首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the effects of moderate shade (43% vs. 100% of full sunlight) and irrigation with eutrophicated river water (daily vs. alternate-day watering) on growth and nitrogen economy of seedlings of three Mediterranean oak species, two evergreen (Quercus coccifera, Quercus ilex subsp. ballota) and a deciduous (Quercus faginea), grown in pots outdoors. Seedling biomass, N pool, N concentration and N losses by litter fall were measured at the beginning (March 2002) and end (November 2002) of a growing season. All species showed an increase of biomass and N pool under shade and/or high irrigation, while only Q. coccifera – from more arid regions – did the same under full sunlight and low irrigation. At the end of the experiment, biomass of the evergreens was higher in shade than in sun, and in high than in low irrigation, while Q. faginea – from more humid zones – responded to irrigation only. Shade-induced growth was accompanied by a decline in N concentration in the evergreens, but irrigation reduced N concentration only of Q. faginea. Shade, but not irrigation, reduced above-ground N loss. We conclude that both treatments differentially affected the evergreen and the deciduous oaks, probably due to differences in plant hydraulic and stomatal conductance. Although both treatments have similar effects on the growth of evergreens, they produced different effects on seedling N economy, which may have important consequences on future field seedling performance.  相似文献   

2.
This study analyses how coexisting evergreen and deciduous oaks adjust their phenology to cope with the stressful Mediterranean summer conditions. We test the hypothesis that the vegetative and reproductive growth of the winter deciduous (Quercus faginea Lam.) is more affected by summer drought than that of the evergreen [Quercus ilex L. subsp. ballota (Desf.) Samp.]. First, we assessed the complete aboveground phenology of both species during two consecutive years. Shoot and litter production and bud, acorn and secondary growth were monitored monthly. Second, we identified several parameters affected by summer conditions: apical bud size, individual leaf area (LA), leaf mass per area (LMA) and acorn yield in both species, and leaf-fall in Q. faginea; and analysed their variation over 10 years. Q. ilex performed up to 25% of shoot growth and most leaf development during summer, whereas Q. faginea completed most of both phenophases during spring. Secondary growth was arrested in summer under drought conditions. Approximately, 30–40% of bud and 40–50% of acorn growth was undertaken during summer in both species. Summer drought related to differences in LA, LMA and leaf senescence, but not to acorn yield. Both species had similar year-to-year patterns of acorn production, though yields were always lower in Q. faginea. Bud size decreased severely in both species during extremely dry years. In Q. ilex, bud size tended to alternate between years of large and small buds, and these patterns were followed by opposite trends in stem length. In Q. faginea, bud size was more stable through time. Q. ilex was more phenologically active during summer than Q. faginea, indicating a higher tolerance to drought. Furthermore, bud and fruit growth (the only two phenophases that both species performed during summer) were more severely affected by summer drought in Q. faginea than in the evergreen. The differential effects of summer drought on key phenophases for the persistence (bud growth) and colonization ability (fruit production) of both species may have consequences for their coexistence.  相似文献   

3.
Interspecific introgression is a well-known phenomenon in oaks whose ecological and evolutionary consequences, although relevant, are still unclear. We investigated molecular variation and any evidence for hybridisation in nine natural populations of kermes oak (Quercus coccifera L.) from the Iberian Peninsula. Additive patterns in 59 nrDNA ITS sequences revealed that hybrid individuals showing intermediate genotypes between kermes and holm (Q. ilex L.) oaks are very frequent, although intermediate morphotypes are uncommon. Bayesian analysis of ISSR fingerprinting patterns indicated extensive gene-flow among Q. coccifera populations and neighbouring Quercus taxa. Introgression appeared to be an active mechanism in the pair Q. cocciferaQ. ilex, but no conclusive evidence supporting hybridisation between Q. coccifera and other co-occurring Quercus species was found. The role of canalisation in the maintenance of stable morphological characters in the face of extensive introgression is discussed.  相似文献   

