首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The selectivity of hepatitis C virus (HCV) non-structural protein 3 (NS3) protease inhibitors was determined by evaluating their inhibitory effect on other serine proteases (human leukocyte elastase (HLE), porcine pancreatic elastase (PPE), bovine pancreatic chymotrypsin (BPC)) and a cysteine protease (cathepsin B). For these peptide inhibitors, the P1-side chain and the C-terminal group were the major determinants of selectivity. Inhibitors with electrophilic C-terminal residues were generally non-selective while compounds with non-electrophilic C-terminal residues were more selective. Furthermore, compounds with P1 aminobutyric acid residues were non-selective, while 1-aminocyclopropane-1-carboxylic acid (ACPC) and norvaline-based inhibitors were generally selective. The most potent and selective inhibitors of NS3 protease tested contained a non-electrophilic phenyl acyl sulfonamide C-terminal residue. HLE was most likely to be inhibited by the HCV protease inhibitors, in agreement with similar substrate specificities for these enzymes. The identified structure-activity relationships for selectivity are of significance for design of selective HCV NS3 protease inhibitors.  相似文献   

2.
3.
We recently reported a new class of inhibitors of the chymotrypsin-like serine protease NS3 of the hepatitis C virus. These inhibitors exploit the binding potential of the S' site of the protease, which is not generally used by the natural substrates. The effect of prime-site occupancy was analyzed by circular dichroism spectroscopy and limited proteolysis-mass spectrometry. Generally, nonprime inhibitors cause a structural change in NS3. Binding in the S' site produces additional conformational changes with different binding modes, even in the case of the NS3/4A cofactor complex. Notably, inhibitor binding either in the S or S' site also has profound effects on the stabilization of the protease. In addition, the stabilization propagates to regions not in direct contact with the inhibitor. In particular, the N-terminal region, which according to structural studies is endowed with low structural stability and is not stabilized by nonprime inhibitors, was now fully protected from proteolytic degradation. From the perspective of drug design, P-P' inhibitors take advantage of binding pockets, which are not exploited by the natural HCV substrates; hence, they are an entry point for a novel class of NS3/4A inhibitors. Here we show that binding of each inhibitor is associated with a specific structural rearrangement. The development of a range of inhibitors belonging to different classes and an understanding of their interactions with the protease are required to address the issue of the most likely outcome of viral protease inhibitor therapy, that is, viral resistance.  相似文献   

4.
The large size of the serpin reactive site loop (RSL) suggests that the role of the RSL in protease inhibition is more complex than that of presenting the reactive site (P1 residue) to the protease. This study examines the effect on inhibition of relocating the reactive site (Leu-358) of the serpin alpha(1)-antichymotrypsin either one residue closer (P2) or further (P1') from the base of the RSL (Glu-342). alpha(1)-Antichymotrypsin variants were produced by mutation within the P4-P2' region; the sequence ITLLSA was changed to ITLSSA to relocate the reactive site to P2 (Leu-357) and to ITITLS to relocate it to P1' (Leu-359). Inhibition of the chymotrypsin-like proteases human chymase and chymotrypsin and the non-target protease human neutrophil elastase (HNE) were analyzed. The P2 variant inhibited chymase and chymotrypsin but not HNE. Relative to P1, interaction at P2 was characterized by greater complex stability, lower inhibition rate constants, and increased stoichiometry of inhibition values. In contrast, the P1' variant inhibited HNE (stoichiometry of inhibition = 4) but not chymase or chymotrypsin. However, inhibition of HNE was by interaction with Ile-357, the P2 residue. The P1' site was recognized by all proteases as a cleavage site. Covalent-complexes resistant to SDS-PAGE were observed in all inhibitory reactions, consistent with the trapping of the protease as a serpin-acyl protease complex. The complete loss in inhibitory activity associated with lengthening the Glu-342-reactive site distance by a single residue and the enhanced stability of complexes associated with shortening this distance by a single residue are compatible with the distorted-protease model of inhibition requiring full insertion of the RSL into the body of the serpin and translocation of the linked protease to the pole opposite from that of encounter.  相似文献   

