首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actinobacillus sp. 130Z fermented glucose to the major products succinate, acetate, and formate. Ethanol was formed as a minor fermentation product. Under CO2-limiting conditions, less succinate and more ethanol were formed. The fermentation product ratio remained constant at pH values from 6.0 to 7.4. More succinate was produced when hydrogen was present in the gas phase. Actinobacillus sp. 130Z grew at the expense of fumarate and l-malate reduction, with hydrogen as an electron donor. Other substrates such as more-reduced carbohydrates (e.g., d-sorbitol) resulted in higher succinate and/or ethanol production. Actinobacillus sp. 130Z contained the key enzymes involved in the Embden-Meyerhof-Parnas and the pentose-phosphate pathways and contained high levels of phosphoenolpyruvate (PEP) carboxykinase, malate dehydrogenase, fumarase, fumarate reductase, pyruvate kinase, pyruvate formate-lyase, phosphotransacetylase, acetate kinase, malic enzyme, and oxaloacetate decarboxylase. The levels of PEP carboxykinase, malate dehydrogenase, and fumarase were significantly higher in Actinobacillus sp. 130Z than in Escherichia coli K-12 and accounted for the differences in succinate production. Key enzymes in end product formation in Actinobacillus sp. 130Z were regulated by the energy substrates. Received: 2 September 1996 / Accepted: 10 January 1997  相似文献   

2.
Under anaerobic conditions and in the absence of CO2, the thermophilic blue-green alga Synechococcus lividus Y52-s, evolved hydrogen sulfide in both darkness and light. The mechanism of this process was investigated and compared with photo- and dark reductions in organisms representing several phyla. The photoproduction of H2S from either sulfate or thiosulfate was inhibited by 3-(3,4-dichlorophenyl)-1, 1-dimethyl urea (DCMU) and carbonyl m-chlorophenyl-hydrazone (m-Cl-CCP). The inhibitory effect of DCMU showed the requirement for photosystem II as electron donor. Inhibition by m-Cl-CCP also implicated ATP as an energy source. Monofluoroacetate partially inhibited photoproduction of H2S. This indicated that oxidative metabolism may act us a source of electrons to reduce the photooxidant under certain conditions. Thiosulfate acts only as electron acceptor and is reductively cleaved to S= and SO3=. Thiosulfate and sulfate appeared to replace CO2 in the light and O2 in darkness as electron acceptors. The phosphorylation uncouplers dinitrophenol and m-Cl-CCP stimulated dark H2S production.  相似文献   

3.
An anaerobic enrichment with pyruvate as electron donor and thiosulfate at pH 10 and 0.6 M Na+ inoculated with pasteurized soda lake sediments resulted in a sulfidogenic coculture of two morphotypes of obligately anaerobic haloalkaliphilic endospore-forming clostridia, which were further isolated in pure culture. Strain AHT16 was a thin long rod able to ferment sugars and pyruvate and to respire H2, formate and pyruvate using thiosulfate and fumarate as electron acceptors and growing optimally at pH 9.5. Thiosulfate was reduced incompletely to sulfide and sulfite. The strain was closely related (99% sequence similarity) to a peptolytic alkaliphilic clostridium Natronincola peptidovorans. Strain AHT17 was a short rod with a restricted respiratory metabolism, growing with pyruvate and lactate as electron donor and sulfite, thiosulfate and elemental sulfur as electron acceptors with a pH optimum 9.5. Thiosulfate was reduced completely via sulfite to sulfide. The ability of AHT17 to use sulfite explained the stability of the original coculture of the two clostridia—one member forming sulfite from thiosulfate and another consuming it. Strain AHT17 formed an independent deep phylogenetic lineage within the Clostridiales and is proposed as a new genus and species Desulfitisporum alkaliphilum gen. nov., sp. nov. (=DSM 22410T = UNIQEM U794T).  相似文献   

