首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth promotion of aTaxus brevifolia cell suspension culture was investigated using conditioning factors. The conditioning factors produced and secreted from cultured cells usually stimulate cell division and the production of secondary metabolites. Therefore, the effective incubation time for the optimal secretion of conditioning factors was firstly determined for the promotion of cell growth. Conditioned media obtained by cultivating for 2 and 5 days showed the promotion of initial cell growth during the early cell growth period. However, the positive effect of the conditioning factors on the initial cell growth did not continue because of the depletion of the medium nutrients. Accordingly, the addition of a carbon source to the conditioned medium prolonged the positive effect on the cell growth. The addition of sucrose to the conditioned medium resulted in the maximum cell density being reached 4 days earlier compared to the control group and an increased substrate yield.  相似文献   

2.
We characterized human umbilical vein (HUV) endothelial cells as to cell growth and prostacyclin production to get a better understanding of the properties of endothelial cells. Endothelial cell growth supplement (ECGS) and basic fibroblast growth factor (FGF) stimulated HUV endothelial cell growth. Heparin further enhanced the cell growth stimulated by ECGS, but not the cell growth stimulated by FGF or in the absence of these growth factors. In the presence of ECGS, the prostacyclin-producing capacity of the cells was inhibited by heparin. However, in the presence of FGF of in the absence of growth factors, heparin did not inhibit prostacyclin production. Therefore, it is likely that there is a specific correlation between heparin and growth factors for endothelial cells in the blood vessel to maintain nonthrombogenicity properly. Heparin-treated cultures may not be suitable for some examinations of prostacyclin production by vascular endothelial cells.  相似文献   

3.
Antibodies against growth factors like IGF1, IGF2, aFGF, bFGF and, to a certain extent, TGF alpha and EGF were shown to cause apoptosis of normal and tumorigenic cells while apoptotic cell death could be prevented neither by single growth factors nor by serum. Antibodies to growth factors caused apoptosis by interacting with growth factors bound to their receptors on the cell surface. The phenomenon is likely to be associated with active internalization of growth factor receptors loaded with ligands. Apparently these activated receptors are essential for cell survival and their disappearance from the cell surface initiates apoptosis.  相似文献   

4.
The effects of various growth factors on endothelial cell survival in vitro were studied. Using rat heart endothelial cells, the cell survival curves were obtained; the cells were cultured until confluent, the medium was changed to serum-free medium with or without growth factors, and the cells were counted after 3, 6, 9, and 12 days. Transforming growth factor-beta, which is known as a potent growth inhibitor for vascular endothelial cells, shortened the rat heart endothelial cell's survival period, while epidermal growth factor or transforming growth factor-alpha prolonged survival. Insulin did not affect the rat heart endothelial cell's survival. Our data indicate that growth factors play a role not only in cell proliferation but also in cell survival in vitro. In addition, elevated levels of growth inhibitors such as transforming growth factor-beta may cause tissue damage in vivo by affecting cell survival.  相似文献   

5.
O A Vorob'eva 《Tsitologiia》1990,32(8):840-846
A method of obtaining granulosa cell culture reacting to the action of gonadotropins and growth factors is described. The efficiency of cell cloning is enhanced under influence of insulin, epidermal growth factor (EGF) and fibroblast growth factors (FGF). Stimulation of proliferation by the latter two factors is seen in the medium with the low serum concentration. Luteinizing and follicle-stimulating inhibit the cell growth in culture. The role of growth factors and gonadotropins in regulation of granulosa proliferation in mammalian ovarian follicles is discussed.  相似文献   

6.
A new endothelial cell growth factor (f-ECGF) was partially purified from the cultured medium of human fibroblast cells of embryonic lungs. The partially purified f-ECGF induced neovascularization in rabbit cornea. It showed a selective growth stimulatory activity on the endothelial cells in vitro, whereas acidic- and basic-fibroblast growth factors (a- and b-FGFs) showed a broad spectrum of growth stimulation among tissues or cells. f-ECGF did not compete with the binding of a-FGF to the cell surface receptor in HEP-G2 hepatoblastoma cell lines. These results indicated that f-ECGF is a new endothelial cell growth factor distinct from a- and b-FGFs which are known to be potent endothelial cell growth factors.  相似文献   

7.
Apoptosis is now widely recognized as a common form of cell death and represents a mechanism of cell clearance in many physiological situations where deletion of cells is required. Peptide growth factors, initially characterised as stimulators of cell proliferation, have now been shown to inhibit death in many cell types. Deprivation of growth factors leads to the induction of apoptosis, i.e. condensation of chromatin and degradation in oligonucleosomesized fragments, formation of plasma and nuclear membrane blebs and cell fragmentation into apoptotic bodies which can be taken up by neighbouring cells. Here we discuss the mechanism(;s) by which growth factors may inhibit apoptosis.  相似文献   

