首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of muscular fatigue was studied in ten patients (at the age of 59–65 years) with the rigid akinetic form of Parkinson's disease under cooling (+10°C, 60 min), during therapy (Nakom or Cyclodol), as compared to neutral thermal conditions (+22°C), using surface electromyography (EMG) and turn-amplitude analysis. Clear stages were found in the pattern of change of the turn-amplitude analysis, both in neutral thermal conditions and under cooling. A thermoregulatory component of the muscular activity was found after cooling and fatigue at small static loads. In addition, cooling and fatigue brought about an alleviation of the hidden tremor component of the EMG in patients with Parkinson's disease (in 30% of cases) and therefore can serve as a functional test. Cooling and dynamic loads reduce muscular power and decrease oligobradykinesia.  相似文献   

2.
The effect of medication (Nakom, Cyclodol, and Bromocriptine for 3–6 months) on the electromyogram (EMG) parameters of muscular fatigue and recovery after exercise was studied in patients with Parkinson’s disease (PD). Healthy age-matched subjects served as a control group. In the patients on medication, tolerance to exercise increased approximately twofold and the maximum strength during fatigue and recovery was lower than before medication. In the control subjects, the number of flexions was twofold higher than in the patients on medication. In the patients before medication, the turn count and the mean EMG amplitude were higher and the turn-amplitude peak ratio was lower than on medication, suggesting a treatment-induced decrease in muscular rigidity. Medication changed the EMG parameters of fatigue and recovery to values more characteristic of healthy young subjects than of healthy elderly ones. Thus, the increased tolerance to exercise revealed in the PD patients on medication by turn-amplitude and muscular strength analyses could lead to an increased working capacity and deeper fatigue.__________Translated from Fiziologiya Cheloveka, Vol. 31, No. 4, 2005, pp. 81–87.Original Russian Text Copyright © 2005 by Antonen, Meigal, Lupandin.  相似文献   

3.
The authors studied muscle fatigue in patients with parkinsonism receiving pathogenetic therapy and in elderly healthy subjects by means of turn-amplitude analysis of surface electromyography (EMG). The healthy subjects reacted to fatigue with a significant increase in the amplitude and number of EMG turns during static exercise and a decrease in the peak ratio. In patients with parkinsonism, fatigue began after an exercise that was half of that in the healthy subjects with a decrease in the number of turns and mean amplitude and an increase in peak ratio. These data show that dynamics of strength and EMG parameters differs in patients with parkinsonism and healthy subjects.  相似文献   

4.
The purpose of the present study was to investigate if the intramuscular pressure generated during an isometric muscle contraction is important for the appearance of EMG spectral changes accompanying localized muscular fatigue. The EMG and intramuscular pressure of the left biceps brachii in eight volunteers were recorded during standardized isometric contractions by means of intramuscular wire electrodes and infusion catheters, respectively. Spectral changes were elicited by a submaximal contraction and the intramuscular pressure at which the induced spectral changes were able to recover was determined. It was found that significant recovery was possible only if the intramuscular pressure dropped below a level of about 2.7 kPa (20 mm Hg). It is concluded that the intramuscular pressure during a sustained isometric contraction is relevant for the generation of fatigue induced spectral changes, and that measurement of the intramuscular pressure makes possible predetermination of whether or not an isometric muscle contraction is liable to result in localized muscular fatigue.  相似文献   

5.
Surface electromyography and turn–amplitude analysis were used to study muscle fatigue after exposure to heating (40°C, 60 min) and under thermoneutral conditions (22°C) in 12 parkinsonian patients from 57 to 65 years of age treated with Nacom, Bromocryptin, and Cyclodol. In the patients, heating caused a twofold increase in the motor performance (number of contractions until exhaustion and nerve conduction velocity) and a decrease in the mean electromyogram (EMG) amplitude and number of turns of spontaneous muscle activity. The spontaneous EMG activity was fully inhibited after exposure to heating and fatigue, suggesting a thermoregulatory dependence of the spontaneous muscle tone (rigidity) in parkinsonian patients. After exposure to heating, fatigue also caused a decrease in the peak ratio with a shift of the mean EMG amplitude to lower values. After-load recovery of the mean EMG amplitude was slower under heating versus thermoneutral conditions and was compensated for by an increased number of turns.  相似文献   

6.

Aim

The aim of this study is to determine if the fatigue of cervical muscles has a significant influence on the head-neck segment musculo-tendinous stiffness.

