpyruvate and to a lesser extent by phosphate, fructose 6-phosphate, fructose 2,6-bisphosphate, and UDP. Fructose-1,6-bisphosphatase activities and protein levels varied little with respect to the carbon source. Deletion of the chromosomal fbp gene led to the absence of any detectable fructose-1,6-bisphosphatase activity in crude extracts of C. glutamicum WTfbp and to an inability of this strain to grow on the carbon sources acetate, citrate, glutamate, and lactate. Thus, fbp is essential for growth on gluconeogenic carbon sources and likely codes for the only fructose-1,6-bisphosphatase in C. glutamicum.  相似文献   

5.
A bacterium, strain 314B, able to assimilate (S)-5-oxo-2-tetrahydrofurancarboxylic acid was isolated from soil and identified as Erwinia cypripedii. A lactonase hydrolyzing (S)-5-oxo-2-tetrahydrofurancarboxylic acid to l--hydroxyglutaric acid was purified 63-fold with 2% recovery from crude extracts of this bacterium to homogeneity as judged by SDS-PAGE. The molecular masses estimated by SDS-PAGE and gel filtration were 41 kDa and 79 kDa, respectively. The maximum activity was observed at pH 6.5–7.5 and 35–45 °C. The enzyme showed lower activity toward dl-2-oxotetrahydrofuran-4,5-dicarboxylic acid, but did not act on (R)-5-oxo-2-tetrahydrofurancarboxylic acid and other natural and synthetic lactones tested.  相似文献   

6.
Several peaks of aldolase activity are found in the isoelectric focusing pattern of pea (Pisum sativum) leaf chloroplast extracts. One peak, separated by 0.5 pH unit from the major chloroplast aldolase peak, is found when cytoplasmic extracts are focused. The chloroplast and cytoplasmic enzymes have a pH 7.4 optimum with fructose 1,6-diphosphate. The Michaelis constant for fructose-1,6-diphosphate is 19 μM for the chloroplast, 21 μM for the cytoplasmic enzyme, and for sedoheptulose 1,7-diphosphate, 8 μM for the chloroplast enzyme, 18 μM for the cytoplasmic enzyme. Both enzymes are inhibited by d-glyceraldehyde 3-phosphate and by ribulose 1,5-diphosphate. The similarity in the catalytic properties of the isoenzymes suggests that both enzymes have an amphibolic role in carbon metabolism in the green leaf.  相似文献   

7.
Carboxypeptidase produced by Monascus purpureus IFO 4478 was purified to homogeneity. The purified enzyme is a heterodimer with a molecular mass of 132 kDa and consists of two subunits of 64 and 67 kDa. It is an acidic glycoprotein with an isoelectric point of 3.67 and 17.0% carbohydrate content. The optimum pH and temperature were 4.0 and 40 °C, respectively. The enzyme was stable between pH 2.0 and 8.0 at 37 °C for 1 h, and up to 50 °C at pH 5.0 for 15 min. The enzyme was strongly inhibited by piperastatin A, diisopropylfluoride phosphate (DFP), phenylmethylsulfonylfluoride (PMSF), and chymostatin, suggesting that it is a chymotrypsin-like serine carboxypeptidase. Monascus purpureus carboxypeptidase was also strongly inhibited by p-chloromercuribenzoic acid (PCMB) but not by ethylenediaminetetraacetic acid (EDTA) and 1,10-phenanthroline, indicating that it requires cysteine residue but not metal ions for activity. Benzyloxycarbonyl-l-tyrosyl-l-glutamic acid (Z-Tyr-Glu), among the substrates tested, was the best substrate of the enzyme. The Km, Vmax, Kcat, and Kcat/Km values of the enzyme for Z-Tyr-Glu at pH 4.0 and 37 °C were 0.86 mM, 0.917 mM min–1, 291 s–1, and 339 mM–1 s–1, respectively.  相似文献   

8.
A mutant of Saccharomyces cerevisiae lacking phosphoenolpyruvate carboxykinase (E.C. 4.1.1.32) was isolated. The mutant did not grow on gluconeogenic sources except glycerol. The mutation was recessive and apparently affected the structural gene of the enzyme. Intracellular levels of metabolites related to the metabolic situation of the enzyme were not significantly affected after transfer of the mutant from a medium with glycerol to a medium with ethanol as carbon source. In these conditions only AMP decreased 3 to 5 times. A search for mutants affected in the other gluconeogenic enzyme, fructose 1,6 bisphosphatase, remained unsuccessful.Abbreviation PEPCK phosphoenolpyruvate carboxykinase (E.C. 4.1.1.32)  相似文献   