4.
Leaf morphology, longevity, and demography were examined in Quercus ilex and Phillyrea latifolia growing in a holm oak forest in Prades mountains (northeast Spain). Four plots (10 × 15 m) of this forest were submitted to an experimental drought during three years (soil moisture was reduced about 15 %). Leaf area, thickness and leaf mass per area ratio (LMA) were measured in sun and shade leaves of both species. Leaf longevity, the mean number of current-year shoots produced per previous-year shoot (Sn/Sn-1), the mean number of current-year leaves per previous-year shoot (Ln/Sn-1), and the percentage of previous-year shoots that developed new ones were measured once a year, just after leaf flushing. LMA and leaf thickness increased since leaf unfolding except in summer periods, when stomatal closure imposed low photosynthetic rates and leaves consumed their reserves. LMA, leaf area, and leaf thickness were higher in Q. ilex than in P. latifolia, but leaf density was higher in the latter species. Drought reduced the leaf thickness and the LMA of both species ca. 2.5 %. Drought also increased leaf shedding up to ca. 20 % in Phillyrea latifolia and decreased it up to ca. 20 % in Q. ilex. In the later species, Sn/Sn-1 decreased by 32 %, Ln/Sn-1 by 41 %, percentage of shoots developed new ones by 26 %, and leaf area by 17 %. Thus the decrease of leaf number and area was stronger in the less drought-resistant Q. ilex, which, under increasingly drier conditions, might lose its current competitive advantage in these Mediterranean holm oak forests.  相似文献   

5.
Many herbivorous insects emerge synchronously with budburst of their host plant, as the nutritional quality of foliage often decreases rapidly following budburst. We carried out manipulative field experiments to evaluate the influence of bud and shoot phenology on performance of the hemlock looper, Lambdina fiscellaria Guenée (Lepidoptera: Geometridae: Ourapterygini), on balsam fir, Abies balsamea (L.) Mill. (Pinaceae), in NF, Canada. Hemlock looper survival, pupal weight, and realized fecundity, which were then combined to estimate fitness, were all highest when newly emerged first instars were placed on foliage of current‐year shoots that had completed approximately 25–35% of their elongation, and lower when placed on younger or older foliage. Survival of a small portion of larvae placed on buds a week before budburst suggests that newly emerged first instars either entered unburst buds or survived for a week without food. In laboratory experiments, approximately half of larvae survived for 4 days without food or water at 10 °C and 65% r.h. The timing of egg hatch in the field appeared to be adaptive, but the short duration of egg hatch suggests that another factor in addition to host plant phenology exerts stabilizing selection pressure on the timing of egg hatch.  相似文献   

6.
Understanding the relationships between bud size and position and bud fate through time is crucial for identifying and subsequently modeling the mechanisms underlying tree architecture. However, there is a lack of information on how bud size drives crown architectural patterns in coexisting tree species. We studied bud demography in two coexisting Mediterranean oak species with contrasting leaf habit (Quercus ilex, evergreen; Q. faginea, deciduous). The main objective was to analyse the effect of bud size on the fate of buds with different positions along the shoot (apical, leaf axillary and scale-cataphyll axillary buds). The number, length and position of all buds and stems were recorded in marked branches during 4 years. Study species presented different strategies in bud production and lifespan. The evergreen species showed greater mortality rate than the deciduous one, which produced larger buds. Bud size and position were highly related since apical buds where longer than axillary ones and bud length declined basipetally along the stem. Apical buds had also higher chances of bursting than axillary ones. Within positions, longer buds presented a higher probability of bursting than shorter ones, although no absolute size threshold was found below which bud bursting was impaired. In Q. ilex, four-year-old buds were still viable and able to burst, whereas in Q. faginea practically all buds burst in their first year or died soon after. Such different bud longevities may indicate contrasting strategies in primary growth between both species. Q. ilex is able to accumulate viable buds for several ages, whereas Q. faginea seems to rely on the production of large current-year buds with high bursting probability under favourable environmental conditions.  相似文献   

7.
Abstract.
  • 1 Field studies were carried out to determine the effects of intra-tree variation in the time of budburst of white spruce, Picea glauca Moench (Voss.), on the behaviour and survivorship of, and herbivory by, the spruce bud moth, Zeiraphera canadensis Mutt. & Free.
  • 2 There was significant variation in the time of budburst among whorls, shoots and buds. Budburst was acropetal, with buds in the interior of the lower crown bursting first and terminal buds on terminal shoots in the upper crown bursting last.
  • 3 Bud moths laid the greatest proportion of their eggs in the middle of the crown and egg hatch was usually best synchronized to budburst in this region. Many eggs hatched before terminal buds on terminal shoots in the upper crown had burst and thus intra-tree variation in budburst decreased the probability that first-instar larvae would colonize the most important plant parts for growth.
  • 4 However, many later instars dispersed upwards and outwards in the crown and colonized the late bursting buds in the upper crown. Such dispersal reduces the effectiveness of intra-plant variation in budburst to reduce herbivory and permits Z.canadensis to eat young nutritious buds for a longer period of time.
  • 5 Intra-tree variance in the date of budburst was greater than that between trees but there were no consistent differences between the intra-tree variance of trees in half-sib families with high or low susceptibility to Z.canadensis. Differences between trees in herbivory, bud moth density and survivorship were not related to the amount of intra-tree variation in budburst.
  相似文献   

