首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Autoantigen La/SSB is molecular target of humoral autoimmunity in patients with primary Sjogren's Syndrome (pSS) and systemic lupus erythematosus (SLE). In this study, we investigated the existence and possible influence of anti-idiotypic response to anti-La/SSB antibodies. MATERIALS AND METHODS: Synthetic peptide analogs (pep) of the major antigenic determinants of La/SSB (289-308 aa and 349-364 aa) were prepared. Based on "molecular recognition" theory, complementary peptides (cpep), derived by anti-parallel readings of the noncoding strand of La/SSB DNA encoding for its antigenic determinants, were constructed. Sera from 150 patients with anti-La/SSB antibodies, 30 patients without anti-La/SSB antibodies, and 42 normal individuals were tested against all four peptides. F(ab')(2) fragments from anti-peptide IgG were prepared and F(ab')(2) - IgG interactions were evaluated using a specific anti-idiotypic ELISA. RESULTS: All four peptides were recognized by anti-La positive sera (83% and 51% for pep and cpep 349-364 and 51% and 28% for pep and cpep289-308, respectively). Anti-cpep F(ab')(2 )bound to a common idiotype (Id) located within or spatially close to the antigen combining site of anti La/SSB (anti-pep) antibodies. Homologous and cross-inhibition experiments further confirmed this relation. The anti-idiotypic antibodies inhibited the anti-La/SSB antibody binding to recombinant La/SSB by 91%. To overcome the anti-idiotypic interference in anti-La/SSB detection, a specific assay was developed. Sera were heated for dissociation of Id-anti-Id complexes, anti-Id antibodies blocked with cpep, and anti-La/SSB reactivity was recovered. Application of this method to anti-Ro positive-anti-La/SSB "negative" sera showed that all anti-Ro/SSA positive autoimmune sera also possess anti-La/SSB antibodies. This reaction was not observed in 14 anti-Ro negative- anti-Sm/RNP positive sera from patients with SLE. CONCLUSIONS: Autoimmune sera from patients with pSS and SLE contain anti-idiotypic antibodies targeting a common anti-La/SSB idiotype. These antibodies can be detected using complementary peptides of La/SSB epitopes. The antiidiotypic antibodies mask the anti-La/SSB response. Hidden anti-La/SSB antibodies can be released and detected using complementary epitope analogs.  相似文献   

2.
Application of complementary B and T cell epitopes in inducing anti-idiotypic and anti-clonotypic antibodies capable of regulating or suppressing the autoimmune responses in experimental autoimmune myasthenia gravis (EAMG), allergic neuritis (EAN) and allergic encephalomyelitis (EAE) has been the stimulus of many research efforts. Studies on the idiotypic/anti-idiotypic network of anti-La/SSB positive sera from patients with Sjogren's Syndrome (SS) and Systemic Lupus Erythematosus (SLE) and on animals immunized with the complementary epitopes are presented.  相似文献   

3.
Complementary peptide epitopes, derived from complementary RNA sequences, have been used for suppressing the autoimmune response in experimental autoimmune diseases as myasthenia gravis, allergic neuritis and allergic encephalomyelitis. Aiming at contributing to the development of a tool that could regulate the autoantibody production against La/SSB, which is the main target of autoantibodies in Sjogren's syndrome (SS) and systemic lupus erythematosus (SLE), the complementary epitope, cpep349-364, of the minor T/major B cell epitope of La/SSB, pep349-364, was utilized for the induction of neutralizing anti-cpep349-364 antibodies in rabbit immunizations. Complementary peptides were coupled to an artificial carrier, developed in our laboratory, in order to enhance the complementary potency of cpep349-364 and its counterpart. This carrier, named Sequential Oligopeptide Carrier, SOC(n), formed by the repeating tripeptide Lys-Aib-Gly, adopts helical conformation, which allows the anchored peptide epitopes to preserve their initial reactivity such as molecular recognition, antigenicity/immunogenicity. Our study provides proof of evidence of specific interactions between idiotypic (Id)/anti-idiotypic (anti-Id) antibodies generated in immunized animals by the sense epitope (conjugate I) of La/SSB and its complementary counterpart (conjugate II). It was also demonstrated that the Id/anti-Id association is specifically disrupted by adding either the sense epitope (conjugate I) or its complementary counterpart (conjugate II). A mutual neutralization of Id/anti-Id antibodies was observed in vivo, which implies that generation of anti-Id antibodies by immunization with the complementary La/SSB epitope could scavenge the anti-La/SSB response. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
5.
SS-B/La is a conserved cellular phosphoprotein of 46 to 48 KD that is the target antigen of autoantibodies in sera of patients with Sjogren's syndrome and systemic lupus erythematosus. SS-B/La is also known to be associated with certain small cellular and viral RNA, including adenovirus VAI and VAII RNA. Two relatively protease-resistant domains (X and Y) were defined in SS-B from HeLa cells by using human autoantibodies as reagents. Domain X, a methionine-containing nonphosphorylated 28 KD polypeptide, was found to be resistant to partial digestion with six different proteases. Similar domains were also found in calf and rabbit SS-B. Domain Y, a 23 KD polypeptide, was detected after limited digestion with S. aureus V8 and trypsin. This domain contained little if any methionine, but all the detectable phosphorylated amino acids. Among 16 anti-SS-B sera tested by immunoblotting, 11 (69%) were reactive with both domains, three (19%) only with domain X, and two (13%) only with domain Y. These results showed that there are at least two distinct antigenic epitopes on the 46 to 48 KD SS-B/La protein, each located on a separate structural domain. The asymmetric distribution of methionine and phosphorylated amino acid residues in SS-B/La show striking similarity to the two reported domains of the adenovirus 72 KD DNA-binding protein, and raises questions concerning functional similarities that await investigation.  相似文献   