9.
Orotidine-5-monophosphate pyrophosphorylase (OMPppase, E.C. 2.4.2.10) and orotidylate decarboxylase (OMPdecase, E.C. 4.1.1.23) were purified from Serratia marcescens HY. These enzymes required physical association for maximal catalytic activities and formed a fragile complex with dihydroorotase (DHOase, E.C. 3.5.2.3.). OMPppase reversibly lost 50% of its activity upon separation from DHOase. The kinetic characteristics of OMPppase were modified by this separation. In the presence of DHOase, the K ms for PRPP and orotate were stoichiometric: 2.3×10–6 m and 2.6×10–6 m, respectively. Following separation, the K ms were significantly different: 1.3 × 10–6 m for PRPP and 4.1×10–6 m for orotate. OMPppase and OMPdecase could be reversibly separated by acrylamide gel electrophoresis, but the separation was accompanied by a loss of catalytic efficiency for both enzymes. DHOase readily associated into multiple molecular forms and could not be purified. The DHOase-OMPppase-OMPdecase interactions demonstrate that a weakly aggregated, multifunctional enzyme complex participates in the biosynthesis of pyrimidine nucleotides in S. marcescens. This unique association of nonsequential biosynthetic enzymes may represent a larger complex which provides a channeling or regulatory unit.This work was supported by grants from the National Science Foundation (NSF GB 5811) and the Office of Naval Research (Nonr 4413). One of us (J.W.) was a National Science Foundation Graduate Fellow.  相似文献   

10.
Kinetic hysteresis for rabbit liver fructose bisphosphatase in the presence of Mg2+ (pH 7.6) is exhibited by the varied rates at which product formation is reduced on the addition of different inhibitors under cycling conditions. Two different states of the enzyme are detected: the initial resting state which binds α-, β- and keto analogs of fructose 1,6-bisphosphate; and the active cycling state which binds, and is inhibited by, only the α-analog. Both enzyme states, however, bind the allosteric modifier, AMP, and a product analog, (α+β)methyl-D-fructofuranoside 6-phosphate to the same extent so that the resulting inhibition is state independent. A relatively slow first-order transition (0.13 min?1) characterizes the reversion of the active enzyme to its resting state. The implications of this phenomenon for regulating fructose bisphosphatase activity in vivo are discussed.  相似文献   

11.
Somatic embryos from immature cotyledons in peanut (Arachis hypogaea) were initiated on media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-d). Over 90% primary embryogenesis and 41–46% repetitive embryogenesis were obtained 12 weeks after initiation by maintaining embryogenic cultures on medium containing 20 mg 1-1 2,4-d. Maintenance of cultures on medium with 30 or 40 mg I-1 2,4-d resulted in lower primary and secondary embryogenesis, and proliferation of nonembryogenic callus. Transfer of embryogenic cultures to a secondary medium with 10 or 20 mg I-1 2,4-d significantly enhanced secondary embryogenesis compared to basal medium without the growth regulator. The use of Murashige & Skoog versus Finer's media had no significant effect on embryogenesis (85–95%), repetitive embryogenesis (11–37%) or mean embryo number. Secondary embryogenesis was also maintained for over one year by repeated subculture of isolated somatic embryos on medium with 20 mg I-1 2,4-d.Abbreviations B5 Gamborg et al. medium (Gamborg et al. 1968) - 2,4-d 2,4-dichlorophenoxyacetic acid - FN Finer & Nagasawa medium (Finer & Nagasawa 1968) - MS Murashige & Skoog medium (Murashige & Skoog 1962)  相似文献   

