首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugation of DNA intercalators to triple helix forming oligodeoxynucleotides (ODN's) can enhance ODN binding properties and consequently their potential ability to modulate gene expression. To test the hypothesis that linkage structure could strongly influence the binding enhancement of intercalator conjugation with triplex forming ODN's, we have used a model system to investigate binding avidity of short oligomers conjugated to DNA intercalators through various linkages. Using a dA10.T10 target sequence imbedded in a 20 bp duplex, binding avidities of a T10 ODN joined to the DNA intercalator 6,9-diamino, 3-methoxy acridine (DAMA) by 8 different 5' linkages were measured using an electrophoretic mobility shift assay. Although unmodified T10 has a very limited capacity for stable binding under these conditions (apparent Kd > 250 microM at 4 degrees C), conjugation to DAMA using flexible linkers of certain lengths and chemical compositions greatly enhanced binding (Kd of 1 microM at 4 degrees C). Other linkers, however, modestly enhanced binding or had no effect on binding at all. Thus, the length, flexibility, and chemical composition of linker structures all substantially influence intercalator conjugated oligodeoxynucleotide binding avidity.  相似文献   

2.
Triple helix formation usually requires an oligopyrimidine*oligopurine sequence in the target DNA. A triple helix is destabilized when the oligopyrimidine*oligopurine target contains one (or two) purine*pyrimidine base pair inversion(s). Such an imperfect target sequence can be recognized by a third strand oligonucleotide containing an internally incorporated acridine intercalator facing the inverted purine*pyrimidine base pair(s). The loss of triplex stability due to the mismatch is partially overcome. The stability of triplexes formed at perfect and imperfect target sequences was investigated by UV thermal denaturation experiments. The stabilization provided by an internally incorporated acridine third strand oligonucleotide depends on the sequences flanking the inverted base pair. For triplexes containing a single mismatch the highest stabilization is observed for an acridine or a propanediol tethered to an acridine on its 3'-side facing an inverted A*T base pair and for a cytosine with an acridine incorporated to its 3'-side or a guanine with an acridine at its 5'-side facing an inverted G*C base pair. Fluorescence studies provided evidence that the acridine was intercalated into the triplex. The target sequences containing a double base pair inversion which form very unstable triplexes can still be recognized by oligonucleotides provided they contain an appropriately incorporated acridine facing the double mismatch sites. Selectivity for an A*T base pair inversion was observed with an oligonucleotide containing an acridine incorporated at the mismatched site when this site is flanked by two T*A*T base triplets. These results show that the range of DNA base sequences available for triplex formation can be extended by using oligonucleotide intercalator conjugates.  相似文献   

3.
Measurements of the 1H NMR spectra and relaxation rates were used to study the dynamic properties of 9-aminoacridine (9AA) and four bis(acridine) complexes with d(AT)5.d(AT)5. The behavior of the 9AA (monointercalator) and that of C8 (bisintercalator containing an eight-carbon atom linker chain) are entirely similar. For both compounds, the lifetime of the drug in a particular binding site is 2-3 ms at approximately 20 degrees C, and neither affects the A.T base pair opening rates. The complex with C10 (bisintercalator containing a 10-carbon atom linker chain) is slightly more stable than the C8 complex since its estimated binding site lifetime is 5-10 ms at 29 degrees C. Base pairs adjacent to the bound C10 are destabilized, relative to free d(AT)5.d(AT)5, but other base pairs in the C10 complex are little affected. Bis(acridine) pyrazole (BAPY) and bis(acridine) spermine (BAS) considerably stabilize those base pairs that are sandwiched between the two acridine chromophores, but in the BAS complex proton exchange from the two flanking base pairs appears to be accelerated, relative to free d(AT)5.d(AT)5. The lifetime of these drugs in specific binding sites is too long (>10 ms) to be manifested in increased line widths, at least up to 41 degrees C. An important conclusion from this study is that certain bisintercalators rapidly migrate along DNA, despite having large binding constants (K>10(6) M-1). For C8 and C10 complexes, migration rates are little different from those deduced for 9AA. The rigid linker chain in BAPY and the charge interactions in BAS retard migration of these two bisintercalators. These results provide new parameters that are useful in understanding the biochemical and biological properties of these and other bisintercalating drugs.  相似文献   