6.
In this work, spinach stroma membrane, instead of thylakoid, has been investigated for the presence of phosphorylated proteins. We identified seven previously unknown phosphorylation sites by taking advantage of TiO(2) phosphopeptides enrichment coupled to mass spectrometric analysis. Upon illumination at 100 micromol m(-2) s(-1), two novel phosphopeptides belonging to the N-terminal region of Lhcb1 light-harvesting protein were detected: NVSSGS(p)PWYGPDR and T(p)VQSSSPWYGPDR. Moreover, three new threonine residues in CP43 (Thr-6, Thr-8, and Thr-346) and, for the first time, two amino acid residues of the N-terminus of Rieske Fe-S protein of the cytochrome b(6)f complex (Thr-2 and Ser-3) were revealed to be phosphorylated. Since Lhcb1 and CP43 have been reported as mobile proteins, it may be suggested that illumination derived phosphorylation, and consequently the addition of negatively charged groups to the protein, is a necessary condition to induce a significant protein structural change.  相似文献   

7.
GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity   总被引:2,自引:0,他引:2  
Neurons are highly polarized and comprised of two structurally and functionally distinct parts, an axon and dendrites. We previously showed that collapsin response mediator protein-2 (CRMP-2) is critical for specifying axon/dendrite fate, possibly by promoting neurite elongation via microtubule assembly. Here, we showed that glycogen synthase kinase-3beta (GSK-3beta) phosphorylated CRMP-2 at Thr-514 and inactivated it. The expression of the nonphosphorylated form of CRMP-2 or inhibition of GSK-3beta induced the formation of multiple axon-like neurites in hippocampal neurons. The expression of constitutively active GSK-3beta impaired neuronal polarization, whereas the nonphosphorylated form of CRMP-2 counteracted the inhibitory effects of GSK-3beta, indicating that GSK-3beta regulates neuronal polarity through the phosphorylation of CRMP-2. Treatment of hippocampal neurons with neurotrophin-3 (NT-3) induced inactivation of GSK-3beta and dephosphorylation of CRMP-2. Knockdown of CRMP-2 inhibited NT-3-induced axon outgrowth. These results suggest that NT-3 decreases phosphorylated CRMP-2 and increases nonphosphorylated active CRMP-2, thereby promoting axon outgrowth.  相似文献   

8.
The structure of a 36-amino-acid-long N-terminal fragment of human phospholamban phosphorylated at Ser-16 and Thr-17 and Cys-36-->Ser mutated was determined from nuclear magnetic resonance data in aqueous solution containing 30% trifluoroethanol. The peptide assumes a conformation characterized by two alpha-helices connected by an irregular strand, which comprises the amino acids from Arg-13 to Pro-21. The proline is in a trans conformation. The two phosphate groups on Ser-16 and Thr-17 are shown to interact preferably with the side chains of Arg-14 and Arg-13, respectively. The helix comprising amino acids 22 to 35 is well determined (the rmsd for the backbone atoms, calculated for a family of 24 nuclear magnetic resonance structures is 0.69 +/- 0.28 A). The structures of phosphorylated and unphosphorylated phospholamban are compared, and the effect of the two phosphate groups on the relative spatial position of the two helices is examined. The packing parameters Omega (interhelical angle) and d (minimal interhelical distance) are calculated: in the case of the phosphorylated phospholamban, Omega = 100 +/- 35 degrees and d = 7.9 +/- 4.6 A, whereas for the unphosphorylated peptide the values are Omega = 80 +/- 20 degrees and d = 7.0 +/- 4.0 A. We conclude that 1) the phosphorylation does not affect the structure of the C terminus between residues 21 and 36 and 2) the phosphorylated phospholamban has more loose helical packing than the nonphosphorylated.  相似文献   