12.
We isolated the feather-degrading Bacillus pseudofirmus FA30-01 from the soil sample of poultry farm. The isolate completely degraded feather pieces after liquid culture at 30°C (pH 10.5) for 3 days. Strain FA30-01 is a Gram-positive, spore-forming, rod-shaped bacterium and was identified with B. pseudofirmus based on 16S rDNA analysis. The keratinase enzyme produced by strain FA30-01 was refined using ammonium sulfate precipitation, negative-ion DEAE Toyopearl exchange chromatography, and hydroxyapatite chromatography. The refinement level was 14.5-fold. The molecular weight of this enzyme was 27.5 kDa and it had an isoelectric point of 5.9. The enzyme exhibited activity at pH 5.1–11.5 and 30–80°C with azokeratin as a substrate, although the optimum pH and temperature for keratinase activity were pH 8.8–10.3 and 60°C, respectively. This enzyme is one of the serine-type proteases. Subtilisin ALP I and this enzyme had 90% homology in the N-terminal amino acid sequence. Since this enzyme differed from ALP I in molecular weight, heat resistance and isoelectric point, they are suggested to be different enzymes.  相似文献   

13.
Two cell lines of carrot (Daucus carota L. spp. sativus), grown as cell-suspension cultures in the dark, were irradiated with ultraviolet light (315–420 nm) 10 d after the onset of cultivation. Chalcone synthase (CHS) enzyme activity was induced in both cell lines. Anthocyanin synthesis was only stimulated in the anthocyanin-containing cell line DCb. Parallel to the increase in CHS activity there was an increase with time in the amount of one CHS form with an isoelectric point of 6.5 and a molecular weight of 40 kilodaltons (kDa) per subunit. Whereas the anthocyanin-free cell line DCs failed to accumulate anthocyanin, it did stimulate another CHS form with an isoelectric point at pH 5.5 and a molecular weight of 43 kDa per subunit. Both enzyme activities could be separated by isoelectric focusing and stabilized using sodium hydrosulfite as an oxidation protectant. In carrot plants, CHS was restricted to the dark purple petals of the inflorescence (40 kDa) and to the leaves (43 kDa).Abbreviations BSA bovine serum albumin - CHS chalcone synthase - IEF isoelectric focusing - kDa kilodaltons - KPi potassium phosphate buffer - PAL phenylalanine ammonialyase - pI isoelectric point - UV ultraviolet  相似文献   

14.
In chloroplasts, the light-modulated fructose-1,6-bisphosphatase catalyzes the formation of fructose 6-bisphosphate for the photosynthetic assimilation of CO2 and the biosynthesis of starch. We report here the construction of a plasmid for the production of chloroplast fructose-1,6-bisphosphatase in a bacterial system and the subsequent purification to homogeneity of the genetically engineered enzyme. To this end, a DNA sequence that coded for chloroplast fructose-1,6-bisphosphatase of rapeseed (Brassica napus) leaves was successively amplified by PCR, ligated into the Ndel/EcoRI restriction site of the expression vector pET22b, and introduced into Escherichia coli cells. When gene expression was induced by isopropyl--d-thiogalactopyranoside, supernatants of cell lysates were extremely active in the hydrolysis of fructose 1,6-bisphosphate. Partitioning bacterial soluble proteins by ammonium sulfate followed by anion exchange chromatography yielded 10 mg of homogeneous enzyme per 1 of culture. Congruent with a preparation devoid of contaminating proteins, the Edman degradation evinced an unique N-terminal amino acid sequence [A-V-A-A-D-A-T-A-E-T-K-P-]. Gel filtration experiments and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the (recombinant) rapeseed chloroplast fructose-1,6-bisphosphatases was a tetramer [160 kDa] comprised of four identical subunits. Like other chloroplast fructose-1,6-bisphosphatases, the recombinant enzyme was inactive at 1 mM fructose 1,6-bisphosphate and 1 mM Mg2+ but became fully active after an incubation in the presence of either 10 mM dithiothreitol or 1 mM dithiothreitol and chloroplast thioredoxin. However, at variance with counterparts isolated from higher plant leaves, the low activity observed in absence of reductants was not greatly enhanced by high concentrations of fructose 1,6-bisphosphate (3 mM) and Mg2+ (10 mM). In the catalytic process, all chloroplast fructose-1,6-bisphosphatases had identical features; viz., the requirement of Mg2+ as cofactor and the inhibition by Ca2+. Thus, the procedure described here should prove useful for the structural and kinetic analysis of rapeseed chloroplast fructose-1,6-bisphosphatase in view that this enzyme was not isolated from leaves.Abbreviation DTT dithiothreitol - PCR polymerase chain reaction - EDTA (ethylenedinitrilo)tetraacetic  相似文献   

