首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ono T  Iwatani Y  Nishimura A  Ishimoto A  Sakai H 《FEBS letters》2000,466(2-3):233-238
Nef gene function is diverse among virus isolates of primate immunodeficiency viruses. We found differential effects of nef mutation on the virus replication between two HIV-1 clones, NL432 and LAI. The nef mutation in NL432 affected the infectivity more severely compared with that in LAI, although the Nef functions of both clones were comparable. Analysis with a series of chimeric viruses between NL432 and LAI revealed that the gag-pol region was responsible for the differential effect of nef mutation. The functional association between Nef and gag-pol suggested that one of the potential targets of Nef was located within the gag-pol region.  相似文献   

2.
Two molecularly cloned viruses, human immunodeficiency virus type 1 (HIV-1)-NL4-3 (NL4-3) and HIV-1-HXB-2 (HXB-2), have been used to study the role of HIV-1 auxiliary genes in the establishment of chronic virus producers. NL4-3 encodes all known HIV-1 proteins, whereas HXB-2 is defective for three auxiliary genes: vpr, vpu, and nef. Studies were done in H9 cells, a T-cell line unusually permissive for the establishment of chronic virus producers. NL4-3 and HXB-2 undergo lytic phases of infection in H9 cultures with HXB-2, but not NL4-3, supporting the efficient establishment of chronic virus producers. Tests of mutant NL4-3 genomes containing various combinations of defective auxiliary genes revealed that both vpr and nef limited the ability of NL4-3 to establish chronic virus producers. Tests of a series of recombinants between NL4-3 and HXB-2 revealed that 5' internal sequences as well as fragments containing defective auxiliary genes affected the establishment of chronic virus producers. Viral envelope sequences and levels of virus production did not correlate with the ability to establish chronic virus producers. These results suggest that complex interactions of viral auxiliary and nonauxiliary gene functions with the host cell determine the ability to establish chronic virus producers.  相似文献   

3.
4.
Human immunodeficiency virus type 1 (HIV-1) infection encounters an early block in the cells of New World monkeys because the CD4 receptor does not efficiently support HIV-1 entry. We adapted HIV-1(NL4-3) and HIV-1(KB9), two HIV-1 variants with different envelope glycoproteins, to replicate efficiently in cells expressing the CD4 and CXCR4 proteins of the common marmoset, a New World monkey. The HIV-1(NL4-3) adaptation involves three gp120 changes that result in a specific increase in affinity for the marmoset CD4 glycoprotein. The already high affinity of the HIV-1(KB9) envelope glycoproteins for marmoset CD4 did not significantly change as a result of the adaptation. Instead, changes in the gp120 variable loops and gp41 ectodomain resulted in improved replication in cells expressing the marmoset receptors. HIV-1(KB9) became relatively sensitive to neutralization by soluble CD4 and antibodies as a result of the adaptation. These results demonstrate the distinct mechanistic pathways by which the HIV-1 envelope glycoproteins can adapt to less-than-optimal CD4 molecules and provide HIV-1 variants that can overcome some of the early blocks in New World monkey cells.  相似文献   

5.
Interaction between the human immunodeficiency virus type 1 (HIV-1) envelope and the relevant chemokine receptors is crucial for subsequent membrane fusion and viral entry. Although the V3 region of gp120 is known to determine the cell tropism as well as the coreceptor usage, the significance of the binding of the V3 region to the chemokine receptor has not been fully understood. To address this issue, we adopted the pseudotyped virus infection assay in which the V3 region of the T-cell line-tropic (T-tropic) NL4-3 envelope was replaced with a portion of stromal cell-derived factor 1 (SDF-1), the ligand of CXCR4. The V3 region of the NL4-3 envelope expression vector was replaced with three different stretches of SDF-1 cDNA. Expression of each chimeric envelope protein was confirmed by immunoprecipitation and Western blotting. Luciferase reporter viruses were prepared by cotransfection of the pNL4-3.Luc.E(-)R(-) vector and each chimeric envelope expression vector, and the infection assay was then carried out. We showed that pseudotyped viruses with one of the chimeric envelopes, NL4-3/SDF1-51, could infect U87.CD4.CXCR4 but not U87.CD4 or U87.CXCR4 cells and that this infection was inhibited by the ligand of CXCR4, SDF-1beta, by anti-human SDF-1 antibody, or by an anti-CD4 antibody, Leu3a, in a dose-dependent manner. Furthermore, chimeric NL4-3/SDF1-51 gp120 significantly inhibited binding of labeled SDF-1 to CXCR4. It was suggested that replacement of the V3 region of the NL4-3 envelope with SDF-1 preserved the CD4-dependent infectivity of T-tropic HIV-1. These results indicate that binding between the V3 region and the relevant coreceptor is important for viral entry, whether its amino acid sequence is indigenous to the virus or not.  相似文献   