8.
We express the viewpoint that control over cell growth in higher eukaryotes is achieved predominantly by regular transition of cells from proliferation to rest and vice versa as a result of coordinated interrelationship between intracellular growth inhibitors and extracellular growth factors. The resting state is considered as a special physiological state of a cell where the prereplicative reactions necessary for the onset of DNA synthesis are inhibited. Cells pass into a resting state at each successive cell cycle, with regard to the next cycle, once the threshold level of growth inhibitors has been attained. Cellular rest may thus initiate and proceed in parallel with conventional periods of the cell cycle but in a hidden way. Its termination strictly depends on the appropriate concentration of extracellular growth factors. In the absence of growth factors cells, after completing mitosis, pass into an overt state of rest metabolically different from any period of the cell cycle including G1.  相似文献   

9.
The principles of enzyme kinetic analysis were applied to quantitate the relationships among serum-derived growth factors, nutrients, and the rate of survival and multiplication of human fibroblasts in culture. The survival or multiplication rate of a population of cells plotted against an increasing concentration of a growth factor or nutrient in the medium exhibited a hyperbolic pattern that is characteristic of a dissociable, saturable interaction between cells and the ligands. Parameters equivalent to the Km and Vmax of enzyme kinetics were assigned to nutrients and growth factors. When all nutrient concentrations were optimized and in steady state, serum factors accelerated the rate of multiplication of a normal cell population. The same set of nutrients that supported a maximal rate of multiplication in the presence of serum factors supported the maintenance of non-proliferating cells in the absence of serum factors. Therefore, under this condition, serum factors are required for cell division and play a purely regulatory iole in multiplication of the cell population. The quantitative requirement for 18 nutrients of 29 that were examined was significantly higher (P < 0.001) for cell multiplication in the presence of serum factors than for cell maintenance in the absence of serum factors. This indicated specific nutrients that may be quantitatively important in cell division processes as well as in cell maintenance. The quantitative requirement for Ca2+, Mg2+, K+, Pi, and 2-oxocarboxylic acid for cell multiplication was modified by serum factors and other purified growth factors. The requirement for over 30 other nutrients could not clearly be related to the level of serum factors in the medium. Serum factors also determined the Ca2+, K+, and 2-oxocarboxylic acid requirement for maintenance of non-proliferating cells. Therefore, when either Ca2+, K+, or 2-oxocarboxylic acid concentration was limiting, factors in serum played a role as cell “survival or maintenance” factors in addition to their role in cell division as “growth regulatory” factors. However, with equivalent levels of serum factors in the medium, the requirement for Ca2+, K+, and 2-oxocarboxylic acids was still much higher for multiplication than for maintenance. Kinetic analysis revealed that the concentrations of individual nutrients modify the quantitative requirement for others for cell multiplication in a specific pattern. Thus, specific quantitative relationships among different nutrients in the medium are important in the control of the multiplication rate of the cell population. When all nutrient concentrations were optimal for multiplication of normal cells, the multiplication response of SV40-virus-transformed cells to serum factors was similar to that of normal cells. When serum factors were held constant, transformed cells required significantly less (P < 0.001) of 12 of the 26 nutrients examined. Therefore, the transformed cells only have a growth advantage when the external concentration of specific nutrients limits the multiplication rate of normal cells. Taken together, the results suggest that the control of cell multiplication is intimately related to external concentrations of nutrients. Specific growth regulatory factors may stimulate cell proliferation by modification of the response of normal cells to nutrients. Transforming agents may confer a selective growth advantage on cells by a constitutive alteration of their response to extracellular nutrients.  相似文献   

10.
Angiotensin II (AII) has many of the features of the archetypical growth factors and appears to be a growth regulator in the kidney. AII binds to specific cell surface receptors present on a number of different renal cell types including mesangial, vascular smooth muscle, tubular and interstitial cells, and activates many of the intracellular signalling pathways associated with cell growth. In vitro AII can potentiate the mitogenic effect of other growth factors such as EGF. AII induces hypertrophy of vascular smooth muscle cells but the role of AII in the growth of other renal cell types has not been systematically studied.  相似文献   