4.
The synthesis of an oligonucleotide (ODN) modified with pyrene (pyr) on the 5'-phosphate is described. The ODN and pyrene are joined through a linker composed of four methylene groups. Modification of the oligonucleotide was effected via condensation of the 2-cyanoethyl N,N-diisopropylphosphoramidite of 4-(1-pyrenyl)butanol (pyr-m4OPAm, 2) with the 5'-OH of an ODN. This derivative is suitable for incorporation into automated solid-phase DNA synthesis and was attached to the 5' terminus of the DNA chain through a phosphodiester linkage. The properties of the 5'-(pyr-m4)d(T)15 (3) and the duplex it formed with d(A)15 were investigated by fluorescence and absorbance spectroscopy. The pyrene fluorescence in the modified duplex was quenched 96.3% relative to an identical concentration of free 4-(1-pyrenyl)butanol. The ultraviolet spectrum of the 5'-(pyr-m4)-d(T)15 and 5'-(pyr-m4)-d(T)15-d-(A)15 modified duplex, in the 320-360-nm region, was red-shifted 6 nm relative to the free 4-(1-pyrenyl)-butanol. The Tm values of the unmodified and modified duplexes at 0.1 M NaCl were 34.9 and 41.9 degrees C, respectively. The pyrene-induced stabilization corresponds to a free energy change (delta delta G degrees) of -2.6 kcal/mol.  相似文献   

5.
Ligand-dependent stabilization of the estrogen receptor (ER) is often postulated, with limited support from experimental data. We studied the thermal unfolding of recombinant ERalpha by circular dichroism (CD) spectroscopy. The T(M) of unfolding of ERalpha was 38 +/- 2.4 degrees C, and the van't Hoff enthalpy of unfolding was 31.7 +/- 3.4 kcal/mol in the absence of ligands. Addition of estradiol (E(2)) increased the T(M) to 43.6 +/- 2.3 degrees C, while addition of E(2) and an oligonucleotide harboring the estrogen response element (ERE) increased the T(M) to 47.9 +/- 1.6 degrees C. Addition of the antiestrogen 4-hydroxytamoxifen (HT) alone did not increase the T(M); however, a combination of HT and the ERE increased the T(M) to 48.9 +/- 1.0 degrees C. The ERE alone increased the T(M) to 46.1 +/- 0.9 degrees C. Addition of E(2) alone had no effect on the apparent enthalpy of unfolding; however, the ERE alone increased the apparent enthalpy from 31.7 to 36.1 kcal/mol. ERalpha samples containing the ERE also exhibited an increase in the negative ellipticity at 208 and 222 nm, relative to that of ligand-free ERalpha, suggesting a stabilization of the alpha-helix. CD data analysis further showed that the presence of the ERE caused a large increase in alpha-helical content of ERalpha in both the presence and absence of the ligands. This increase in alpha-helical content of ERalpha was not observed in the presence of a nonspecific oligonucleotide. These results show that the ERE can increase the thermal stability of ERalpha, enhance its alpha-helical content, and facilitate the cooperativity of the folding transition.  相似文献   

6.
Abstract

Simple and convenient method for stabilization and detection of duplexes of short oligonucleotides with DNA was developed. This method is based on use of oligonucleotides containing inercalating insert in internucleotide linkage. The linker is so long that dye can intercalate only into the same stacking contact. Additionally the method allows to introduce into oligonucleotide as one intercalator as well as several identical or different intercalating dye.  相似文献   

7.
When inserting 2-phenyl or 2-naphth-1-yl-phenanthroimidazole intercalators (X and Y, respectively) as bulges into triplex-forming oligonucleotides, both intercalators show extraordinary high thermal stability of the corresponding Hoogsteen-type triplexes and Hoogsteen-type parallel duplexes with high discrimination to Hoogsteen mismatches. Molecular modeling shows that the phenyl or the naphthyl ring stacks with the nucleobases in the TFO, while the phenanthroimidazol moiety stacks with the base pairs of the dsDNA. DNA-strands containing the intercalator X show higher thermal triplex stability than DNA-strands containing the intercalator Y. The difference can be explained by a lower degree of planarity of the intercalator in the case of naphthyl. It was also observed that triplex stability was considerably reduced when the intercalators X or Y was replaced by 2-(naphthlen-1-yl)imidazole. This confirms intercalation as the important factor for triplex stabilization and it rules out an alternative complexation of protonated imidazole with two phosphate groups. The intercalating nucleic acid monomers X and Y were obtained via a condensation reaction of 9,10-phenanthrenequinone (4) with (S)-4-(2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)benzaldehyde (3a) or (S)-4-(2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)-1-naphthaldehyde (3b), respectively, in the presence of acetic acid and ammonium acetate. The required monomers for DNA synthesis using amidite chemistry were obtained by standard deprotection of the hydroxy groups followed by 4,4'-dimethoxytritylation and phosphitylation.  相似文献   