6.
The nef gene is important for the pathogenicity associated with simian immunodeficiency virus infection in rhesus monkeys and with human immunodeficiency virus type 1 (HIV-1) infection in humans. The mechanisms by which nef contributes to pathogenesis in vivo remain unclear. We investigated the contribution of nef to HIV-1 replication in human lymphoid tissue ex vivo by studying infection with parental HIV-1 strain NL4-3 and with a nef mutant (DeltanefNL4-3). In human tonsillar histocultures, NL4-3 replicated to higher levels than DeltanefNL4-3 did. Increased virus production with NL4-3 infection was associated with increased numbers of productively infected cells and greater loss of CD4(+) T cells over time. While the numbers of productively infected T cells were increased in the presence of nef, the levels of viral expression and production per infected T cell were similar whether the nef gene was present or not. Exogenous interleukin-2 (IL-2) increased HIV-1 production in NL4-3-infected tissue in a dose-dependent manner. In contrast, DeltanefNL4-3 production was enhanced only marginally by IL-2. Thus, Nef can facilitate HIV-1 replication in human lymphoid tissue ex vivo by increasing the numbers of productively infected cells and by increasing the responsiveness to IL-2 stimulation.  相似文献   

7.
During HIV-1 infection, dendritic cells (DC) facilitate dissemination of HIV-1 while trying to trigger adaptive antiviral immune responses. We examined whether increased HIV-1 capture in DC matured with LPS results in more efficient Ag presentation to HIV-1-specific CD4(+) and CD8(+) T cells. To block the DC-mediated trans-infection of HIV-1 and maximize Ag loading, we also evaluated a noninfectious integrase-deficient HIV-1 isolate, HIV(NL4-3ΔIN). We showed that higher viral capture of DC did not guarantee better Ag presentation or T cell activation. Greater HIV(NL4-3) uptake by fully LPS-matured DC resulted in higher viral transmission to target cells but poorer stimulation of HIV-1-specific CD4(+) and CD8(+) T cells. Conversely, maturation of DC with LPS during, but not before, viral loading enhanced both HLA-I and HLA-II HIV-1-derived Ag presentation. In contrast, DC maturation with the clinical-grade mixture consisting of IL-1β, TNF-α, IL-6, and PGE(2) during viral uptake only stimulated HIV-1-specific CD8(+) T cells. Hence, DC maturation state, activation stimulus, and time lag between DC maturation and Ag loading impact HIV-1 capture and virus Ag presentation. Our results demonstrate a dissociation between the capacity to capture HIV-1 and to present viral Ags. Integrase-deficient HIV(NL4-3ΔIN) was also efficiently captured and presented by DC through the HLA-I and HLA-II pathways but in the absence of viral dissemination. HIV(NL4-3ΔIN) seems to be an attractive candidate to be explored. These results provide new insights into DC biology and have implications in the optimization of DC-based immunotherapy against HIV-1 infection.  相似文献   

8.
The interferon-inducible transmembrane (IFITM) proteins inhibit a wide range of viruses. We previously reported the inhibition of human immunodeficiency virus type 1 (HIV-1) strain BH10 by human IFITM1, 2 and 3. It is unknown whether other HIV-1 strains are similarly inhibited by IFITMs and whether there exists viral countermeasure to overcome IFITM inhibition. We report here that the HIV-1 NL4-3 strain (HIV-1NL4-3) is not restricted by IFITM1 and its viral envelope glycoprotein is partly responsible for this insensitivity. However, HIV-1NL4-3 is profoundly inhibited by an IFITM1 mutant, known as Δ(117–125), which is deleted of 9 amino acids at the C-terminus. In contrast to the wild type IFITM1, which does not affect HIV-1 entry, the Δ(117–125) mutant diminishes HIV-1NL4-3 entry by 3-fold. This inhibition correlates with the predominant localization of Δ(117–125) to the plasma membrane where HIV-1 entry occurs. In spite of strong conservation of IFITM1 among most species, mouse IFITM1 is 19 amino acids shorter at its C-terminus as compared to human IFITM1 and, like the human IFITM1 mutant Δ(117–125), mouse IFITM1 also inhibits HIV-1 entry. This is the first report illustrating the role of viral envelope protein in overcoming IFITM1 restriction. The results also demonstrate the importance of the C-terminal region of IFITM1 in modulating the antiviral function through controlling protein subcellular localization.  相似文献   

