首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coordination of cellular behavior is a prerequisite of functionality of tissues and organs. Generally, this coordination occurs by signal transduction, neuronal control, or exchange of messenger molecules. The extent to which metabolic processes are involved in intercellular communication is less understood. Here, we address this question in layers of resting yeast cells and report for the first time the observation of intercellular glycolytic waves. We use a combined experimental and theoretical approach and explain the radial velocity of the waves to arise from the substrate gradient due to local substrate addition. Our results show that metabolic processes introduce an additional level of local intercellular coordination.  相似文献   

2.
TK Sato  I Nauhaus  M Carandini 《Neuron》2012,75(2):218-229
Electrode recordings and imaging studies have revealed that localized visual stimuli elicit waves of activity that travel across primary visual cortex. Traveling waves are present also during spontaneous activity, but they can be greatly reduced by widespread and intensive visual stimulation. In this Review, we summarize the evidence in favor of these traveling waves. We suggest that their substrate may lie in long-range horizontal connections and that their functional role may involve the integration of information over large regions of space.  相似文献   

3.
Chen Q  Liu T  Chen G 《Current Genomics》2011,12(6):380-390
Proteomics will contribute greatly to the understanding of gene functions in the post-genomic era. In proteome research, protein digestion is a key procedure prior to mass spectrometry identification. During the past decade, a variety of electromagnetic waves have been employed to accelerate proteolysis. This review focuses on the recent advances and the key strategies of these novel proteolysis approaches for digesting and identifying proteins. The subjects covered include microwave-accelerated protein digestion, infrared-assisted proteolysis, ultraviolet-enhanced protein digestion, laser-assisted proteolysis, and future prospects. It is expected that these novel proteolysis strategies accelerated by various electromagnetic waves will become powerful tools in proteome research and will find wide applications in high throughput protein digestion and identification.  相似文献   

4.
5.
This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. Bioelectromagnetics 34:3–14, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Benucci A  Frazor RA  Carandini M 《Neuron》2007,55(1):103-117
The visual cortex represents stimuli through the activity of neuronal populations. We measured the evolution of this activity in space and time by imaging voltage-sensitive dyes in cat area V1. Contrast-reversing stimuli elicit responses that oscillate at twice the stimulus frequency, indicating that signals originate mostly in complex cells. These responses stand clear of the noise, whose amplitude decreases as 1/frequency, and yield high-resolution maps of orientation preference and retinotopy. We first show how these maps are combined to yield the responses to focal, oriented stimuli. We then study the evolution of the oscillating activity in space and time. In the orientation domain, it is a standing wave. In the spatial domain, it is a traveling wave propagating at 0.2-0.5 m/s. These different dynamics indicate a fundamental distinction in the circuits underlying selectivity for position and orientation, two key stimulus attributes.  相似文献   

7.
Functional MRI (fMRI) experiments rely on precise characterization of the blood oxygen level dependent (BOLD) signal. As the spatial resolution of fMRI reaches the sub-millimeter range, the need for quantitative modelling of spatiotemporal properties of this hemodynamic signal has become pressing. Here, we find that a detailed physiologically-based model of spatiotemporal BOLD responses predicts traveling waves with velocities and spatial ranges in empirically observable ranges. Two measurable parameters, related to physiology, characterize these waves: wave velocity and damping rate. To test these predictions, high-resolution fMRI data are acquired from subjects viewing discrete visual stimuli. Predictions and experiment show strong agreement, in particular confirming BOLD waves propagating for at least 5-10 mm across the cortical surface at speeds of 2-12 mm s-1. These observations enable fundamentally new approaches to fMRI analysis, crucial for fMRI data acquired at high spatial resolution.  相似文献   

8.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.  相似文献   

9.
10.
Wolf C 《Bioelectromagnetics》2008,29(8):658-659
Whether exposure to electromagnetic fields well below accepted exposure limits has a cytogenetic effect on human cells has long been debated. It is widely published and generally accepted that the exposure unit invariably used in these experiments is capable of providing blinded exposure conditions. The following short report illustrates, however, that exposure conditions might not always be as effectively masked as is generally assumed.  相似文献   

11.
The generation of transition radiation in the form of electromagnetic surface waves by a nonrelativistic electron bunch as it crosses the vacuum-semiconductor interface or a thin semiconductor plate in vacuum is investigated. A study is made of a bunch that has the shape of an ellipsoid of revolution, with a uniform charge density distribution over its volume, and moves along the normal to the interface. When the energy dissipation in the semiconductor is taken into account, the spectrum of the transition radiation emitted in the form of surface waves comprises a peak whose width is comparable to its mean frequency. It is shown that, in each of the two cases under consideration, the generation efficiency, defined as the ratio of the radiated energy to the kinetic energy of the bunch electrons, is maximum for a bunch of certain dimensions. The dependence of the radiated energy and of the generation efficiency on the thickness of a thin semiconductor plate is investigated for given bunch dimensions. It is found that the corresponding dependences have a maximum, which can be explained as being due the competition between the two effects: as the plate thickness increases, on the one hand, the region where the radiation is generated becomes larger, so that the radiation power increases, and, on the other hand, the dissipative energy losses become higher.  相似文献   