5.
By alternative use of four RSL (reactive site loop) coding exon cassettes, the serpin (serine protease inhibitor) gene Spn4 from Drosophila melanogaster was proposed to enable the synthesis of multiple protease inhibitor isoforms, one of which has been shown to be a potent inhibitor of human furin. Here, we have investigated the inhibitory spectrum of all Spn4 RSL variants. The analyses indicate that the Spn4 gene encodes inhibitors that may inhibit serine proteases of the subtilase family (S8), the chymotrypsin family (S1), and the papain-like cysteine protease family (C1), most of them at high rates. Thus a cohort of different protease inhibitors is generated simply by grafting enzyme-adapted RSL sequences on to a single serpin scaffold, even though the target proteases contain different types and/or a varying order of catalytic residues and are descendents of different phylogenetic lineages. Since all of the Spn4 RSL isoforms are produced as intracellular residents and additionally as variants destined for export or associated with the secretory pathway, the Spn4 gene represents a versatile defence tool kit that may provide multiple antiproteolytic functions.  相似文献   

6.
Maturational cleavage of the hepatitis C virus polyprotein involves the viral chymotrypsin-like serine protease NS3. The substrate binding site of this enzyme is unusually flat and featureless. We here show that NS3 has a highly asymmetric charge distribution that is characterized by strong positive potentials in the vicinity of its active site and in the S5/S6 region. Using electrostatic potential calculations, we identified determinants of this positive potential, and the role of six different residues was explored by site-directed mutagenesis. Mutation of residues in the vicinity of the active site led to changes in k(cat) values of a peptide substrate indicating that basic amino acids play a role in the stabilization of the transition state. Charge neutralization in the S5/S6 region increased the K(m) values of peptide substrates in a manner that depended on the presence of negatively charged residues in the P5 and P6 positions. K(i) values of hexapeptide acids spanning P6-P1 (product inhibitors) were affected by charge neutralization in both the active site region and the S5/S6 region. Pre-steady-state kinetic data showed that the electrostatic surface potential is used by this enzyme to enhance collision rates between peptidic ligands and the active site. Calculations of the interaction energies of protease-substrate or protease-inhibitor complexes showed that electrostatic interaction energies oppose the formation of a tightly bound complex due to an unfavorable change in the desolvation energy. We propose that desolvation costs are minimized by avoiding the formation of individual ion pair interactions through the use of clusters of positively charged residues in the generation of local electrostatic potentials.  相似文献   

7.
Serine proteases are the most studied class of proteolytic enzymes and a primary target for drug discovery. Despite the large number of inhibitors developed so far, very few make contact with the prime site of the enzyme, which constitutes an almost untapped opportunity for drug design. In the course of our studies on the serine protease NS3/4A of hepatitis C virus (HCV), we found that this enzyme is an excellent example of both the opportunities and the challenges of such design. We had previously reported on two classes of peptide inhibitors of the enzyme: (a) product inhibitors, which include the P(6)-P(1) region of the substrate and derive much of their binding energy from binding of their C-terminal carboxylate in the active site, and (b) decapeptide inhibitors, which span the S(6)-S(4)' subsites of the enzyme, whose P(2)'-P(4)' tripeptide fragment crucially contributes to potency. Here we report on further work, which combined the key binding elements of the two series and led to the development of inhibitors binding exclusively to the prime site of NS3/4A. We prepared a small combinatorial library of tripeptides, capped with a variety of constrained and unconstrained diacids. The SAR was derived from multiple analogues of the initial micromolar lead. Binding of the inhibitor(s) to the enzyme was further characterized by circular dichroism, site-directed mutagenesis, a probe displacement assay, and NMR to unequivocally prove that, according to our design, the bound inhibitor(s) occupies (occupy) the S' subsite and the active site of the protease. In addition, on the basis of the information collected, the tripeptide series was evolved toward reduced peptide character, reduced molecular weight, and higher potency. Beyond their interest as HCV antivirals, these compounds represent the first example of prime site inhibitors of a serine protease. We further suggest that the design of an inhibitor with an analogous binding mode may be possible for other serine proteases.  相似文献   