15.
Thioredoxin (Td) f from pea (Pisum sativum L.) leaves was purified by a simple method, which provided a high yield of homogeneous Td f. Purified Td f had an isoelectric point of 5.4 and a relative molecular mass (Mr) of 12 kilodaltons (kDa) when determined by filtration through Superose 12, but an Mr of 15.8 kDa when determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified protein remained fully active for several months when conserved frozen at — 20° C. The pea protein was able to activate fructose1,6-bisphosphatase (FBPase; EC 3.1.3.11), but in contrast to other higher-plant Td f proteins, was not functional in the modulation of NADP+-malate dehydrogenase activity. In spite of the absence of immunological cross-reactions of pea and spinach Td f proteins with the corresponding antibodies, pea Td f activated not only the homologous FBPase, but also the spinach enzyme. The saturation curves for pea FBPase, either with fructose-1,6-bisphosphate in the presence of different concentrations of homologous Td f, or with pea Td f in the presence of excess substrate, showed sigmoid kinetics; this can be explained on the basis of a random distribution of fructose-1,6-bisphosphate, and of the oxidized and reduced forms of the activator, among the four Td f- and substrate-binding sites of this tetrameric enzyme. From the saturation curves of pea and spinach Td f proteins against pea FBPase, a 4:1 stoichiometry was determined for the Td f-enzyme binding. This is in contrast to the 2:1 stoichiometry found for the spinach FBPase. The UV spectrum of pea Td f had a maximum at 277 nm, which shifted to 281 nm after reduction with dithiothreitol (s at 280 nm for 15.8-kDa Mr = 6324 M–1 · cm–1). The fluorescence emission spectrum after 280-nm excitation had a maximum at 334 nm, related to tyrosine residues; after denaturation with guanidine isothiocyanate an additional maximum appeared at 350 nm, which is concerned with tryptophan groups. Neither the native nor the denatured form showed a significant increase in fluorescence after reduction by dithiothreitol, which means that the tyrosine and tryptophan groups in the reduced Td f are similarly exposed. Pea Td f appears to have one cysteine residue more than the three cysteines earlier described for spinach and Scenedesmus Td f proteins.Abbreviations DDT dithiothreitol - ELISA enzyme-linked immunosorbent assay - FBPase fructose- 1,6-bisphosphatase - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Td thioredoxin The authors are grateful to Mrs. Francisca Castro and Mr. Narciso Algaba for skilful technical assistance. This work was supported by grant PB87-0431 of Dirección General de Investigación Cientifica y Técnica (DGICYT, Spain).  相似文献   

16.
The pollen morphology of the taxa belonging to the generaAetheorhiza Cass.,Launaea Cass.,Reichardia Roth andSonchus L. in the Iberian Peninsula has been studied with light and electron microscopy. The pollen is 3(-4)-zonocolporate and echinolophate (without polar lacunae, but in general with prelacunae), with equatorial ridges and 15–20 lacunae: 3–4 poral, 6–8 abporal and 6–8 paraporal. Small to medium size, P × E = 19–36 × 23–42 µm; sometimes two different sizes have been found. Exine 3–9 µm thick and ornamentation microreticulate and echinate. The results clearly show the relationships between genera. Moreno-Socías, E., Mejías, J. A., Díez, M. J., 1994: Morfología polínica deLactuceae (Asteraceae) en la Península Ibérica, I.Lactuca y géneros relacionados. — Acta Bot. Malacitana.19: 103–113.  相似文献   

17.
Molecular and functional properties of DNA topoisomerase I isolated from a hydrogen-oxidizing bacterium, Alcaligenes eutrophus H16, were investigated. Under native conditions the enzyme forms a monomer with a relative molar mass of 98.500. A rod-like shape of the molecule was derived from the calculated frictional coefficient. The isoelectric point of the enzyme was determined to be in the range of 7.6–8.0. The enzyme activity is strictly Mg2+ dependent with an optimum at 3 mM Mg2+. The pH optimum ranges within 7.5–9.0. A. eutrophus DNA topoisomerase I activity is inhibited by M13 ssDNA, high ionic strength, polyamines, heparin and by a number of intercalating drugs.Abbreviations DTT dithiothreitol - BSA bovine serum albumin - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - Tris tris(hydroxymethyl)aminomethane - PMSF phenylmethanesulfonyl fluoride - PAGE polyacrylamide gel electrophoresis  相似文献   