4.
An unusual propionigenic bacterium was isolated from the intestinal tract of the soil-feeding termite Thoracotermes macrothorax. Strain TmPN3 is a motile, long rod that stains gram-positive, but reacts gram-negative in the KOH test. It forms terminal endospores and ferments lactate, glucose, lactose, fructose, and pyruvate to propionate and acetate via the methyl-malonyl-CoA pathway. Propionate and acetate are formed at a ratio of 2:1, typical of most propionigenic bacteria. Under a H2/CO2 atmosphere, the fermentation product pattern of glucose, fructose, and pyruvate shifts towards propionate formation at the expense of acetate. Cell suspensions reduce oxygen with lactate, glucose, glycerol, or hydrogen as electron donor. In the presence of oxygen, the product pattern of lactate fermentation shifts from propionate to acetate production. 16S rRNA gene sequence analysis showed that strain TmPN3 is a firmicute that clusters among the Acidaminococcaceae, a subgroup of the Clostridiales comprising obligately anaerobic, often endospore-forming bacteria that possess an outer membrane. Based on phenotypic differences and less than 92% sequence similarity to the 16S rRNA gene sequence of its closest relative, the termite hindgut isolate Acetonema longum, strain TmPN3T is proposed as the type species of a new genus, Sporotalea propionica gen. nov. sp. nov. (DSM 13327T, ATCC BAA-626T).  相似文献   

5.
A new pathway of dimethylsulfide (DMS) metabolism was identified in a novel species of Gammaproteobacteria, Methylophaga thiooxidans sp. nov., in which tetrathionate (S4O62?) was the end‐product of DMS oxidation. Inhibitor evidence indicated that DMS degradation was initiated by demethylation, catalysed by a corrinoid demethylase. Thiosulfate was an intermediate, which was oxidized to tetrathionate by a cytochrome‐linked thiosulfate dehydrogenase. Thiosulfate oxidation was coupled to ATP synthesis, and M. thiooxidans could also use exogenous thiosulfate as an energy source during chemolithoheterotrophic growth on DMS or methanol. Cultures grown on a variety of substrates oxidized thiosulfate, indicating that thiosulfate oxidation was constitutive. The observations have relevance to interactions among sulfur‐metabolizing bacteria in the marine environment. The production of tetrathionate from an organosulfur precursor is previously undocumented and represents a potential step in the biogeochemical sulfur cycle, providing a ‘shunt’ across the cycle.  相似文献   

6.
Xanthobacter tagetidis grew as a chemolithotrophic autotroph on thiosulfate and other inorganic sulfur compounds, as a heterotroph on thiophene-2-carboxylic acid, acetic acid and α-ketoglutaric acid, and as a mixotroph on thiosulfate in combination with thiophene-2-carboxylic acid and/or acetic acid. Autotrophic growth on one-carbon organosulfur compounds, and intermediates in their oxidation are also reported. Thiosulfate enhanced the growth yields in mixotrophic cultures, presumably by acting as a supplementary energy source, since ribulose bisphosphate carboxylase was only active in thiosulfate-grown cells and was not detected in mixotrophic cultures using thiosulfate with thiophene-2-carboxylic acid. Bacteria grown on thiophene-2-carboxylic acid also oxidized sulfide, thiosulfate and tetrathionate, indicating these as possible sulfur intermediates in thiophene-2-carboxylic acid degradation. Thiosulfate and tetrathionate were oxidized completely to sulfate and, consequently, did not accumulate as products of thiophene-2-carboxylic acid oxidation in growing cultures. K m and V max values for the oxidation of thiosulfate, tetrathionate or sulfide were 13 μM and 83 nmol O2 min–1 (mg dry wt.)–1, respectively; thiosulfate and tetrathionate became autoinhibitory at concentrations above 100 μM. The true growth yield (Ymax) on thiophene-2-carboxylic acid was estimated from chemostat cultures (at dilution rates of 0.034–0.094 h–1) to be 112.2 g mol–1, with a maintenance coefficient (m) of 0.3 mmol thiophene-2-carboxylic acid (g dry wt.)–1 h–1, and the maximum specific growth rate (μmax) was 0.116 h–1. Growth in chemostat culture at a dilution rate of 0.041 h–1 indicated growth yields [g dry wt. (mol substrate)–1] of 8.1 g (mol thiosulfate)–1, 60.9 g (mol thiophene-2-carboxylic acid)–1, and 17.5 g (mol acetic acid)–1, with additive yields for growth on mixtures of these substrates. At a dilution rate of 0.034 h–1, yields of 57.8 g (mol α-ketoglutaric acid)–1 and 60.7 g (mol thiophene-2-carboxylic acid)–1 indicated some additional energy conservation from oxidation of the thiophene-sulfur. SDS-PAGE of cell-free preparations indicated a polypeptide (M r, 21.0 kDa) specific to growth on thiophene-2-carboxylic acid for which no function can yet be ascribed: no metabolism of thiophene-2-carboxylic acid by cell-free extracts was detected. It was shown that X. tagetidis exhibits a remarkable degree of metabolic versatility and is representative of facultatively methylotrophic and chemolithotrophic autotrophs that contribute significantly to the turnover of simple inorganic and organic sulfur compounds (including substituted thiophenes) in the natural environment. Received: 1 July 1997 / Accepted: 3 November 1997  相似文献   