8.
ABSTRACT

Six species of the Quercus genus (Quercus ilex L., Q. coccifera L., Q. suber L., Q. trojana Webb, Q. macrolepis Kotschy, Q. cerris L.) have been screened for cytosolic ascorbate peroxidase (APX) by means of native polyacrylamide gel electrophoresis (PAGE). A single isozyme was found in five species (Q. trojana, Q. suber, Q. cerris, Q. macrolepis and Q. coccifera), while Q. ilex shows two different APX proteins. The data showed marked similarities among Q. trojana, Q. suber, Q. cerris and Q. macrolepis with respect to the electrophoretic mobility. The validity of APX electrophoretic patterns in systematic studies is discussed.  相似文献   

9.
Sun and shade leaves of two Mediterranean Quercus species, Quercus ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L., were compared by measuring leaf optical properties, photosynthetic pigment composition and photosystem II efficiency. The presence of trichomes in the adaxial (upper) leaf surface of Q. ilex subsp. ballota seems to constitute an important morphological mechanism that allows this species to maintain a good photosystem II efficiency during the summer. Q. coccifera has almost no trichomes and seems instead to develop other physiological responses, including a smaller light-harvesting antenna size, higher concentrations of violaxanthin cycle pigments and a higher (zeaxanthin + antheraxanthin)/(violaxanthin + antheraxanthin + zeaxanthin) ratio. Q. coccifera was not able to maintain a good photosystem II efficiency up to the end of the summer. In Q. ilex subsp. ballota leaves, natural loss or mechanical removal of adaxial-face leaf trichomes induced short-term decreases in photosystem II efficiency. These changes were accompanied by de-epoxidation of violaxanthin cycle pigments, suggesting that the absence of trichomes would trigger physiological responses in this species. Our data have revealed different patterns of response of Q. ilex subsp. ballota and Q. coccifera facing the stress conditions prevailing in the Mediterranean area.  相似文献   

10.
Nitrogen (N) withdrawn from leaves before abscission can help to supply N requirements in plants of nutrient poor habitats. Besides N shortage, Mediterranean Quercus seedlings must face water and light stresses. However, there is little information on the influence of these stresses in the nitrogen resorption efficiency (NRE) at leaf level, and none at canopy level. We tested in two separated experiments how changes in water and light availability affect NRE and its components at both levels in seedlings of two evergreen oaks [Quercus coccifera L. and Quercus ilex subsp. ballota (Desf.) Samp] and in a semi-deciduous one (Quercus faginea Lam.). In the summer drought experiment seedlings were left to dehydrate to ?2.5 and to ?0.5 MPa (water stress and control, respectively) before watering. In the light experiment seedlings were grown at 100, 20 and 5% of full sunlight. The leaf abscission pattern was monitored and N content, N loss and NRE were calculated in the two peaks of leaf abscission (spring and late summer). After one year of treatments summer drought had little effect on N resorption and its components at both leaf and canopy levels. Moderate shade increased NRE at leaf level in Q. faginea but this response vanished at canopy level. N loss at the leaf level was unaffected. Deep shade decreased N lost at the canopy level in spring but increased it in late summer. N resorption and N losses at the canopy level were lower at late summer than in spring, due to fewer leaves falling. This study highlights the importance of the scale on the study of nitrogen dynamics (leaf vs. whole canopy), as the scaling factor (amount of leaf shedding) also responds to environmental factors, either enhancing or reversing the effects found at leaf level.  相似文献   

11.
Outplanting container-grown oak seedlings with undesirable shoot and root characteristics result in poor establishment and reduced field growth. The objective of this study was to determine the influence of container type on both above-and below-ground nursery growth and field performance of one-year old tap-rooted seedlings Quercus ilex L. and Quercus coccifera L. The experiment was conducted in an open-air nursery and the seedlings were grown in three container types. At the end of the nursery, growth period seedlings’ shoot height, diameter (5 mm above root collar), shoot and root biomass, root surface area, root volume and total root length were assessed. Then the seedlings were planted in the field and their survival and growth were recorded for two growing seasons after outplanting. The results showed a difference between the Quercus species in the effect of container type. Q. ilex seedlings raised in paper-pot had significantly greater height, diameter, shoot and root biomass and root volume than those raised in the other two container types. Similarly, Q. coccifera seedlings raised in paper-pot, had significantly greater above-and below-ground growth than those raised in the other two container types. Both oak species showed relatively low survival in the field; the mortality was mainly observed the first year after outplanting, especially after the summer dry period. However, 2 years after outplanting, the paper-pot seedlings of the two oak species showed better field performance.  相似文献   