Methods

Ten men (aged 21.2 ± 1.9 years) performed four quick-release trials of flexion at 30 and 50% MVC before and after the induction of muscular fatigue on cervical flexors. Electromyographic activity was recorded on the sternocleidomastoids (SCM) and spinal erectors (SE), bilaterally. Musculo-tendinous stiffness was calculated through the quick-release method adapted to the head-neck segment.

Results

We noticed a significant linear increase of the head-neck segment musculo-tendinous stiffness with the increase of exertion level both before (P < 0.0001) and after the fatigue procedure (P < 0.0001). However, this linear relationship was not different before and after the fatigue procedure. EMG analysis revealed a significant increase of the root mean square for the right SCM (P = 0.0002), the left SCM (P < 0.0001), the right SE (P < 0.0001), and the left SE (P < 0.0001) and a significant decrease of the median power frequency only for the right (P = 0.0006) and the left (P = 0.0003) SCM with muscular fatigue.

Discussion

We did not find significant changes in the head-neck segment musculo-tendinous stiffness with fatigue of cervical muscles. We found a significant increase in EMG activity in the SCM and the SE after the induction of fatigue of the SCM. Our findings suggest that with fatigue of cervical flexors, neck muscle activity is modulated in order to maintain the musculo-tendinous stiffness at a steady state.  相似文献   

7.
8.
The shoulder allows kinematic and muscular changes to facilitate continued task performance during prolonged repetitive work. The purpose of this work was to examine changes during simulated repetitive work in response to a fatigue protocol. Participants performed 20 one-minute work cycles comprised of 4 shoulder centric tasks, a fatigue protocol, followed by 60 additional cycles. The fatigue protocol targeted the anterior deltoid and cycled between static and dynamic actions. EMG was collected from 14 upper extremity and back muscles and three-dimensional motion was captured during each work cycle. Participants completed post-fatigue work despite EMG manifestations of muscle fatigue, reduced flexion strength (by 28%), and increased perceived exertion (∼3 times). Throughout the post-fatigue work cycles, participants maintained performance via kinematic and muscular adaptations, such as reduced glenohumeral flexion and scapular rotation which were task specific and varied throughout the hour of simulated work. By the end of 60 post-fatigue work cycles, signs of fatigue persisted in the anterior deltoid and developed in the middle deltoid, yet perceived exertion and strength returned to pre-fatigue levels. Recovery from fatigue elicits changes in muscle activity and movement patterns that may not be perceived by the worker which has important implications for injury risk.  相似文献   

9.
There is still conflicting evidence about the influence of fatigue on trunk reflex activity. The aim of this study was to measure response latency and amplitude changes of lumbar and abdominal muscles after heavy external force perturbation applied to the trunk in the sagittal plane before and after back muscle fatigue, in expected and unexpected conditions. Ten healthy subjects in a semi-seated position, torso upright in a specific apparatus performed an intermittent back muscle fatigue protocol. EMG reflex activity of erector spinae (ES) and external oblique muscles were recorded in unexpected and in expected (self pre-activation) conditions. After fatigue, the normalized reflex amplitude of ES increased in expected and unexpected conditions (P < 0.05) while ES response latency was slightly decreased. Reflexes latencies for ES were systematically shorter (P < 0.05) of 25% in expected compared to unexpected conditions. These findings suggest that a large external force perturbation would elicit higher paraspinal magnitude responses and possible earlier activation in order to compensate the loss of muscular force after fatigue. Because of the seated position the postural adjustments were probably not triggered and thus explain the lack of abdominal activation. The self-anticipated pre-activation in order to counteract perturbations was not affected by fatigue illustrating the natural muscular activation to maintain trunk stability.  相似文献   

10.
The objectives of this study were to quantify the electromyographic activities (EMG) of finger muscles during prolonged, low-forces, and repetitive typing with an ergonomically designed VDT workstation, as well as to analyze the occurrence and the possible mechanisms of muscular fatigue in touched typists. Thirty healthy female typists were recruited to type consecutively for 2 h. The surface EMG of extensor digitorum communis (EDC) and flexor digitorum superficialis (FDS) of both hands was recorded throughout the entire test. Electrical activity (EA) and median frequency (MDF) were calculated, and then regressed against the time courses to obtain the slopes of progress. Further analysis of the EMG parameters was done by the joint analysis of spectra and amplitudes (JASA). The results indicated that maximum voluntary electrical activation (MVE) decreased after 2-h typing, and did not recover to the initial values even after a 10-min break. Besides, there was a trend of decrement in frequency throughout the entire trail, and the MDF reduced by 25% in comparison with the initial values. With the JASA plot, 74% of the muscles manifested fatigue after 2-h typing activity. Furthermore, we observed that the EDC muscles were more susceptible to muscular fatigue than the FDS muscles. In conclusion, prolonged consecutive typing may induce muscular fatigue in the healthy typists even in an ergonomic typing environment.  相似文献   