8.
9.
Synthesis of hybrid HCV NS3 protease/NS4A inhibitors having the 4,4-difluoroaminobutyric acid (difluoroAbu) phenethylamides as P1-P1' and quinolyloxyprolines as P2 fragments led to 7 (IC(50) 54 nM). Molecular modelling suggests that this potent tripeptide inhibitor utilizes interactions in the S1', S1, S2, S3 and S4 sites of the protease.  相似文献   

10.
Persistent infections with hepatitis C virus (HCV) are a major cause of liver disease and reflect its ability to disrupt virus-induced signaling pathways activating cellular antiviral defenses. HCV evasion of double-stranded RNA signaling through Toll-like receptor 3 is mediated by the viral protease NS3/4A, which directs proteolysis of its proline-rich adaptor protein, Toll-IL-1 receptor domain containing adaptor-inducing interferon-beta (TRIF). The TRIF cleavage site has remarkable homology with the viral NS4B/5A substrate, although an 8-residue polyproline track extends upstream from the P(6) position in lieu of the acidic residue present in viral substrates. Circular dichroism (CD) spectroscopy confirmed that a substantial fraction of TRIF exists as polyproline II helices, and inclusion of the polyproline track increased affinity of P side TRIF peptides for the HCV-BK protease. A polyproline II peptide representing an SH3 binding motif (PPPVPPRRR, Sos) bound NS3 with moderate affinity, resulting in inhibition of proteolytic activity. Chemical shift perturbations in NMR spectra indicated that Sos binds a 3(10) helix close to the protease active site. Thus, a polyproline II interaction with the 3(10) helix likely facilitates NS3/4A recognition of TRIF, indicating a significant difference from NS3/4A recognition of viral substrates. Because SH3 binding motifs are also present in NS5A, a viral protein that interacts with NS3, we speculate that the NS3 3(10) helix may be a site of interaction with other viral proteins.  相似文献   

11.
The N-terminal domain of the hepatitis C virus (HCV) polyprotein containing the NS3 protease (residues 1027 to 1206) was expressed in Escherichia coli as a soluble protein under the control of the T7 promoter. The enzyme has been purified to homogeneity with cation exchange (SP-Sepharose HR) and heparin affinity chromatography in the absence of any detergent. The purified enzyme preparation was soluble and remained stable in solution for several weeks at 4 degrees C. The proteolytic activity of the purified enzyme was examined, also in the absence of detergents, using a peptide mimicking the NS4A/4B cleavage site of the HCV polyprotein. Hydrolysis of this substrate at the expected Cys-Ala scissile bond was catalyzed by the recombinant protease with a pseudo second-order rate constant (k(cat)/K(M)) of 205 and 196,000 M(-1) s(-1), respectively, in the absence and presence of a central hydrophobic region (sequence represented by residues 21 to 34) of the NS4A protein. The rate constant in the presence of NS4A peptide cofactor was two orders of magnitude greater than reported previously for the NS3 protease domain. A significantly higher activity of the NS3 protease-NS4A cofactor complex was also observed with a substrate mimicking the NS4B/5A site (k(cat)/K(M) of 5180 +/- 670 M(-1) s(-1)). Finally, the optimal formation of a complex between the NS3 protease domain and the cofactor NS4A was critical for the high proteolytic activity observed.  相似文献   

12.
A series of bicyclic pyrimidinone-based HCV NS3 protease inhibitors was synthesized via selective C8 position functionalization. Substituted phenylamides and phenylureas were preferred in the S2 binding pocket.  相似文献   