9.
10.
The Vpu protein is a human immunodeficiency virus type 1 (HIV-1)-specific accessory protein that is required for the efficient release of viral particles from infected cells. Even though HIV-2 does not encode Vpu, we found that this virus is nevertheless capable of efficiently releasing virus particles. In fact, the rate of virus release from HeLa cells transfected with a full-length molecular clone of HIV-2, ROD10, was comparable to that observed for the vpu+ HIV-1 NL4-3 isolate and was not further enhanced by expression of Vpu in trans. However, consistent with previous observations showing that HIV-2 particle release is Vpu responsive in the context of HIV-1/HIV-2 chimeric constructs; exchanging the gag-pol region of NL4-3 with the corresponding region from pROD10 rendered the resulting chimeric virus Vpu responsive. Our finding that the responsiveness of HIV-2 particle release to Vpu is context dependent suggested the presence of a Vpu-like factor(s) encoded by HIV-2. Using chimeric proviruses encoding HIV-2 gag and pol in the context of the HIV-1 provirus that were coexpressed with subgenomic HIV-2 constructs, we found that the HIV-2 envelope glycoprotein had the ability to enhance HIV-2 particle release with an efficiency comparable to that of the HIV-1 Vpu protein. Conversely, inactivation of the HIV-2 env gene in the original ROD10 clone resulted in a decrease in the rate of viral particle release to a level that was comparable to that of Vpu-deficient HIV-1 isolates. Providing the wild-type envelope in trans rescued the particle release defect of the ROD10 envelope mutant. Thus, unlike HIV-1, which encodes two separate proteins to regulate virus release or to mediate viral entry, the HIV-2 Env protein has evolved to perform both functions.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (MAPK) signal pathway can positively regulate the replication of HIV-1, but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood. In this study, we used the Extracellular signal-regulated kinase (ERK) pathway inhibitor, PD98059, the Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, and the p38 pathway inhibitor, SB203580, to investigate the roles of these pathways in HIV-1 replication. We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity. In addition, SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity. We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059 when cells were treated with all three MAPK pathway inhibitors in combination. Finally, we show that HIV-1 virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.  相似文献   

12.
We have investigated the in vivo pathogenic properties of two molecularly cloned strains of human immunodeficiency virus type 1 (HIV-1), HIV-1NL4-3 and HIV-1JR-CSF, in human fetal thymus/liver implants in severe combined immunodeficient mice. Studies comparing their in vivo replication kinetics and abilities to induce CD4+ thymocyte depletion were performed. HIV-1NL4-3 replicated in vivo with faster kinetics and induced greater levels of CD4+ thymocyte depletion than did HIV-1JR-CSF. These results demonstrate that different viral isolates have different pathogenic properties in this system. In the SCID-hu model, this pathogenesis most likely occurs in the absence of an immune response. Therefore, we investigated whether the absence of immune selection resulted in extensive genetic variation and the generation of viral quasispecies. To this end, DNA corresponding to the fourth variable domain region of the viral envelope gp120 protein recovered from biopsy samples at 6 weeks postinfection was sequenced. Little genetic variation was noted in either HIV-1JR-CSF- or HIV-1NL4-3-infected implants. The mutation levels demonstrated in both viral strains were more reflective of the acute rather than the chronic phase of HIV-1 infection in humans. These results suggest that the SCID-hu mouse model can be used to study the in vivo pathogenicity of different HIV-1 isolates in the absence of host immune selective pressures.  相似文献   