11.
This study analysed the changes in the electromyographic activity (EMG) of the vastus lateralis muscle (VL) during an incremental maximal oxygen uptake test on a treadmill. A breakpoint in the integrated electromyogram (iEMG)-velocity relationship has already been interpreted in two ways: either as a sign of neuromuscular fatigue or as an expression of the iEMG-velocity relationship characteristics. The aim of this study was to test a method of distinguishing fatigue effects from those due to increases in exercise power. Eight well-trained male runners took part in the study. They completed a running protocol consisting of 4-min stages of increments in power output. Between each stage (about 15 s after the start of a minute at rest), the subjects had to maintain a standard effort: a 10-s isometric leg extension contraction [50% isometric maximal voluntary contraction (IMVC)]. The EMG was recorded during the running and isometric protocols, a change in the EMG signal during the isometric exercise being considered as the sign of fatigue. The iEMG-velocity relationships were strongly fitted by a second-order polynomial function for data taken at both the start (r = 0.98) and the end (r = 0.98) of the stage. Based on the stability of the 50%IMVC-iEMG relationship noted between stages, the start-iEMG has been identified as expressing the iEMG-velocity relationship without fatigue. The stage after which end-iEMG increased significantly more steeply than start-iEMG was considered as the iEMG threshold and was simultaneous with the ventilatory equivalent for carbon dioxide threshold. The parallel changes of minute ventilation and iEMG would suggest the existence of common regulation stimuli linked either to effort intensity and/or to metabolic conditions. The fall in intracellular [K+] has been discussed as being one of the main factors in regulating ventilation. Accepted: 16 December 1997  相似文献   

12.
While much is known about the physiological basis of local muscular fatigue, little is known about the kinematic and electromyographic (EMG) consequences of brief fatiguing isometric contractions. Five male subjects performed a horizontal elbow flexion-extension reversal movement over 90° in 250 ms to reversal before and after one of five single maximal isometric elbow flexions ranging in duration from 15–120 s. Surface EMG signals were recorded from the biceps brachii, the long head of the triceps, the clavicular portion of the pectoralis major, and the posterior deltoid. Spatial and temporal errors were computed from potentiometer output. During the fatiguing bouts, maximum voluntary force dropped linearly an average of 4% in the 15 s condition and 58% in the 120 s condition relative to maximum force. The associated biceps rectified-integrated EMG signal increased from the onset of each fatigue bout for 15–30 s, then decreased over the remainder of the longer bouts. Following the fatigue bout, subjects undershot the target distance on the first movement trial in all conditions. Following short fatigue durations (i.e. 15–30 s), the peak biceps EMG amplitude was disrupted and movement velocity decreased, but both measures recovered within seconds. As fatigue duration increased, progressive decreases in peak velocity occurred with increased time to reversal, reduced EMG amplitude, and longer recovery times. However, the relative timing of the EMG pattern was maintained suggesting the temporal structure was not altered by fatigue. The findings suggest that even short single isometric contractions can disrupt certain elements of the motor control system.  相似文献   

13.
Muscle fatigue and calibration of EMG measurements   总被引:3,自引:0,他引:3  
Amplitude electromyography (EMG) is often used as an estimator of muscular load. Such measurements can, however, be biased by other factors, for example muscular fatigue. The aim of this study was to examine the influence of fatigue on amplitude parameters of the EMG. The test subjects raised the arm to 909 of abduction in the plane of the scapula. The hand was loaded with 0, 1 and 2 kg during 5, 3 and 2 min respectively. EMG was recorded from the trapezius muscle, and spectral and amplitude parameters were calculated. There was a significant rise of the EMG amplitude as a sign of fatigue at all load levels: 7% min−1 at 0 kg, 15% min−1 at 1 kg, and 19% min−1 at 2 kg. At 0 kg hand load there was no change of the spectral parameters but at higher load levels there was a significant decline of mean power frequency: 3% min−1 at 1 kg and 11% at 2 kg. The amplitude rise due to muscle fatigue may seriously jeopardize calibration measurements unless the duration of the load is kept limited.  相似文献   