11.
Summary Endothelial and smooth muscle cells were isolated from human adult large blood vessels to compare their proliferative response to hormones and growth factors. Neural extracts and the medium from differentiated hepatoma cells were used as concentrated sources of required hormones and growth factors that supported both cell types. Active hormones and growth factors were identified from the neural extracts and hepatoma medium by substitution or direct isolation and biochemical characterization. Epidermal growth factor, lipoproteins, and heparin-binding growth factors elicited growth-stimulatory effects on both endothelial and smooth muscle cells. Both types of human vascular cells displayed 7600 to 8600 specific heparin-binding growth factor receptors per cell with a similar apparent dissociation constant (Kd) of 200 to 250 pM. Heparin modified the response of both endothelial and smooth muscle cells to heparin-binding growth factors dependent on the type of heparin-binding growth factor and amount of heparinlike material present. In addition, heparin exerted a growth factor-independent inhibition of smooth muscle cell proliferation. Platelet-derived growth factor, insulinlike growth factors, and glucocorticoid specifically supported proliferation of smooth muscle cells with no apparent effect on endothelial cell proliferation. Growth-factorlike proteinase inhibitors had an impact specifically on endothelial cell proliferation. Transforming growth factor beta was a specific inhibitor of endothelial cells, but had a positive effect on smooth muscle cell proliferation. The results provide a framework for differential control of the two vascular cell types at normal and atherosclerotic blood vessel sites by the balance among positive and negative effectors of endocrine, paracrine and autocrine origin. This research was supported by NIH grants CA37589, HL33847, and AM35310 from the National Institutes of Health, Bethesda, MD; grant 1718 from the Council for Tobacco Research; and a grant from RJR/Nabisco, Inc.  相似文献   

12.
Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and metabolism under conditions of uncertainty.  相似文献   

13.
Growth factors and other extracellular signals regulate cell division in many tissues. Consequently, growth factors may have therapeutic uses to stimulate the production of replacement sensory hair cells in damaged human inner ears, thereby assisting in alleviating hearing loss and vestibular dysfunction. Assessment of the ability of growth factors to stimulate cell proliferation in inner ear sensory epithelia is at an early stage. This paper provides a brief account of what we know regarding growth factor regulation of cell proliferation in developing and mature inner ear sensory epithelia.  相似文献   

14.
The authors compared sedimentation rates of nucleoids from mouse embryo 3T3 fibroblasts cultured in the presence or absence of different cell growth factors. The results clearly showed that rapidly sedimenting nucleoids are obtained only when cells are supplied with any of the following competence growth factors: platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or the product of the oncogene v-sis (a peptide homologous to PDGF). The tumor promoter phorbol 12-myristate 13-acetate, an activator of protein kinase C and a partial mitogen, shares this property with the competence growth factors. Removal of these factors from the medium causes cells to enter Go and nucleoids to sediment at a slower rate. Protein synthesis is required for growth factor induction of change in nucleoid sedimentation, but inhibition of either DNA synthesis or DNA repair does not antagonize the effect of growth factors. Titration of nucleoids with ethidium bromide indicates that one possible mechanism for the nucleoid change is the unwinding of DNA in supercoiled loops. The results indicated that the nucleoid change constitutes a cell response to competence factors that might have an important role in cell proliferation.  相似文献   

15.
Polypeptide hormones, recognized for their ability to regulate cell growth and differentiation, have been classified as growth factors. These growth factors have been extensively described in higher eukaryotic organisms and cell lines [Hedin and Westermark, Cell 37:9-20, 1984]. Here we report the identification and partial characterization of a putative growth factor present in vegetative amoebae of the cellular slime mold Dictyostelium discoideum. A mutant was selected and found to be temperature sensitive due to the absence of an extracellular protein suggestive of a growth factor. The putative growth factor (DGF) is a protein resistant to both heat and strong detergent treatment but sensitive to reducing agents. The physiological significance of DGF is as yet unknown. DGF is of interest both in relation to understanding the events which control cell proliferation in Dictyostelium and in its relationship to other known growth factors.  相似文献   

16.
Regulation of satellite cells during skeletal muscle growth and development   总被引:7,自引:0,他引:7  
Satellite cells are myogenic cells attributed with the role of postnatal growth and regeneration in skeletal muscle. Following proliferation and subsequent differentiation, these cells will fuse with one another or with the adjacent muscle fiber, thereby increasing myonuclei numbers for fiber growth and repair. The potential factors which could regulate this process are many, including exercise, trauma, passive stretch, innervation, and soluble growth factors. Three classes of growth factors in particular (fibroblast growth factor, insulin-like growth factor, and transforming growth factor-beta) have been studied extensively with respect to their effects on satellite cell proliferation and differentiation in culture. Fibroblast growth factor has been shown to stimulate proliferation but depress differentiation. Insulin-like growth factor stimulates both proliferation and differentiation, although the latter to a much greater degree. Transforming growth factor-beta slightly depresses proliferation but inhibits differentiation. When administered in combination, these factors can induce satellite cell activities in culture which mimic those typical of satellite cells found in vivo in growing, regenerating, or healthy mature muscle. Alterations in the concentrations of these growth factors in the muscle environment as well as alterations in the cell's sensitivity or responsiveness to these factors represent potential mechanisms for regulating satellite cell activity in situ.  相似文献   