13.
The ability of one primary human immunodeficiency virus type 1 (HIV-1) isolate to outcompete another in primary CD4+ human lymphoid cells appears to be mediated by the efficiency of host cell entry. This study was designed to test the role of entry on fitness of wild-type HIV-1 isolates (e.g., replicative capacity) and to examine the mechanism(s) involved in differential entry efficiency. The gp120 coding regions of two diverse HIV-1 isolates (the more-fit subtype B strain, B5-91US056, and less-fit C strain, C5-97ZA003) were cloned into a neutral HIV-1 backbone by using a recently described yeast cloning technique. The fitness of the primary B5 HIV-1 isolates and its env gene cloned into the NL4-3 laboratory strain had similar fitness, and both were more fit than the C5 primary isolate and its env/NL4-3 chimeric counterpart. Increased fitness of the B5 over C5 virus was mediated by the gp120 coding region of the env gene. An increase in binding/fusion, as well as decreased sensitivity to entry inhibitors (PSC-RANTES and T-20), was observed in cell fusion assays mediated by B5 gp120 compared to C5 gp120. Competitive binding assays using a novel whole virus-cell system indicate that the primary or chimeric B5 had a higher avidity for CD4/CCR5 on host cells than the C5 counterpart. This increased avidity of an HIV-1 isolate for its cell receptors may be a significant factor influencing overall replicative capacity or fitness.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by targeting BST-2/tetherin, a cellular protein inhibiting virus release. The widely used HIV-1(NL4-3) Vpu functionally inactivates human BST-2 but not murine or monkey BST-2, leading to the notion that Vpu antagonism is species specific. Here we investigated the properties of the CXCR4-tropic simian-human immunodeficiency virus DH12 (SHIV(DH12)) and the CCR5-tropic SHIV(AD8), each of which carries vpu genes derived from different primary HIV-1 isolates. We found that virion release from infected rhesus peripheral blood mononuclear cells was enhanced to various degrees by the Vpu present in both SHIVs. Transfer of the SHIV(DH12) Vpu transmembrane domain to the HIV-1(NL4-3) Vpu conferred antagonizing activity against macaque BST-2. Inactivation of the SHIV(DH12) and SHIV(AD8) vpu genes impaired virus replication in 6 of 8 inoculated rhesus macaques, resulting in lower plasma viral RNA loads, slower losses of CD4(+) T cells, and delayed disease progression. The expanded host range of the SHIV(DH12) Vpu was not due to adaptation during passage in macaques but was an intrinsic property of the parental HIV-1(DH12) Vpu protein. These results demonstrate that the species-specific inhibition of BST-2 by HIV-1(NL4-3) Vpu is not characteristic of all HIV-1 Vpu proteins; some HIV-1 isolates encode a Vpu with a broader host range.  相似文献   

15.
The role of human immunodeficiency virus type 1 (HIV-1) accessory genes in pathogenesis has remained unclear because of the lack of a suitable in vivo model. The most controversial of these genes is nef. We investigated the requirement for Nef for in vivo replication and pathogenicity of two isolates of HIV-1 (HIV-1JR-CSF and HIV-1NL4-3) in human fetal thymus and liver implants in severe combined immunodeficient mice. HIV-1JR-CSF and HIV-1NL4-3 differ in their in vitro phenotypes in that HIV-1JR-CSF does not induce syncytia and is relatively noncytopathic, while HIV-1NL4-3 is highly cytopathic and readily induces syncytia. The nef mutants of both isolates grew with kinetics similar to those of parental virus strains in stimulated peripheral blood lymphocytes but demonstrated attenuated growth properties in vivo. HIV-1NL4-3 induced severe depletion of human thymocytes within 6 weeks of infection, whereas its nef mutant did not. Thus, HIV-1 Nef is required for efficient in vivo viral replication and pathogenicity.  相似文献   

16.
Zhang  Zuopeng  Yuan  Sen  Xu  Shuting  Guo  Deyin  Chen  Lang  Hou  Wei  Wang  Min 《中国病毒学》2021,36(3):424-437
Human immunodeficiency virus(HIV) attacks human immune system and causes life-threatening acquired immune deficiency syndrome(AIDS). Treatment with combination antiretroviral therapy(cART) could inhibit virus growth and slow progression of the disease, however, at the same time posing various adverse effects. Host ubiquitin-proteasome pathway(UPP) plays important roles in host immunity against pathogens including viruses by inducing degradation of viral proteins. Previously a series of methods for retargeting substrates for ubiquitin-proteasome degradation have been successfully established. In this study, we attempted to design and construct artificial chimeric ubiquitin ligases(E3 s) based on known human E3 s in order to manually target HIV-1 integrase for ubiquitin proteasome pathway-mediated degradation.Herein, a series of prototypical chimeric E3 s have been designed and constructed, and original substrate-binding domains of these E3 s were replaced with host protein domains which interacted with viral proteins. After functional assessment screening, 146 LI was identified as a functional chimeric E3 for HIV-1 NL4-3 integrase. 146 LI was then further optimized to generate 146 LIS(146 LI short) which has been shown to induce Lys48-specific polyubiquitination and reduce protein level of HIV-1 NL4-3 integrase more effectively in cells. Lymphocyte cells with 146 LIS knock-in generated by CRISPR/Cas-mediated homology-directed repair(HDR) showed remarkably decreased integration of HIV-1 NL4-3 viral DNAs and reduced viral replication without obvious cell cytotoxicity. Our study successfully obtained an artificial chimeric E3 which can induce Lys48-specific polyubiquitination and proteasome-mediated degradation of HIV-1 NL4-3 integrase, thus effectively inhibiting viral DNA integration and viral replication upon virus infection.  相似文献   