12.
We investigated the responses of two co‐existing Mediterranean trees with different regeneration strategies (Phillyrea latifolia seedlings and Quercus ilex sprouts) to experimental drought below the forest canopy. We considered different recruitment stages and used leaf isotopic discrimination to estimate water use efficiency (WUE) and nitrogen availability and use. Drought decreased the emergence and survival of seedlings and sprouts. Survival and growth of older saplings were not influenced by drought. Seedling emergence of P. latifolia was higher than Q. ilex sprout production, but Q. ilex sprouts had higher survival and growth rates. These differences disappeared in the sapling stage. Carbon isotopic discrimination suggested that Q. ilex sprouts had higher WUE than P. latifolia seedlings. Drought increased WUE of recruits, particularly in Q. ilex. Water use regulation increased with ageing, particularly in P. latifolia. Q. ilex had higher δ15N values than P. latifolia; these were also higher under drier soil conditions. Current year seedlings had higher δ15N than saplings, particularly in P. latifolia, suggesting they exploit superficial soil layers. These results suggest that sprouts obtain benefit from resources stored in parent plants. At earlier stages, they perform better than seedlings. This response is not coupled to adult vulnerability to drought for these species, revealing the difficulty of predicting species dynamics during climate change.  相似文献   

13.
Many organisms rely on synchronizing the timing of their life‐history events with those of other trophic levels—known as phenological matching—for survival or successful reproduction. In temperate deciduous forests, the extent of matching with the budburst date of key tree species is of particular relevance for many herbivorous insects and, in turn, insectivorous birds. In order to understand the ecological and evolutionary forces operating in these systems, we require knowledge of the factors influencing leaf emergence of tree communities. However, little is known about how phenology at the level of individual trees varies across landscapes, or how consistent this spatial variation is between different tree species. Here, we use field observations, collected over 2 years, to characterize within‐ and between‐species differences in spring phenology for 825 trees of six species (Quercus robur, Fraxinus excelsior, Fagus sylvatica, Betula pendula, Corylus avellana, and Acer pseudoplatanus) in a 385‐ha woodland. We explore environmental predictors of individual variation in budburst date and bud development rate and establish how these phenological traits vary over space. Trees of all species showed markedly consistent individual differences in their budburst timing. Bud development rate also varied considerably between individuals and was repeatable in oak, beech, and sycamore. We identified multiple predictors of budburst date including altitude, local temperature, and soil type, but none were universal across species. Furthermore, we found no evidence for interspecific covariance of phenology over space within the woodland. These analyses suggest that phenological landscapes are highly complex, varying over small spatial scales both within and between species. Such spatial variation in vegetation phenology is likely to influence patterns of selection on phenology within populations of consumers. Knowledge of the factors shaping the phenological environments experienced by animals is therefore likely to be key in understanding how these evolutionary processes operate.  相似文献   

14.
A strong selection for acorn characteristics is expected to have evolved in the mutualistic relationship between the European jay (Garrulus glandarius) and the oak (Quercus spp.). Bossema's pioneer work suggested that jays do not select acorns randomly, but rather they preferentially select some size and species. Preference for some seeds over others may have implications on plant community dynamics by conferring advantages (or disadvantages) on the selected (avoided) seed characteristics. In this paper we test to what extent jays select acorns by species and/or by size and the relation between these two traits in Mediterranean oak species. The experiments consist of a set of field tests in which acorns from four different coexisting Mediterranean oak species (Quercus ilex, Quercus faginea, Quercus suber, and Quercus coccifera) were placed in artificial feeders accessible to wild jays. The acorns were previously measured to control individual acorn characteristics. Using video-recording techniques, we followed jay activity and the fate of each acorn (sequence of acorn selection and method of transport). Q. ilex acorns were preferred over other acorns, and Q. coccifera acorns were avoided when other acorns were available. Preference for Q. faginea and Q. suber acorns was intermediate, that is, they were preferred over Q. coccifera acorns but not over Q. ilex acorns. Large acorns were also preferred although acorn species selection was stronger than size selection. Jays selected species and size both by visual means and by using acorn area as an indicator of size. Acorns wider than 17–19 mm were carried in the bill because of throat limitation. Our results confirm Bossema's study on temperate oaks and extend it to Mediterranean oak species, revealing implications on mixed oak forest dynamics.  相似文献   