8.
Oligodeoxyribonucleotides containing N6-methoxyadenine (M) have been synthesized. The order of stability of duplexes consisting of synthesized oligodeoxyribonucleotides, 5'd(CCTGGTAXCAGGTCC)3'-5'd(GGACCTGNTACCAGG)3' (X = M, A, G. N = A, G, T, C), was M: A (Tm = 52 degrees C) greater than M: T (50 degrees C) greater than M: G (48 degrees C) greater than M: C (46 degrees C) observed by thermal denaturation in a buffer of 0.01 M Na cacodylate, and 0.1 M NaCl at pH 7.0. The Tms are within a range of 6 degrees of difference, which is smaller than those of Tms of the duplexes containing A:N pairs (11 degrees) and G:N pairs (11 degrees). DNA replication study on a template-primer system, 5'd(32p-CAGCTTTCGC)3' 3'd(GTCGAAAGCGMAGTCG)5', showed that TTP and dCTP were incorporated into DNA strands at a site opposite to M by Klenow DNA polymerase, but dATP and dGTP were not.  相似文献   

9.
High-affinity, sequence-specific DNA binding by Cys(2)-His(2) zinc finger proteins is mediated by both specific protein-base interactions and non-specific contacts between charged side-chains and the phosphate backbone. In addition, in DNA complexes of multiple zinc fingers, protein-protein interactions between the finger units contribute to the binding affinity. We present NMR evidence for another contribution to high- affinity binding, a highly specific DNA-induced helix capping involving residues in the linker sequence between fingers. Capping at the C terminus of the alpha-helix in each zinc finger, incorporating a consensus TGEKP linker sequence that follows each finger, provides substantial binding energy to the DNA complexes of zinc fingers 1-3 of TFIIIA (zf1-3) and the four zinc fingers of the Wilms' tumor suppressor protein (wt1-4). The same alpha-helix C-capping motif is observed in the X-ray structures of four other protein-DNA complexes. The structures of each of the TGEKP linkers in these complexes can be superimposed on the linker sequences in the zf1-3 complex, revealing a remarkable similarity in both backbone and side-chain conformations. The canonical linker structures from the zinc-finger-DNA complexes have been compared to the NMR structure of the TGEKP linker connecting fingers 1 and 2 in zf1-3 in the absence of DNA. This comparison reveals that additional stabilization likely arises in the DNA complexes from hydrogen bonding between the backbone amide of E3 and the side-chain O(gamma) of T1 in the linker. We suggest that these DNA-induced C-capping interactions provide a means whereby the multiple-finger complex, which must necessarily be domain-flexible in the unbound state as it searches for the correct DNA sequence, can be "snap-locked" in place once the correct DNA sequence is encountered. These observations provide a rationale for the high conservation of the TGEKP linker sequences in Cys(2)-His(2) zinc finger proteins.  相似文献   

10.
Six dimeric 2-(2-naphthyl)quinolin-4-amines with a linker between the amino groups and eight dimeric 2-(4-anilino)quinolin-4-amines linked between the anilino groups were synthesized and evaluated for their interaction with duplex/triplex DNA's and as antagonists of immunostimulatory oligodeoxynucleotides with a CpG-motif (CpG-ODN). The most powerful triple-helix DNA intercalator known to date, with high affinity toward T.A.T triplets and triplex/duplex selectivity, was found. The potent antagonism of immunostimulatory CpG-ODN by several bis-4-aminoquinolines is not related to their DNA interactions.  相似文献   