17.
APOBEC3 proteins inhibit HIV-1 replication in experimental systems and induce hypermutation in infected patients; however, the relative contributions of several APOBEC3 proteins to restriction of HIV-1 replication in the absence of the viral Vif protein in human primary CD4+ T cells and macrophages are unknown. We observed significant inhibition of HIV-1Δvif produced in 293T cells in the presence of APOBEC3DE (A3DE), APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H haplotype II (A3H HapII) but not APOBEC3B (A3B), APOBEC3C (A3C), or APOBEC3H haplotype I (A3H HapI). Our previous studies showed that Vif amino acids Y40RHHY44 are important for inducing proteasomal degradation of A3G, whereas amino acids 14DRMR17 are important for degradation of A3F and A3DE. Here, we introduced substitution mutations of 40YRHHY44 and 14DRMR17 in replication-competent HIV-1 to generate vif mutants NL4-3 YRHHY>A5 and NL4-3 DRMR>A4 to compare the antiviral activity of A3G to the combined antiviral activity of A3F and A3DE in activated CD4+ T cells and macrophages. During the first 15 days (round 1), in which multiple cycles of viral replication occurred, both the NL4-3 YRHHY>A5 and NL4-3 DRMR>A4 mutants replicated in activated CD4+ T cells and macrophages, and only the NL4-3 YRHHY>A5 mutant showed a 2- to 4-day delay in replication compared to the wild type. During the subsequent 27 days (round 2) of cultures initiated with peak virus obtained from round 1, the NL4-3 YRHHY>A5 mutant exhibited a longer, 8- to 10-day delay and the NL4-3 DRMR>A4 mutant exhibited a 2- to 6-day delay in replication compared to the wild type. The NL4-3 YRHHY>A5 and NL4-3 DRMR>A4 mutant proviruses displayed G-to-A hypermutations primarily in GG and GA dinucleotides as expected of A3G- and A3F- or A3DE-mediated deamination, respectively. We conclude that A3G exerts a greater restriction effect on HIV-1 than A3F and A3DE.  相似文献   

18.
We investigated the infectivities and replicative capacities of a large panel of variants of the molecular human immunodeficiency virus type 1 (HIV-1) NL4-3 clone that differ exclusively in the V3 region of the viral envelope glycoprotein and the nef gene. Our results demonstrate that Nef enhances virion infectivity and HIV-1 replication independently of the viral coreceptor tropism.  相似文献   

19.
20.
We previously reported that expression of human immunodeficiency virus type 1 strain NL4-3 (HIV-1(NL4-3))vpr causes cells to arrest in the G2 phase of the cell cycle. We examined the induction of cell cycle arrest by other HIV-1 isolates and by primary lentiviruses other than HIV-1. We demonstrate that the vpr genes from tissue culture-adapted or primary isolates of HIV-1 are capable of inducing G2 arrest. In addition, we demonstrate that induction of cell cycle arrest is a conserved function of members of two other groups of primate lentiviruses, HIV-2/simian immunodeficiency virus strain sm (SIVsm)/SIVmac and SIVagm. vpr from HIV-1, HIV-2, and SIVmac induced cell cycle arrest when transfected in human (HeLa) and monkey (CV-1) cells. vpx from HIV-2 and SIVmac did not induce detectable cell cycle arrest in either cell type, and SIVagm vpx was capable of inducing arrest in CV-1 but not HeLa cells. These results indicate that induction of cell cycle perturbation is a general property of lentiviruses that infect primates. The conservation of this viral function throughout evolution suggests that it plays a key role in virus-host relationships, and elucidation of its mechanism may reveal important clues about pathology induced by primary lentiviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号