15.
Despite the huge biodiversity characterizing the Mediterranean environment, environmental constraints, such as high sunlight and high temperatures alongside with dry periods, make plant survival hard. In addition, high irradiance leads to increasing ozone (O3) concentrations in ambient air. In this era of global warming, it is necessary to understand the mechanisms that allow native species to tolerate these environmental constraints and how such mechanisms interact. Three Mediterranean oak species (Quercus ilex, Quercus pubescens and Quercus cerris) with different features (drought tolerant, evergreen or deciduous species) were selected to assess their biometrical, physiological and biochemical responses under drought and/or O3 stress (80–100 nl l?1 of O3 for 5 h day?1 for 77 consecutive days). Leaf visible injury appeared only under drought stress (alone or combined with O3) in all three species. Drought × O3 induced strong reductions in leaf dry weight in Q. pubescens and Q. cerris (?70 and ?75%, respectively). Alterations in physiological (i.e. decrease in maximum carboxylation rate) and biochemical parameters (i.e. increase in proline content and build‐up of malondialdehyde by‐products) occurred in all the three species, although drought represented the major determinant. Quercus ilex and Q. pubescens, which co‐occur in dry environments, were more tolerant to drought and drought × O3. Quercus ilex was the species in which oxidative stress occurred only when drought was applied with O3. High plasticity at a biochemical level (i.e. proline content) and evergreen habitus are likely on the basis of the higher tolerance of Q. ilex.  相似文献   

16.
Long‐term effects of ozone (O3) exposure and drought stress were assessed on two subspecies of Quercus ilex: ssp. ilex and ssp. ballota. Two‐year‐old seedlings were continuously exposed for 26 months in open‐top chambers to three O3 treatments: charcoal filtered air, non‐filtered air and non‐filtered air supplemented with 40 nl·l?1 O3. Additionally, two irrigation regimes were adopted: half of the plants were well‐watered and the others received half of the water supplied to control plants. Growth, shoot water potential and gas exchange rates were assessed seasonally, and biomass accumulation was determined at the end of the experiment. Drought stress caused higher reductions of gas exchange, growth and biomass accumulation than O3 exposure in both subspecies. The combination of O3 and drought stress caused further decreases of accumulated aboveground biomass but no additive effects were observed on gas exchange rates or root biomass. Thus, drought stress did not protect Q. ilex from O3 effects on biomass when the response of the whole plant was considered. Q. ilex ssp. ballota was more sensitive to O3 and ssp. ilex was more affected by drought stress. The different O3 sensitivity was not only related to pollutant uptake but also to the ability of plants for resource acquisition and allocation. Based on biomass dose–response functions, Q. ilex is more resistant to O3 than other European evergreen tree species, however, O3 represents an additional stress factor that might be impairing plant ability to withstand current and future climate change.  相似文献   

17.
Temperatures in mountain areas are increasing at a higher rate than the Northern Hemisphere land average, but how fauna may respond, in particular in terms of phenology, remains poorly understood. The aim of this study was to assess how elevation could modify the relationships between climate variability (air temperature and snow melt‐out date), the timing of plant phenology and egg‐laying date of the coal tit (Periparus ater). We collected 9 years (2011–2019) of data on egg‐laying date, spring air temperature, snow melt‐out date, and larch budburst date at two elevations (~1,300 m and ~1,900 m asl) on a slope located in the Mont‐Blanc Massif in the French Alps. We found that at low elevation, larch budburst date had a direct influence on egg‐laying date, while at high‐altitude snow melt‐out date was the limiting factor. At both elevations, air temperature had a similar effect on egg‐laying date, but was a poorer predictor than larch budburst or snowmelt date. Our results shed light on proximate drivers of breeding phenology responses to interannual climate variability in mountain areas and suggest that factors directly influencing species phenology vary at different elevations. Predicting the future responses of species in a climate change context will require testing the transferability of models and accounting for nonstationary relationships between environmental predictors and the timing of phenological events.  相似文献   