11.
We have synthesized two novel DNA photocleaving agents,3,6-diamino-10-[6-(4-nitrobenzoyloxy)hexyl]acridinium chloride and 3,6-diamino-10-[6-(4-nitrobenzamido)-hexyl]acridinium chloride, and studied their DNA binding mode and cleavage properties. These compounds contain the photoactive p-nitrobenzoyl group attached to proflavine via an amide or ester linker group and a polymethylene chain. Spectroscopic and viscometric studies have shown that the compounds bind DNA by an intercalative mode. The presence of covalently-bonded intercalator is essential for the UV (310 nm) induced DNA scission. Above a critical ratio, an increase in the relative concentration of compound to DNA did not induce further cleavage. The cleavage efficiency was dependent on the type of linker group. These results are discussed in regard to possible mechanisms for photoinduced DNA breakage.  相似文献   

12.
Y Yamashita  S Kawada  N Fujii  H Nakano 《Biochemistry》1991,30(24):5838-5845
Saintopin is an antitumor antibiotic recently discovered in mechanistically oriented screening using purified calf thymus DNA topoisomerases. Saintopin induced topoisomerase I mediated DNA cleavage comparable to that of camptothecin, and topoisomerase II mediated DNA cleavage equipotent to those of 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) or 4'-demethylepipodophyllotoxin 9-(4,6-O-ethylidene-beta-D-glucopyranoside) (VP-16). Treatment of a reaction mixture containing saintopin and topoisomerase I or II with either elevated temperature (65 degrees C) or higher salt concentration (0.5 M NaCl) resulted in a substantial reduction in DNA cleavage, suggesting that the topoisomerase I and II mediated DNA cleavage induced by saintopin is through the mechanism of stabilizing the reversible enzyme-DNA "cleavable complex". Consistent with the cleavable complex formation with both topoisomerases, saintopin inhibited catalytic activities of both topoisomerase I and topoisomerase II. The DNA cleavage intensity pattern induced by saintopin with topoisomerase I was different from that by camptothecin. A difference in cleavage pattern was also detected between saintopin and m-AMSA or VP-16 in topoisomerase II mediated DNA cleavage. DNA unwinding assay using T4 DNA ligase showed that saintopin is a weak DNA intercalator like m-AMSA. Thus, saintopin represents a new class of antitumor agent that can induce both mammalian DNA topoisomerase I and mammalian DNA topisomerase II mediated DNA cleavage.  相似文献   

13.
Youngblood B  Buller F  Reich NO 《Biochemistry》2006,45(51):15563-15572
Sequence specificity studies of the wild-type bacterial DNA cytosine C5 methyltransferase HhaI were carried out with cognate (5'GCGC3') and noncognate DNA substrates containing single base pair changes at the first and the fourth position (underlined). Specificity for noncognate site methylation at the level of kcat/KDDNA is decreased 9000-80000-fold relative to the cognate site, manifested through changes in methylation, or a prior step, and changes in KDDNA. Analysis of a new high-resolution enzyme-DNA cocrystal structure provides a partial mechanistic understanding of this discrimination. To probe the significance of conformational transitions occurring prior to catalysis in determining specificity, we analyzed the double mutant (H127A/T132A). These amino acid substitutions disrupt the interface between the flexible loop (residues 80-99), which interacts with the DNA minor groove, and the active site. The mutant's methylation of the cognate site is essentially unchanged, yet its methylation of noncognate sites is decreased up to 460-fold relative to the wild-type enzyme. We suggest that a significant contribution to M.HhaI's specificity involves the stabilization of reaction intermediates prior to methyl transfer, mediated by DNA minor groove-protein flexible loop interactions.  相似文献   

14.
Photochemical cleavage of DNA by nitrobenzamides linked to 9-aminoacridine   总被引:1,自引:0,他引:1  
Nitrobenzamido ligands linked to the DNA intercalator 9-aminoacridine via poly(methylene) chains induce single-strand nicks in DNA upon irradiation with long-wavelength ultraviolet light (lambda greater than or equal to 300 nm). Optimal photocleavage activity was found for the reagent 9-[[6-(4-nitrobenzamido)hexyl]amino]-acridine. Removal of the acridinyl ligand or changing the position of the nitro group from the 4- to the 2-position caused a 10-fold decrease in photocleavage efficiency, whereas a change to the 3-position caused a 30-fold reduction. The DNA cleavage was 5-fold enhanced by subsequent piperidine treatment and showed some sequence dependency with predominant cleavage at G and T residues. Furthermore, significant differences in cleavage preference were observed when the poly(methylene) linker length was changed.  相似文献   