12.
This article describes a large-scale model of turtle visual cortex that simulates the propagating waves of activity seen in real turtle cortex. The cortex model contains 744 multicompartment models of pyramidal cells, stellate cells, and horizontal cells. Input is provided by an array of 201 geniculate neurons modeled as single compartments with spike-generating mechanisms and axons modeled as delay lines. Diffuse retinal flashes or presentation of spots of light to the retina are simulated by activating groups of geniculate neurons. The model is limited in that it does not have a retina to provide realistic input to the geniculate, and the cortex and does not incorporate all of the biophysical details of real cortical neurons. However, the model does reproduce the fundamental features of planar propagating waves. Activation of geniculate neurons produces a wave of activity that originates at the rostrolateral pole of the cortex at the point where a high density of geniculate afferents enter the cortex. Waves propagate across the cortex with velocities of 4 m/ms to 70 m/ms and occasionally reflect from the caudolateral border of the cortex.  相似文献   

13.
听觉皮层信号处理   总被引:1,自引:0,他引:1  
王晓勤 《生命科学》2009,21(2):216-221
听觉系统和视觉系统的不同之处在于:听觉系统在外周感受器和听皮层间具有更长的皮层下通路和更多的突触联系。该特殊结构反应了听觉系统从复杂听觉环境中提取与行为相关信号的机制与其他感觉系统不同。听皮层神经信号处理包括两种重要的转换机制,声音信号的非同构转换以及从声音感受到知觉层面的转换。听觉皮层神经编码机制同时也受到听觉反馈和语言或发声过程中发声信号的调控。听觉神经科学家和生物医学工程师所面临的挑战便是如何去理解大脑中这些转换的编码机制。我将会用我实验室最近的一些发现来阐述听觉信号是如何在原听皮层中进行处理的,并讨论其对于言语和音乐在大脑中的处理机制以及设计神经替代装置诸如电子耳蜗的意义。我们使用了结合神经电生理技术和量化工程学的方法来研究这些问题。  相似文献   

14.
Whole-brain neural communication is typically estimated from statistical associations among electromagnetic or haemodynamic time-series. The relationship between functional network architectures recovered from these 2 types of neural activity remains unknown. Here, we map electromagnetic networks (measured using magnetoencephalography (MEG)) to haemodynamic networks (measured using functional magnetic resonance imaging (fMRI)). We find that the relationship between the 2 modalities is regionally heterogeneous and systematically follows the cortical hierarchy, with close correspondence in unimodal cortex and poor correspondence in transmodal cortex. Comparison with the BigBrain histological atlas reveals that electromagnetic–haemodynamic coupling is driven by laminar differentiation and neuron density, suggesting that the mapping between the 2 modalities can be explained by cytoarchitectural variation. Importantly, haemodynamic connectivity cannot be explained by electromagnetic activity in a single frequency band, but rather arises from the mixing of multiple neurophysiological rhythms. Correspondence between the two is largely driven by MEG functional connectivity at the beta (15 to 29 Hz) frequency band. Collectively, these findings demonstrate highly organized but only partly overlapping patterns of connectivity in MEG and fMRI functional networks, opening fundamentally new avenues for studying the relationship between cortical microarchitecture and multimodal connectivity patterns.

What is the relationship between functional network architectures inferred from electromagnetic and haemodynamic data? This study shows that superposition of electromagnetic networks at canonical frequency bands manifests as highly structured patterns of haemodynamic functional connectivity in the human brain, reflecting systematic variation in cytoarchitecture.  相似文献   

15.
A study is made of the passage of electromagnetic waves through the critical surface at small angles between the plasma density gradient and the magnetic field. Expressions are derived for the transmission and reflection coefficients of electromagnetic oscillations that are periodic in the direction transverse to the density gradient. The penetration of wave beams is also analyzed. In the case of a wide beam, the incident and transmitted ray trajectories are shown to be mirror-image about the resonance surface. Behind the resonance surface, a narrow incident wave beam generates a beam propagating along the magnetic field.  相似文献   

16.
Recent publications devoted to the electrodynamics of media in which waves with a negative group velocity can exist are discussed. The properties of such waves have been studied from the beginning of the past century, and the most important results in this field were obtained by Soviet physicists in the 1940s–1950s. However, in most recent publications, this circumstance has not been taken into account.  相似文献   

17.
A study is made of the main regimes of interaction of relativistically strong electromagnetic waves with plasma under conditions in which the radiation from particles plays a dominant role. The discussion is focused on such issues as the generation of short electromagnetic pulses in the interaction of laser light with clusters and highly efficient ion acceleration in a thin plasma slab under the action of the ponderomotive pressure of the wave. An approach is developed for generating superintense electromagnetic pulses by means of up-to-date laser devices.  相似文献   

18.
The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc 2) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initial particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.  相似文献   

19.
Irradiation with electromagnetic waves (8.15-18 GHz, 1 Hz within, 1 microW/cm2) in vivo increases the cytotoxic activity of natural killer cells of rat spleen. In mice exposed for 24-72 h, the activity of natural killer cells increased by 130-150%, the increased level of activity persisting within 24 h after the cessation of treatment. Microwave irradiation of animals in vivo for 3.5 and 5 h, and a short exposure of splenic cells in vitro did not affect the activity of natural killer cells.  相似文献   

20.
Neural oscillations are evident across cortex but their spatial structure is not well- explored. Are oscillations stationary or do they form “traveling waves”, i.e., spatially organized patterns whose peaks and troughs move sequentially across cortex? Here, we show that oscillations in the prefrontal cortex (PFC) organized as traveling waves in the theta (4-8Hz), alpha (8-12Hz) and beta (12-30Hz) bands. Some traveling waves were planar but most rotated. The waves were modulated during performance of a working memory task. During baseline conditions, waves flowed bidirectionally along a specific axis of orientation. Waves in different frequency bands could travel in different directions. During task performance, there was an increase in waves in one direction over the other, especially in the beta band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号