7.
Clostridium acetireducens is the first reported anaerobic bacterium that is dependent on acetate as an electron acceptor for growth on branched-chain amino acids and alanine. The fermentation pathway of leucine and its deamination product α-ketoisocaproate were studied in this organism. Addition of Methanobacterium formicicum to pure cultures of C. acetireducens stimulated the degradation of α-ketoisocaproate but not the degradation of leucine, indicating that the electrons produced during the oxidative deamination of leucine were not transferred to hydrogen. This conclusion is supported by the observed low NAD(P)H ferredoxin reductase activity. Not only acetate but also crotonate proved to be an appropriate electron sink for the regeneration of NAD(P)+ in this bacterium. Interestingly, C. acetireducens was shown to form polyhydroxybutyrate during growth on leucine plus acetate. Received: 2 December 1996 / Accepted: 4 March 1997  相似文献   

8.
In an oxystat, the synthesis of the fermentation products formate, acetate, ethanol, lactate, and succinate of Escherichia coli was studied as a function of the O2 tension (pO2) in the medium. The pO2 values that gave rise to half-maximal synthesis of the products (pO0.5) were 0.2–0.4 mbar for ethanol, acetate, and succinate, and 1 mbar for formate. The pO0.5 for the expression of the adhE gene encoding alcohol dehydrogenase was approximately 0.8 mbar. Thus, the pO2 for the onset of fermentation was distinctly lower than that for anaerobic respiration (pO0.5≤ 5 mbar), which was determined earlier. An essential role for quinol oxidase bd in microaerobic growth was demonstrated. A mutant deficient for quinol oxidase bd produced lactate as a fermentation product during growth at microoxic conditions (approximately 10 mbar O2), in contrast to the wild-type or a quinol-oxidase-bo-deficient strain. In the presence of nitrate, the amount of lactate was largely decreased. Therefore, under microoxic conditions, the pO2 appears to be too high for (mixed acid) fermentation to function and too low for aerobic respiration by quinol oxidase bo. Received: 7 February 1997 / Accepted: 2 May 1997  相似文献   

9.
Curcumin is a dietary anti-inflammatory and chemopreventive agent consisting of two methoxyphenol rings connected by a conjugated heptadienedione chain. Curcumin is unstable at physiological pH and rapidly degrades in an autoxidation reaction to a major bicyclopentadione product in which the 7-carbon chain has undergone oxygenation and double cyclization. Early degradation products (but not the final bicyclopentadione) mediate topoisomerase poisoning and possibly many other activities of curcumin, but it is not known how many and what autoxidation products are formed, nor their mechanism of formation. Here, using [14C2]curcumin as a tracer, seven novel autoxidation products, including two reaction intermediates, were isolated and identified using one- and two-dimensional NMR and mass spectrometry. The unusual spiroepoxide and vinylether reaction intermediates are precursors to the final bicyclopentadione product. A mechanism for the autoxidation of curcumin is proposed that accounts for the addition and exchange of oxygen that have been determined using 18O2 and H218O. Several of the by-products are formed from an endoperoxide intermediate via reactions that are well precedented in lipid peroxidation. The electrophilic spiroepoxide intermediate formed a stable adduct with N-acetylcysteine, suggesting that oxidative transformation is required for biological effects mediated by covalent adduction to protein thiols. The spontaneous autoxidation distinguishes curcumin among natural polyphenolic compounds of therapeutic interest; the formation of chemically diverse reactive and electrophilic products provides a novel paradigm for understanding the polypharmacological effects of curcumin.  相似文献   