15.
An HPLC method is described which can determine covalent binding to intact nucleic acid by intercalating anticancer drugs and at the same time remove noncovalently bound intercalated drug. The method uses a column containing a nonporous 2-microns DEAE anion-exchange resin capable of chromatographing nucleic acids greater than 50,000 bases in size in under 1 h. After priming with 1 mg of DNA, the column behaves as an intercalator affinity column, strongly retaining the drug while allowing the nucleic acid to pass through normally. Retained drug is released with an injection of 0.1 M potassium hydroxide. Incubations were performed with the intercalator doxorubicin, which is also believed to bind covalently to DNA. When [14C]doxorubicin was mixed with DNA, at a concentration where all the drug would bind by intercalation, the column retained 82% of the total radioactivity, only 18% migrated with the nucleic acid. If the DNA was mildly denatured by treatment with 2 M sodium chloride at 50 degrees C for 45 min before chromatography, then 99.8% of total radioactivity was retained, only background counts migrated with the nucleic acid, as was the case with single-stranded DNA and RNA without any treatment. Purified NADPH cytochrome P-450 reductase was used to activate doxorubicin. DNA inhibited the metabolism of the drug by the enzyme, no covalent binding occurred with RNA, low levels occurred with single-stranded DNA (34 pmol/100 micrograms), and the highest levels were recorded with oligonucleotides (243 pmol/100 micrograms). The assay was sufficiently sensitive to measure covalent binding to DNA extracted from MCF-7 human breast cancer cells treated with 50 microM [14C]doxorubicin (18.6 pmol/100 micrograms). Thus, covalent binding to DNA, RNA, and oligonucleotides by intercalators can be measured quickly (20 min) without the need to either digest the nucleic acid or subject it to long sample preparation techniques.  相似文献   

16.
We present a detailed thermodynamic investigation of the conformational transitions of chromatin in calf thymus nuclei. Differential scanning calorimetry was used as the leading method, in combination with infrared spectroscopy, electron microscopy, and techniques for the molecular characterization of chromatin components. The conformational transitions were induced by changes in the counterion concentration. In this way, it was possible to discriminate between the interactions responsible for the folding of the higher order structure and for the coiling of nucleosomal DNA. Our experiments confirm that the denaturation of nuclear chromatin at physiological ionic strength occurs at the level of discrete structural domains, the linker and the core particle, and we were able to rule out that the actual denaturation pattern might be determined by dissociation of the nucleohistone complex and successive migration of free histones toward native regions, as recently suggested. The sequence of the denaturation events is (1) the conformational change of the histone complement at 66 degrees C, (2) the unstacking of the linker DNA at 74 degrees C, and (3) the unstacking of the core particle DNA, that can be observed either at 90 or at 107 degrees C, depending on the degree of condensation of chromatin. Nuclear chromatin unfolds in low-salt buffers, and can be refolded by increasing the ionic strength, in accordance with the well-known behavior of short fragments. The process is athermal, therefore showing that the stability of the higher order structure depends on electrostatic interactions. The transition between the folded conformation and the unfolded one proceeds through an intermediate condensation state, revealed by an endotherm at 101 degrees C. The analysis of the thermodynamic parameters of denaturation of the polynucleosomal chain demonstrates that the wrapping of the DNA around the histone octamer involves a large energy change. The most striking observation concerns the linker segment, which melts a few degrees below the peak temperature of naked DNA. This finding is in line with previous thermal denaturation investigations on isolated chromatin at low ionic strength, and suggests that a progressive destabilization of the linker occurs in the course of the salt-induced coiling of DNA in the nucleosome.  相似文献   