13.
Tsantrizos YS 《Biopolymers》2004,76(4):309-323
The virally encoded serine protease NS3/NS4A is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. Until very recently, the design of inhibitors for the HCV NS3 protease was limited to large peptidomimetic compounds with poor pharmacokinetic properties, making drug discovery an extremely challenging endeavor. In our quest for the discovery of a small-molecule lead that could block replication of the hepatitis C virus by binding to the HCV NS3 protease, the critical protein-polypeptide interactions between the virally encoded NS3 serine protease and its polyprotein substrate were investigated. Lead optimization of a substrate-based hexapeptide, guided by structural data, led to the understanding of the molecular dynamics and electronic effects that modulate the affinity of peptidomimetic ligands for the active site of this enzyme. Macrocyclic beta-strand scaffolds were designed that allowed the discovery of potent, highly selective, and orally bioavailable compounds. These molecules were the first HCV NS3 protease inhibitors reported that inhibit replication of HCV subgenomic RNA in a cell-based replicon assay at low nanomolar concentrations. Optimization of their biopharmaceutical properties led to the discovery of the clinical candidate BILN 2061. Oral administration of BILN 2061 to patients infected with the hepatitis C genotype 1 virus resulted in an impressive reduction of viral RNA levels, establishing proof-of-concept for HCV NS3 protease inhibitors as therapeutic agents in humans.  相似文献   

14.
Few structures of viral serine proteases, those encoded by the Sindbis and Semliki Forest viruses, hepatitis C virus (HCV) and cytomegalovirus, have been reported. In the life cycle of HCV a crucial role is played by a chymotrypsin-like serine protease encoded at the N-terminus of the viral NS3 protein, the solution structure of which we present here complexed with a covalently bound reversible inhibitor. Unexpectedly, the residue in the P2 position of the inhibitor induces an effective stabilization of the catalytic His-Asp hydrogen bond, by shielding that region of the protease from the solvent. This interaction appears crucial in the activation of the enzyme catalytic machinery and represents an unprecedented observation for this family of enzymes. Our data suggest that natural substrates of this serine protease could contribute to the enzyme activation by a similar induced-fit mechanism. The high degree of similarity at the His-Asp catalytic site region between HCV NS3 and other viral serine proteases suggests that this behaviour could be a more general feature for this category of viral enzymes.  相似文献   

15.
Inhibition of the hepatitis C virus (HCV) NS3 protease has emerged as an attractive approach to defeat the global hepatitis C epidemic. In this work, we present the synthesis and biochemical evaluation of HCV NS3 protease inhibitors comprising a non-natural aromatic P(1) moiety. A series of inhibitors with aminobenzoyl sulfonamides displaying submicromolar potencies in the full-length NS3 protease assay was prepared through a microwave-irradiated, palladium-catalyzed, amidocarbonylation protocol.  相似文献   

16.
Faldaprevir类似物(Faldaprevir analogue molecule,FAM)能有效抑制HCV NS3/4A蛋白酶的催化活性,是一种潜在抗HCV先导化合物。通过生物信息学统计分析了已报道的HCV NS3/4A蛋白酶晶体结构,得到了FAM-HCV NS3/4A蛋白酶晶体结构。对FAM-HCV NS3/4A蛋白酶复合物进行了20.4 ns的分子动力学模拟,重点从氢键和结合自由能两个角度分析了二者分子识别中的关键残基及结合驱动力。氢键和范德华力是促使FAM特异性结合到蛋白V132?S139、F154?D168、D79?D81和V55的活性口袋中的主要驱动力,这与实验数据较为吻合。耐药性突变实验分析了R155K、D168E/V和V170T定点突变对FAM分子识别的影响,为可能存在的FAM耐药性提供了分子依据。最后,用自由能曲面和构象聚类两个方法探讨了体系的构象变化,给出体系的4种优势构象,为后续的基于HCV NS3/4A蛋白酶结构的Faldaprevir类似物抑制剂分子设计提供一定的理论帮助。  相似文献   