14.
This study compared the effect of repetitive work in thermoneutral and cold conditions on forearm muscle electromyogram (EMG) and fatigue. We hypothesize that cold and repetitive work together cause higher EMG activity and fatigue than repetitive work only, thus creating a higher risk for overuse injuries. Eight men performed six 20-min work bouts at 25 degrees C (W-25) and at 5 degrees C while exposed to systemic (C-5) and local cooling (LC-5). The work was wrist flexion-extension exercise at 10% maximal voluntary contraction. The EMG activity of the forearm flexors and extensors was higher during C-5 (31 and 30%, respectively) and LC-5 (25 and 28%, respectively) than during W-25 (P < 0.05). On the basis of fatigue index (calculated from changes in maximal flexor force and flexor EMG activity), the fatigue in the forearm flexors at the end of W-25 was 15%. The corresponding values at the end of C-5 and LC-5 were 37% (P < 0.05 in relation to W-25) and 20%, respectively. Thus repetitive work in the cold causes higher EMG activity and fatigue than repetitive work in thermoneutral conditions.  相似文献   

15.
The purpose of this paper is to evaluate the muscular activation of the forearm, with or without vibration stimuli at different frequencies while performing a grip tasks of 45 s at various level of exerted force. In 16 individuals, 9 females and 7 males, the surface electromyogram (EMG) of extensor carpi radialis longus and the flexor carpi ulnari muscles were assessed. At a short latency from onset EMG, RMS and the level of MU synchronization were assessed to evaluate the muscular adaptations. Whilst a trend of decay of EMG Median frequency (MDFd) was employed as an index of muscular fatigue. Muscular tasks consists of the grip of an instrumented handle at a force level of 20%, 30%, 40%, 60% of the maximum voluntary force. Vibration was supplied by a shaker to the hand in mono-frequential waves at 20, 30, 33 and 40 Hz. In relation to EMG, RMS and MU synchronization, the muscular activation does not seem to change with the superimposition of the mechanical vibrations, on the contrary a lower MDFd was observed at 33 Hz than in absence of vibration. This suggests an early muscular fatigue induced by vibration due to the fact that 33 Hz is a resonance frequency for the hand-arm system.  相似文献   

16.
The effect of muscular fatigue on temporal and spectral features of muscle activities and motor performance, i.e., kinematics and kinetics, has been studied. It is of value to quantify fatigue related kinematic changes in biomechanics and sport sciences using simple measurements of joint angles. In this work, a new approach was introduced to extract kinematic changes from 2D phase portraits to study the fatigue adaptation patterns of subjects performing elbow repetitive movement. This new methodology was used to test the effect of load and repetition rate on the temporal changes of an elbow phase portrait during a dynamic iso-inertial fatiguing task. The local flow variation concept, which quantifies the trajectory shifts in the state space, was used to track the kinematic changes of an elbow repetitive fatiguing task in four conditions (two loads and two repetition rates). Temporal kinematic changes due to muscular fatigue were measured as regional curves for various regions of the phase portrait and were also expressed as a single curve to describe the total drift behavior of trajectories due to fatigue. Finally, the effect of load and repetition rate on the complexity of kinematic changes, measured by permutation entropy, was tested using analysis of variance with repeated measure design. Statistical analysis showed that kinematic changes fluctuated more (showed more complexity) under higher loads (p=0.014), but did not differ under high and low repetition rates (p=0.583). Using the proposed method, new features for complexity of kinematic changes could be obtained from phase portraits. The local changes of trajectories in epochs of time reflected the temporal kinematic changes in various regions of the phase portrait, which can be used for qualitative and quantitative assessment of fatigue adaptation of subjects and evaluation of the influence of task conditions (e.g., load and repetition rate) on kinematic changes.  相似文献   

17.
The objective of this study was to supplement continuous wavelet transforms with muscle synergies in a fatigue analysis to better describe the combination of decreased firing frequency and altered activation profiles during dynamic muscle contractions. Nine healthy young individuals completed the dynamic tasks before and after they squatted with a standard Olympic bar until complete exhaustion. Electromyography (EMG) profiles were analyzed with a novel concatenated non-negative matrix factorization method that decomposed EMG signals into muscle synergies. Muscle synergy analysis provides the activation pattern of the muscles while continuous wavelet transforms output the temporal frequency content of the EMG signals. Synergy analysis revealed subtle changes in two-legged squatting after fatigue while differences in one-legged squatting were more pronounced and included the shift from a general co-activation of muscles in the pre-fatigue state to a knee extensor dominant weighting post-fatigue. Continuous wavelet transforms showed major frequency content decreases in two-legged squatting after fatigue while very few frequency changes occurred in one-legged squatting. It was observed that the combination of methods is an effective way of describing muscle fatigue and that muscle activation patterns play a very important role in maintaining the overall joint kinetics after fatigue.  相似文献   

18.