17.
Effects of inoculum cell density on mammalian cell growth in culture have been observed in a variety of experimental systems. Although these effects have been attributed generally to medium conditioning by the cells, there has previously been no quantitative theory proposed for this phenomenon based on developments in molecular and cell biology. In this article, we offer such a theory founded on the regulatory action of autocrine growth factors. A particularly relevant example of these is platelet- derived growth factor (PDGF), which is produced by fibroblastic cells in response to stimulation by transforming growth factor beta (TGFbeta), a common serum constituent, and provides a mitogenic signal for the same cells. A simple mathematical model for the production, diffusive transport, and binding of autocrine growth factors to cell surface receptors, coupled to a model for the dependence of cell proliferation on growth factor receptor binding allows prediction of initial cell population growth rate as a function of inoculum cell density. We focus on situations involving anchorage-dependent cell growth, in which the cells are attached to a surface. A number of clear results are obtained, most notably the following: 1) for cells cultured on spherical microcarrier bead surfaces, the inoculum cell density needed to produce a given growth rate is linearly proportional to the bead radius; and 2) all other factors being equal, the inoculum cell density on a unit surface area basis needed to produce a given growth rate is greater for spherical microcarrier surfaces than for flat culture dish surfaces. These two results are consistent with the experimental observations of Hu and coworkers(1,2) for fibroblast growth in minimal medium plus serum. The model also allows elucidation of the influence of other system parameters, both biological and physical, on initial cell proliferation rate and the inoculum cell density dependence.  相似文献   

18.
A serum-free assay has been established for studying the role of polypeptide growth factors in inducing loss of density-dependent inhibition of growth of normal rat kidney (NRK) cells. The process has been characterized by measuring the time course of [3H]thymidine incorporation into confluent, quiescent NRK cultures stimulated by defined polypeptide growth factors, in combination with cell counting studies, increases in DNA content, and cell cycle analysis by means of a fluorescence-activated cell sorter. It is shown that none of the growth factors tested (epidermal growth factor, platelet-derived growth factor, transforming growth factor-beta, and retinoic acid) is able to induce loss of density-dependent inhibition of growth by itself, but strong synergism was observed when combinations of growth factors were tested. None of the above factors was found to be essential, however, since any combination of three of the above four growth factors strongly induced the process. Strong parallels were observed between the growth factor requirements for inducing loss of density-dependent inhibition of growth under serum-free conditions and the requirements for induction of anchorage-independent proliferation under growth factor-defined assay conditions. This indicates that most likely the same cellular processes underlie these two aspects of phenotypic transformation, although data indicate that anchorage-independent proliferation may be a more restricted property of phenotypic transformation than loss of density dependence of proliferation. It is concluded that phenotypic transformation of NRK cells does not require specific polypeptide growth factors, but reflects the ability of these cells to respond to multiple growth factors.  相似文献   

19.
BP3T3, a clonal benzo(a)pyrene-transformed BALB/c-3T3 cell line, is conditionally responsive to growth factor stimulation. Density arrested cell populations deprived of growth factors by pretreatment with 0.5% platelet-poor plasma synthesized DNA both in response to ng/ml concentrations of PDGF, EGF, and somatomedin C, and in response to insulin, plasma, and serum. The above agents acted singly to induce DNA synthesis, but synergism is suggested because a higher percentage of cells were stimulated to enter the S phase when the growth factors were added in combination. Desensitization to growth factors occurred when cultures were pretreated with the high concentration of growth factors present in 10% serum (or plasma). In desensitized cultures none of the above agents, added singly or in combination, stimulated DNA synthesis. This effect appears to be global because pretreatment with one growth factor (e.g., insulin) inhibited the action of another (e.g., PDGF). Cell density appears to play a critical role in regulating DNA synthesis. Unlike nontransformed BALB/c-3T3 cells whose density is regulated by the serum concentration, the density of BP3T3 cells reached a plateau when cultures were grown in a serum (or plasma) concentration of 3% or greater. Such density arrested cultures were growth factor unresponsive; however, the cells rapidly responded to growth factors by synthesizing DNA and replicating when reseeded at a lower cell density. Thus the growth of BP3T3 cells is regulated by both growth factors and cell density.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号