10.
The requirement of carbon dioxide for growth of Bacteroides amylophilus is quantitatively similar to that of certain other rumen bacteria. Carbon dioxide could be replaced by bicarbonate, but not by formate or certain amino acids. Label from 14CO2 was incorporated into the succinate produced during maltose fermentation by B. amylophilus, and during glucose fermentation by B. ruminicola, and during cellobiose fermentation by B. succinogenes. All of the incorporated label could be associated with the carboxyl function of the molecule. The depression in radioactivity per micromole of carbon in the succinate formed from the fermentation of uniformly labeled 14C-maltose by B. amylophilus was greater than would be expected if all of the succinate formed was produced via a direct CO2 fixation pathway(s) involving phosphoenolpyruvate or pyruvate; the radioactivity per micromole of carbon suggests that as much as 60% of the total succinate results from a pathway(s) involving direct CO2 fixation. Maltose fermentation by B. amylophilus was dependent upon CO2 concentration, but CO2 concentration could not be shown to influence either the fermentation end-product ratios or the proportion of total succinate formed attributable to CO2 fixation.  相似文献   

11.
The capability of Phascolosoma arcuatum to detoxify sulfide in anaerobic conditions was examined. Sulfane sulfur, which underwent cold cyanolysis, was the major excretory end product of sulfide detoxification during anoxia. Thiosulfate was not excreted into the external medium. Instead, it was absorbed by P. arcuatum and its absorption was stimulated by the presence of sodium sulfide (Na2S) in the incubation medium. The effective formation and excretion of sulfane sulfur by P.␣arcuatum required the presence of both Na2S and sodium thiosulfate (Na2S2O3). Results obtained indicate that rhodanese might be involved in sulfide detoxification in this sipunculid. Rhodanese could act as a catalyst in the transfer of sulfur atoms from thiosulfate to HS. The body wall and the introvert were the main sites of sulfide detoxification. However, it is unlikely that epibiotic bacteria associated with the outside surface of the worm were involved in the detoxification process. A time-course study on the contents of thiosulfate and sulfane sulfur in the body wall of P. arcuatum incubated anaerobically in the presence of Na2S + Na2S2O3 verified that thiosulfate absorbed was utilized to detoxify sulfide to sulfane sulfur. Accepted: 24 October 1996  相似文献   

12.
The oxidation of organic compounds with elemental sulfur or thiosulfate as electron acceptor was studied in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum. T. tenax was grown on either glucose or casamino acids and sulfur; P. islandicum on peptone and either elemental sulfur or thiosulfate as electron acceptor. During exponential growth only CO2 and H2S rather than acetate, alanine, lactate, and succinate were detected as fermentation products of both organisms; the ratio of CO2/H2S formed was 1:2 with elemental sulfur and 1:1 with thiosulfate as electron acceptor. Cell extracts of T. tenax and P. islandicum contained all enzymes of the citric acid cycle in catabolic activities: citrate synthase, aconitase, isocitrate dehydrogenase (NADP+-reducing), oxoglutarate: benzylviologen oxidoreductase, succinyl-CoA synthetase, succinate dehydrogenase, fumarase and malate dehydrogenase (NAD+-reducing). Carbon monoxide dehydrogenase activity was not detected. We conclude that in T. tenax and P. islandicum organic compounds are completely oxidized to CO2 with sulfur or thiosulfate as electron acceptor and that acetyl-CoA oxidation to CO2 proceeds via the citric acid cycle.  相似文献   

13.
Methanogenic archaea growing on ethanol or isopropanol as the electron donor for CO2 reduction to CH4 contain either an NADP-dependent or a coenzyme F420-dependent alcohol dehydrogenase. We report here that in both groups of methanogens, the N 5, N 10-methylenetetrahydromethanopterin dehydrogenase and the N 5, N 10-methylenetetrahydromethanopterin reductase, two enzymes involved in CO2 reduction to CH4, are specific for F420. This raised the question how F420H2 is regenerated in the methanogens with an NADP-dependent alcohol dehydrogenase. We found that these organisms contain catabolic activities of an enzyme catalyzing the reduction of F420 with NADPH. The F420-dependent NADP reductase from Methanogenium organophilum was purified and characterized. The N-terminal amino acid sequence showed 42% sequence identity to a putative gene product in Methanococcus jannaschii, the total genome of which has recently been sequenced. Received: 12 May 1997 / Accepted: 1 July 1997  相似文献   