17.
ABSTRACT: BACKGROUND: Development of compensatory mutations within the HIV p7/p1 and p1/p6 protease cleavage site region has been observed in HIV-infected patients treated with protease inhibitors. Mechanisms of fitness compensation may occur in HCV populations upon treatment of HCV protease inhibitors as well. FINDINGS: In this study, we investigated whether substitutions in protease cleavage site regions of HCV occur in response to a treatment regimen containing the NS3/4A protease inhibitor telaprevir (TVR). Evaluation of viral populations from 569 patients prior to treatment showed that the four NS3/4A cleavage sites were well conserved. Few changes in the cleavage site regions were observed in the 159 patients who failed TVR combination treatment, and no residues displayed evidence of directional selection after the acquisition of TVR-resistance. CONCLUSIONS: Cleavage site mutations did not occur after treatment with the HCV protease inhibitor telaprevir.  相似文献   

18.
A series of novel indoles were designed and their molecular modeling simulation study including fitting to a 3D pharmacophore model using CATALYST program and their docking into the NS3 active site was examined as HCV NS3 protease inhibitor. Several compounds showed significant high simulation docking score and fit values. The designed compounds were synthesized and biologically evaluated in vitro using an NS3 protease binding assay, where compounds 10a-k showed significant inhibitory activity (> or =67% inhibition at 100 microg/mL). Of these, compounds 10c and 10f demonstrated potent HCV NS3 protease inhibitors with IC(50) values of 15 and 13 microM, respectively. Enantio-selective Michael addition of an indole derivative in the presence of catalytic amount of AlCl(3) and quinine at room temperature afforded the adduct 7e in excellent yield with 73% ee. The product was converted into 10l, which showed lower activity than the mixture of the corresponding diastereoisomers.  相似文献   

19.
Given the extent of hepatitis C virus (HCV) infection as a worldwide health problem and the lack of effective treatment, the development of anti-HCV drugs is an important and pressing objective. Previous studies have indicated that proteolytic events mediated by the NS3 protease of HCV are fundamental to the generation of an active viral replication apparatus, as unequivocably demonstrated for flaviviruses. As a result, the NS3 protease has become a major target for discovering anti-HCV drugs. To gain further insight into the biochemical and biophysical properties of the NS3 enzyme binding pocket(s) and to generate biological tools for developing antiviral strategies, we decided to engineer macromolecular ligands of the NS3 protease domain. Phage-displayed repertoires of minibodies ("minimized" antibody-like proteins) and human pancreatic secretory trypsin inhibitor were sampled by using the recombinant NS3 protease domain as a ligate molecule. Two protease inhibitors were identified and characterized biochemically. These inhibitors show marked specificity for the viral protease and potency in the micromolar range but display different mechanisms of inhibition. The implications for prospective development of low-molecular-weight inhibitors of this enzyme are discussed.  相似文献   

20.
An antibody variable domain fragment (Fv) is a candidate for a specific inhibitor of the hepatitis C virus (HCV) NS3 protease. Here we report the functional characterization of the Fv of antibody 8D4, which is specific for the active site of the HCV NS3 protease domain. The variable fragments of 8D4 in the forms of Fv and scFv (VH-(G(4)S)(3)-VL) were expressed as insoluble fractions in the periplasm of Escherichia coli, and were subsequently solubilized, purified under denaturing conditions, and refolded. The Fv had an inhibition profile almost identical to that of the parent IgG, with an IC(50) of 71.3 nM, whereas the scFv had a greatly decreased affinity to NS3 and was the same as the isolated VH fragment. To date, this is the first report of an antibody Fv fragment specific for the HCV NS3 protease domain, aimed at designing potent protease inhibitors and antiviral drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号