17.
The design, synthesis, and properties of a new pyrene excimer-forming probe of DNA have been described. 2,2-(Aminomethyl)propanediol was converted by the reaction with 1-pyrenebutylic acid to bis-pyrene-modified propanediol as a fluorescent non-nucleosidic linker. The bis-pyrene-modified linker can be incorporated via phosphoramidite chemistry into the 5'-terminal or internal positions of oligonucleotides (ODNs). The terminally modified ODNs showed almost similar affinity for complementary DNA when compared with the corresponding unmodified ODNs. The duplexes containing the bis-pyrene in the main chain exhibited higher melting temperatures relative to the corresponding duplexes containing propanediol linker at the same position. The UV and CD spectral studies indicate that the stacking interactions between the pyrene and DNA bases occur in the internally modified duplex and do not in the terminally modified duplex. The bis-pyrene modified linker itself displays excimer (E at 480 nm) and monomer (M at 380 nm) emission in a quantum yield (QY) of 0.17 and the E/M intensity ratio of 15. Incorporation of this linker into the terminal or internal positions of ODNs reduced the QY (0.003-0.009) and the E/M ratio (0.3-0.8). While small changes in the QY and E/M ratio was obtained in binding of the internally labeled ODNs to DNA, up to 27-fold increase in the QY and 17-fold increase in the E/M ratio was observed upon hybridization of the terminally labeled ODNs with DNA. The excimer and monomer fluorescence changes were found to be sensitive to a mismatch base present in the target DNA. The bis-pyrene-modified ODNs thus provide a sequence-sepcific fluorescent probe of DNA.  相似文献   

18.
Binding of histone H1 to DNA is described by an allosteric model   总被引:1,自引:0,他引:1  
Equilibrium binding data were analyzed to characterize the interaction of the linker histone H1 degrees with unmodified T4 phage DNA. Data were cast into the Scatchard-type plot described by McGhee and von Hippel and fit to their eponymous model for nonspecific binding of ligand to DNA. The data were not fit by the simple McGhee-von Hippel model, nor fit satisfactorily by the inclusion of a cooperativity parameter. Instead, the interaction appeared to be well described by Crothers' allosteric model, in which the higher affinity of the protein for one conformational form of the DNA drives an allosteric transition of the DNA to the conformational form with higher affinity (form 2). At 214 mM Na(+), the observed affinity K for an isolated site on unmodified T4 bacteriophage DNA in the form 2 conformation is 4.5 x 10(7) M(-1). The binding constant for an isolated site on DNA in the conformation with lower affinity, form 1, appears to be about 10-fold lower. Binding affinity is dependent on ion concentration: the magnitude of K is about 10-fold higher at 14 mM (5.9 x 10(8) M(-1) for form 2 DNA) than at 214 mM Na(+) concentration.  相似文献   

19.
Parallel stranded duplex DNA.   总被引:6,自引:4,他引:2       下载免费PDF全文
Three linear 21-nt oligonucleotides (C2, C3, C7) have been synthesized with different sequences of A and T residues. One pairwise combination, (C3, C7), hybridizes to form a conventional antiparallel duplex (aps-C3.C7), whereas the pair C2, C3 forms a duplex (ps-C2.C3) in which the two strands are in a parallel orientation and the A.T base-pairs in a reverse Watson-Crick configuration. The existence of the novel ps helical structure was established from the following criteria: (i) The electrophoretic mobilities of the ps and aps duplexes in native and denaturing polyacrylamide gels are similar. (ii) The ps duplex is not a substrate for T4 DNA ligase. (iii) Salt-dependent thermal transitions are observed for the two duplexes, but the melting temperatures of the ps molecules are 15 degrees C lower. (iv) The ultraviolet absorption and circular dichroism spectra of the ps duplex are indicative of a base-paired structure, but differ systematically from that of the aps helix. (v) Based on fluorescent measurements, the bis-benzimidazole drug BBI-258 shows a lower affinity for the ps compared to the aps duplex, whereas the opposite preference holds for the intercalator ethidium bromide. We conclude from the present study that parallel stranded DNA is a stable conformation which can arise by interaction between two conventional strands with appropriate sequence homology.  相似文献   

20.
A series of saturated heterocyclic analogues of distamycin were prepared and examined. A fluorescent intercalator displacement (FID) assay conducted on p[dA]-p[dT] DNA to obtain C(50) values and a hairpin deoxyoligonucleotide containing an A/T-rich binding site was used to evaluate DNA binding affinity. It is observed that saturated heterocycles greatly reduce the DNA binding relative to distamycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号