14.
Reductive and oxidative pathways of the sulfur cycle were studied in a marine sediment by parallel radiotracer experiments with 35SO42-, H235S, and 35S2O32- injected into undisturbed sediment cores. The distributions of viable populations of sulfate- and thiosulfate-reducing bacteria and of thiosulfate-disproportionating bacteria were concurrently determined. Sulfate reduction occurred both in the reducing sediment layers and in oxidized and even oxic surface layers. The population density of sulfate-reducing bacteria was >106 cm-3 in the oxic layer, high enough that it could possibly account for the measured rates of sulfate reduction. The bacterial numbers counted in the reducing sediment layers were 100-fold lower. The dominant sulfate reducers growing on acetate or H2 were gas-vacuolated motile rods which were previously undescribed. The products of sulfide oxidation, which took place in both oxidized and reduced sediment layers, were 65 to 85% S2O32- and 35 to 15% SO42-. Thiosulfate was concurrently oxidized to sulfate, reduced to sulfide, and disproportionated to sulfate and sulfide. There was a gradual shift from predominance of oxidation toward predominance of reduction with depth in the sediment. Disproportionation was the most important pathway overall. Thiosulfate disproportionation occurred only as cometabolism in the marine acetate-utilizing sulfate-reducing bacteria, which could not conserve energy for growth from this process alone. Oxidative and reductive cycling of sulfur thus occurred in all sediment layers with an intermediate “thiosulfate shunt” as an important mechanism regulating the electron flow.  相似文献   

15.
Anaerobic fermentation processes for the production of a succinate-rich animal feed supplement from raw whey were investigated with batch, continuous, and variable-volume fed-batch cultures with Anaerobiospirillum succiniciproducens. The highest succinate yield, 90%, was obtained in a variable-volume fed-batch process in comparison to 80% yield in a batch cultivation mode. In continuous culture, succinate productivity was 3 g/liter/h, and the yield was 60%. Under conditions of excess CO2, more than 90% of the whey-lactose was consumed, with an end product ratio of 4 succinate to 1 acetate. Under conditions of limited CO2, lactose was only partially consumed and lactate was the major end product, with lower levels of ethanol, succinate, and acetate. When the succinic acid in this fermentation product was added to rumen fluid, it was completely consumed by a mixed rumen population and was 90% decarboxylated to propionate on a molar basis. The whey fermentation product formed under excess CO2, which contained mainly organic acids and cells, could potentially be used as an animal feed supplement.  相似文献   

16.
3-Hydroxykynurenine (3-OHKyn) is a tryptophan metabolite that is readily autoxidised to products that may be involved in protein modification and cytotoxicity. The oxidation of 3-OHKyn has been studied here with a view to characterising the major products as well as determining their relative rates of formation and the role that H2O2 and hydroxyl radical (HO·) may play in modifying the autoxidation process. Oxidation of 3-OHKyn generated several compounds. Xanthommatin (Xan), formed by the oxidative dimerisation of 3-OHKyn, was the major product formed initially. It was, however, found to be unstable, particularly in the presence of H2O2, and degraded to other products including the p-quinone, 4,6-dihydroxyquinolinequinonecarboxylic acid (DHQCA). A compound that has a structure consistent with that of hydroxy-xanthommatin (OHXan) was also formed in addition to at least two minor species that we were unable to identify. Hydrogen peroxide was formed rapidly upon oxidation of 3-OHKyn, and significantly influenced the relative abundance of the different autoxidation species. Increasing either pH (from pH 6 to 8) or temperature (from 25°C to 35°C) accelerated the rate of autoxidation but had little impact on the relative abundance of the autoxidation species. Using electron paramagnetic resonance (EPR) spectroscopy, a clear phenoxyl radical signal was observed during 3-OHKyn autoxidation and this was attributed to xanthommatin radical (Xan·). Hydroxyl radicals were also produced during 3-OHKyn autoxidation. The HO· EPR signal disappeared and the Xan· EPR signal increased when catalase was added to the autoxidation mixture. The HO· did not appear to play a role in the formation of the autoxidation products as evidenced using HO· traps/scavengers. We propose that the cytotoxicity of 3-OHKyn may be explained by both the generation of H2O2 and by the formation of reactive 3-OHKyn autoxidation products such as the Xan· and DHQCA.  相似文献   