18.
WhenBacillus subtilis strain ATCC 21951, a transketolase-deficientd-ribose-producing mutant, was grown ond-glucose plus a second substrate which is metabolized via the oxidative pentose phosphate cycle (d-gluconic acid,d-xylose,l-arabinose ord-xylitol),d-glucose did not catabolite repress metabolism of the second carbon source. Thed-ribose yield obtained with the simultaneously converted carbon substrates, significantly exceeded that when onlyd-glucose was used. In addition, the concentration of glycolytic by-products and the fermentation time significantly decreased. Based on these findings, a fermentation process was developed withB. subtilis strain ATCC 21951 in whichd-glucose (100 g L–1) andd-gluconic acid (50 g L–1) were converted into 45 g L–1 ofd-ribose and 7.5 g L–1 of acetoin. A second process, based ond-glucose andd-xylose (100 g L–1 each), yielded 60 g L–1 ofd-ribose and 4 g L–1 of acetoin plus 2,3-butanediol. Both mixed carbon source fermentations provide excellent alternatives to the less efficientd-glucose-based processes used so far.  相似文献   

19.
Glycerate kinase (GK; EC 2.7.1.31) from maize (Zea mays L.) leaves was purified by a sequence of ammonium-sulfate precipitations and chromatography on diethylaminoethyl-cellulose, hydroxyapatite, Sephadex G-75SF and dye ligand (Green A) columns. The purest preparation was almost 1300-fold enriched and had a specific activity of 68 mol · min-1 · (mg protein) -1. The enzyme was a monomer of a relative molecular mass (Mr) of 44 kDa (kdalton) as determined by gel filtration, electrophoresis in dissociating conditions and by immunoblots. The enzyme was only weakly recognized by polyclonal antibodies against purified spinach GK, indicating substantial differences in molecular structure of the two proteins. Highly reducing conditions stabilized GK activity and were required for activation of crude leaf enzyme. The enzyme had a broad pH optimum of 6.8–8.5, and formed 3-phosphoglycerate and ADP as reaction products. Apparent K ms for D-glycerate and Mg-ATP were 0.11 and 0.25 mM, respectively. The enzyme was strongly affected by a number of phosphoesters, especially by 3-phosphoglycerate (K i= 0.36 mM), fructose bisphosphates and nucleoside bisphosphates. Inhibition by 3-phosphoglycerate was competitive to Mg-ATP and noncompetitive to D-glycerate. Pyruvate was found noncompetitive to D-glycerate (K is=4 mM). The ratio of stromal concentration of Mg-ATP to phosphoesters, particularly to 3-phosphoglycerate, may be of importance in the regulation of GK during C4-photosynthesis.Abbreviations DEAE diethylaminoethyl - kDa kdalton - GAP-DH glyceraldehyde phosphate dehydrogenase - GK glycerate kinase - LDH lactate dehydrogenase - 2-ME 2-mercaptoethanol - Mr relative molecular mass - PEP phosphoenolpyruvate - PGA(PK) phosphoglycerate (phosphokinase) - PK pyruvate kinase - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis  相似文献   

20.
The stability, pH-dependence and kinetic properties of the Mn2+ and FDP-activated NAD-dependent lactic acid dehydrogenases from Lactobacillus casei ssp. casei (ATCC 393) and L. curvatus (DSM) 20010) were studied after the enzymes were purified to homogeneity by affinity chromatography. Both enzymes are virtually unidirectional, catalysing efficiently only the reduction of pyruvate. They are similar with respect to the effector requirement and pH-optimum. They differ, however, in their electrophoretic mobility, heat stability, pH-dependence of the Mn2+ requirement and several kinetic properties. It is suggested that most of these differences are caused by differences of the negative charges in the vicinity of the FDP-binding site or the site responsible for the interaction of the subunits of the enzymatically active oligomeres.Abbreviations l-LDH l-Lactic acid dehydrogenase - FDP Fructose-1,6-bisphosphate - DTE Dithioerythrol AddendumIn the case of the L. casei-LDH the shape of the NADH saturation curve is not changed by omitting the effectors FDP and Mn 2+. The K M under these conditions is 3 fold higher (10.10 –5 M).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号