Purpose

A lack of fatigue-related muscle contractile property changes at time of perceived physical exhaustion and greater central than peripheral fatigue detected by twitch interpolation technique have recently been reported in cancer survivors with fatigue symptoms. Based on these observations, it was hypothesized that compared to healthy people, myoelectrical manifestation of fatigue in the performing muscles would be less significant in these individuals while sustaining a prolonged motor task to self-perceived exhaustion (SPE) since their central fatigue was more prominent. The purpose of this study was to test this hypothesis by examining electromyographic (EMG) signal changes during fatiguing muscle performance.

Methods

Twelve individuals who had advanced solid cancer and cancer-related fatigue (CRF), and 12 age- and gender-matched healthy controls performed a sustained elbow flexion at 30% maximal voluntary contraction till SPE. Amplitude and mean power frequency (MPF) of EMG signals of the biceps brachii, brachioradialis, and triceps brachii muscles were evaluated when the individuals experienced minimal, moderate, and severe fatigue.

Results

CRF patients perceived physical “exhaustion” significantly sooner than the controls. The myoelectrical manifestation of muscular fatigue assessed by EMG amplitude and MPF was less significant in CRF than controls. The lower MPF even at minimal fatigue stage in CRF may indicate pathophysiologic condition of the muscle.

Conclusions

CRF patients experience less myoelectrical manifestation of muscle fatigue than healthy individuals near the time of SPE. The data suggest that central nervous system fatigue plays a more important role in limiting endurance-type of motor performance in patients with CRF.  相似文献   

19.
Before using electromyographic (EMG) variables such as muscle fiber conduction velocity (MFCV) and the mean or median frequency (MDF) of an EMG power spectrum as indicators of muscular fatigue during dynamic exercises, it is necessary to determine the influence of a joint angle, contraction force and contraction speed on the EMG variables. If these factors affect the EMG variables, their influence must be removed or compensated for before discussing fatigue. The vastus lateralis of eight normal healthy male adults was studied. EMG signals during non-fatiguing dynamic knee extension exercises were detected with a three-bar active surface electrode array. EMG variables were calculated from the detected signals and compared with the angle of the knee joint, the extension torque and the extension speed. The extension torque was set at four levels with 10% intervals between 40 and 70% of the maximum voluntary contraction. The extension speed was set at five levels with 60 degrees /s intervals between 0 and 240 degrees /s. Because the joint angle unsystematically affected the MFCV, EMG variables at a given joint angle were extracted for comparison. The influence of the extension torque and speed on the extracted EMG variables was clarified with an ANOVA and a regression analysis. The statistical analyses showed that MFCV increased with the extension torque but did not depend on the extension speed. In contrast, MDF was independent of the extension torque but was dependent on the extension speed. MDF thus showed a behavior different from that of MFCV. It became clear that if MFCV is used as an indicator of muscular fatigue during dynamic exercises, it is at least necessary to extract MFCV at a predetermined joint angle and then remove the influence of extension torque on MFCV.  相似文献   

20.
This study was designed to determine whether trunk extensor fatigue occurs during low-level activity and whether this is associated with a drop in muscle tissue oxygenation. Electromyography (EMG) feedback was used to impose constant activity in a part of the trunk extensor muscles. We hypothesized that electromyographic manifestations of fatigue and decreased oxygenation would be observed at the feedback site and that EMG activity at other sites would be more variable without fatigue manifestations. Twelve volunteers performed 30-min contractions at 2% and 5% of the maximum EMG amplitude (EMGmax) at the feedback site. EMG was recorded from six sites over the lumbar extensor muscles and near-infrared spectroscopy was used to measure changes in oxygenation at the feedback site (left L3 level, 3 cm paravertebral). In both conditions, mean EMG activity was not significantly different between electrode sites, whereas the coefficient of variation was lower at the feedback site compared to other recording sites. The EMG mean power frequency (MPF) decreased consistently at the feedback site only. At 5% EMGmax, the decrease in MPF was significant at the group level at all sites ipsilateral to the feedback site. These results suggest that the limited variability of muscle activity at the EMG feedback site and at ipsilateral locations enhances fatigue development. No decreases in tissue oxygenation were detected. In conclusion, even at mean activity levels as low as 2% EMGmax, fatigue manifestations were found in the trunk extensors. These occured in absence of changes in oxygenation of the muscle tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号