17.
This review deals with polyketides to which nature has developed different biosynthetic pathways in the course of evolution. The anthraquinone chrysophanol is the first example of an acetogenic natural product that is, in an organism-specific manner, formed via more than one polyketide folding mode: In eukaryotes, like e.g., in fungi, in higher plants, and in insects, it is synthesized via folding mode F, while in prokaryotes it originates through mode S. It has, more recently, even been found to be synthesized by a third pathway, named mode S′. Thus, chrysophanol is the first polyketide synthase product that originates through a divergent–convergent biosynthesis (depending on the respective producing organisms). A second example of a striking biosynthetic convergence is the isoquinoline alkaloids. While all as yet investigated representatives of this large family of plant-derived metabolites (more than 2500 known representatives!) are formed from aromatic amino acids, the biosynthetic origin of naphthylisoquinoline alkaloids like dioncophylline A is unprecedented in following a route to isoquinolines in plants: we have shown that such naphthylisoquinolines represent the as yet only known polyketidic di- and tetrahydroisoquinolines, originating from acetate and malonate units, exclusively. Both molecular halves, the isoquinoline part and the naphthalene portion, are even synthesized from a joint polyketide precursor, the first proven case of the F-type folding mode in higher plants. The biosynthetic origins of the natural products presented in this paper were elucidated by feeding 13C2-labeled acetate (or advanced precursors) to the respective producing organisms, with subsequent NMR analysis of their 13C2 incorporation patterns using the potent cryoprobe methodology, thus making the full polyketide folding pattern visible.  相似文献   

18.
The aldehyde dehydrogenase activity of the sulfate-reducing bacterium Desulfovibrio simplex strain DSM 4141 was characterized in cell-free extracts. Oxygen-sensitive, constitutive aldehyde dehydrogenase activity was found in cells grown on l(+)-lactate, hydrogen, or vanillin with sulfate as the electron acceptor. A 1.83- to 2.6-fold higher specific activity was obtained in cells grown in media supplemented with 1 μM WO4 2–. The aldehyde dehydrogenase in cell-free extracts catalyzed the oxidation of aliphatic (K m < 20 μM) and aromatic aldehydes (K m < 0.32 mM) using methyl viologen as the electron acceptor. Flavins (FMN and FAD) were also active and are proposed to be the natural cofactors, while no activity was obtained with NAD+ or NADP+. 185WO4 2– was incorporated in vivo into D. simplex; it was found exclusively in the soluble fraction (≥ 98%). Anionic-exchange chromatography demonstrated coelution of 185W with two distinct peaks, the first one containing hydrogenase and formate dehydrogenase activities, and the second one aldehyde dehydrogenase activity. Received: 7 February 1997 / Accepted: 6 June 1997  相似文献   

19.
Hu P  Bowen SH  Lewis RS 《Bioresource technology》2011,102(17):8071-8076
Currently, syngas fermentation is being developed as one option towards the production of biofuels from biomass. This process utilizes the acetyl-CoA (Wood-Ljungdahl) metabolic pathway. Along the pathway, CO and CO2 are used as carbon sources. Electrons required for the metabolic process are generated from H2 and/or from CO. This study showed that electron production from CO is always more thermodynamically favorable compared to electron production from H2 and this finding is independent of pH, ionic strength, gas partial pressure, and electron carrier pairs. Additionally, electron production from H2 may be thermodynamically unfavorable in some experimental conditions. Thus, it is unlikely that H2 can be utilized for electron production in favor of CO when both species are present. Therefore, CO conversion efficiency will be sacrificed during syngas fermentation since some of the CO will provide electrons at the expense of product and cell mass formation.  相似文献   

20.
Enterolith fragments from two tapir species and horses were subjected to x-ray diffraction analysis. Tapir enteroliths were formed as layers of mineral deposited around a foreign nidus. The structure was similar to that of equine enteroliths except that tapir enteroliths lacked a central region of radially symmetrical coarse crystals. The enteroliths from tapirs were composed primarily of vivianite [Fe3(PO4)2 · 8H2O] and newberyite [MgH(PO4) · 3H2O], instead of the struvite [Mg(NH4)(PO4) · 6H2O] of enteroliths from horses. The reason for this difference is not known. Based on the chemistry of these mineral precipitates and information from other species, it was concluded that dietary manipulation to maximize carbohydrate fermentation and minimize protein fermentation in the large intestine may help prevent enterolithiasis in tapirs. Zoo Biol 16:427–433, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号