18.
Resprout and mature plant shoot growth, leaf water status and gas exchange behavior, tissue nutrient content, flowering, and production were studied for co-occurring shallow-rooted (Arbutus unedo L.) and deeprooted (Quercus ilex L.) Mediterranean tree species at the Collserola Natural Park in Northeast Spain Resprouts showed higher growth rates than mature plant shoots. During fall, no differences in eco-physiological performance of leaves were found, but mobilization of carbohydrates from burls strongly stimulated growth of fall resprouts compared to spring resprouts, despite low exposed leaf area of the fall shoots. During summer drought, resprouts exhibited improved water status and carbon fixation compared to mature plant shoots. Shoot growth of Q. ilex was apparently extended due to deep rooting so that initial slower growth during spring and early summer as compared to A. unedo was compensated. Tissue nutrient contents varied only slightly and are postulated to be of minor importance in controlling rate of shoot growth, perhaps due to the relatively fertile soil of the site. Fall flowering appeared to inhibit fall shoot growth in A. unedo, but did not occur in Q. ilex. The results demonstrate that comparative examinations utilizing vegetation elements with differing morphological and physiological adaptations can be used to analyze relatively complex phenomena related to resprouting behavior. The studies provide an important multi-dimensional background framework for further studies of resprouting in the European Mediterranean region.  相似文献   

19.
 Stem xylem features in two evergreen Quercus species (Q. coccifera and Q. ilex) and a deciduous one (Q. faginea) were analysed along an Atlantic-Mediterranean climatic gradient in which rainfall and winter cold experience strong variation. Mean maximum vessel diameter, vessel density, vessel element length, xylem transverse sectional area, Huber value (xylem transverse sectional area per leaf area unit), theoretical leaf specific conductivity (estimated hydraulic conductance per leaf area unit) and total leaf area were determined in 3-year-old branches. Q. faginea presented the widest vessels and the highest theoretical leaf specific conductivity while Q. coccifera showed the lowest total leaf area and the highest Huber value. Studied features did not exhibit significant correlations with mean minimum January temperature in any species but did show significant relationships with rainfall. In Q. coccifera, mean maximum vessel diameter, vessel element length and theoretical leaf specific conductivity increased with higher rainfall while vessel density decreased. Mean maximum vessel diameter and total leaf area in Q. ilex increased with precipitation whereas variables of Q. faginea did not show any significant trend. Results suggest that aridity, rather than minimum winter temperature, controls stem xylem responses in the studied evergreen species. Q. faginea traits did not show any response to precipitation, probably because this species develops deep roots, which in turn makes edaphic and topographic factors more important in the control of soil water availability. In response to aridity Q. coccifera only exhibits adjustment at a xylem level by reducing its water transport capacity through a reduction of vessel diameter without changing the amount of xylem tissue or foliage, whereas Q. ilex adjusts its water transport capacity in parallel to the foliage area. Received: 13 January 1997 / Accepted: 8 April 1997  相似文献   

20.
There is a growing interest in understanding and forecasting the responses of plant communities to projected changes of environmental conditions. Multi-stage demographic approaches, where plant recruitment is explored across multiple and consecutive stages, are essential to obtain a whole overview of the consequences of increasing aridity on tree recruitment and forest dynamics, but they are still rarely used. In this study, we present the results of an experimental rainfall exclusion aimed to evaluate the impact of projected increasing drought on multiple stage-specific probabilities of recruitment in a key tree species typical of late-successional Mediterranean woodlands (Quercus ilex L.). We calibrated linear and nonlinear likelihood models for the different demographic processes and calculated overall probabilities of recruitment along a wide range of microhabitat conditions. Rainfall exclusion altered Q. ilex recruitment throughout ontogeny. Seed maturation, seedling emergence and survival and, to a lesser extent, post-dispersal seed survival were the most sensitive demographic processes to decreased rainfall. Interestingly, both the identity of the most critical stages for recruitment and their specific sensitivity to rainfall manipulation depended largely on the yearly pattern of precipitation. The microhabitat heterogeneity strongly determined the success of recruitment in the study species. The experimental increase in drought displaced the peak of maximum overall recruitment towards the low end of the light gradient, suggesting that the dependence on shrubs for an effective recruitment in Q. ilex could be intensified under future environmental scenarios. In terms of phenotypic plasticity, Q. ilex seedlings responded more strongly to light availability than to experimentally increased drought, which could reduce its ability to persist under on-going environmental conditions due to climate change. Results from this study provide a full picture of the ecological and functional consequences of the projected rainfall reduction on tree recruitment and forest dynamics in two years of contrasting precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号