9.
The isolation and characterization of eight forms of corticotropin-like intermediary lobe peptide (CLIP, adrenocorticotropin18-39) from the intermediary lobe of the rat pituitary has been accomplished by using reversed phase high performance liquid chromatography. The eight forms are the result of all combinations of the presence or absence of three post-translational modifications. These are glycosylation, phosphorylation, and removal of the carboxyl-terminal amino acid. The sites of phosphorylation and glycosylation are at serine 31 and asparagine 29, respectively. The eight forms (in order of elution from the reversed high performance liquid chromatography column) are glycosylated, phosphorylated CLIP18-38; glycosylated, nonphosphorylated CLIP18-38; nonglycosylated, phosphorylated CLIP18-38; nonglycosylated, nonphosphorylated CLIP18-38; glycosylated, phosphorylated CLIP18-39; glycosylated, nonphosphorylated CLIP18-39; nonglycosylated, phosphorylated CLIP18-39; and nonglycosylated, nonphosphorylated CLIP18-39.  相似文献   

10.
The activity of recombinant murine G9a toward lysine 9 of histone H3 was investigated. GST fusion proteins containing various lengths of the histone H3 amino-terminal tail were used as substrates in the presence of recombinant G9a enzyme and AdoMet cosubstrate. The minimal substrate methylated by G9a contained seven amino acids (TARKSTG) of the histone H3 tail. Furthermore, mutational analysis of the minimal substrate was performed to identify the amino acids essential for G9a-mediated methylation. All amino acids except Thr-11 were indispensable for the methylation reaction. Steady-state kinetic analysis of the wild-type and histone H3 point mutants, lysine 4 changed to alanine (K4A) or lysine 27 changed to alanine (K27A), with purified G9a revealed similar catalytic efficiency but a reduction in turnover number (k(cat)) from 78 to 58 h(-)(1). G9a methylated synthetic peptide substrates containing the first 13 amino acids of histone H3 efficiently, although methylation, acetylation, or mutation of proximal Lys-4 amino acids reduced Lys-9 methylation. The k(cat) for wild-type peptide substrate vs Lys-4 acetyl- or trimethyl-modified peptide were 88 and 32 h(-)(1), respectively, and the K(m) for the peptides varied from 0.6 to 2.2 muM, resulting in a large difference (15-91) in catalytic efficiency. Ser-10 or Thr-11 phosphorylation resulted in poor methylation by G9a. Immunoprecipitation of unmodified and Ser-10 and Thr-11 phosphorylated histone H3 displayed mostly Lys-4 dimethylation. Dimethylated Lys-9 was reduced in Ser-10 and Thr-11 immunoprecipitated phosphorylated histones as compared to nonphosphorylated H3. In an immunocytochemical assay, GFP fusion SUV39H1 or G9a did not colocalize with phosphorylated histone H3. Thus, Ser-10/Thr-11 phosphorylation impairs Lys-9 methylation. These data suggest that the sequence context of the modified residue affects G9a activity and the modification in the proximal amino acids influences methylation.  相似文献   

11.
Autoepitopes on the ribonucleoprotein La(SS-B) were identified by using recombinant La(SS-B) polypeptides and sera from 166 patients with the antinuclear autoantibody anti-La(SS-B). The La(SS-B) polypeptides were encoded by polymerase chain reaction-derived overlapping or nonoverlapping fragments of the La(SS-B) gene, which encodes a protein of 408 amino acids (aa). Of the 166 sera tested, 99% reacted with a fusion protein comprising the first 107 N-terminal aa (LaA); 91% reacted with a fusion protein comprising aa 111 to 242 (LaC), and 91% reacted with a fusion protein comprising aa 346 to 408 (LaL2/3) at the C terminus of La(SS-B). The order of immunodominance as assessed by the number of sera reacting with each epitope and the strength of the reactivity was LaA (aa 1 to 107) greater than LaC (aa) 111 to 242) much greater than LaL2/3 (aa 346 to 408). Cross-reactivity was observed between antibodies eluted from LaC (aa 111 to 242) and LaL2/3 (aa 346 to 408), but there was no significant primary sequence homology between the two regions. The LaC region contained at least two epitopes, one encompassing a putative RNA-binding motif (aa 112 to 187) which was recognized by 83% of patient sera. Serial serum samples from three patients showed that the antibody response to La(SS-B) was initially directed to the N terminus (LaA, aa 1 to 107), but over a period of time all three major epitopes, including that encompassing the putative RNA-binding motif, were recognized. This result suggests that the primary immune response to La(SS-B) is restricted to an immunodominant epitope. As the specificity of the autoantibody response broadens, it includes the RNA-binding motif, which may have important implications for the expression of disease.  相似文献   

12.
We have employed sera from patients with autoimmune disease to characterize the nuclear SS-B/La antigen in uninfected and adenovirus-infected KB cells. A 45,000-dalton phosphorylated polypeptide was specifically precipitated with anti-SS-B sera, and the level of phosphorylation was increased after infection. The increased phosphorylation appears to occur at the same amino acid residues phosphorylated in uninfected cells and results from increased phosphorylating activity rather than from altered enzyme specificity. A competition experiment between infected and uninfected cell extracts indicates that the antigen in the infected cell binds more strongly to SS-B/La antibodies. Fragments of adenovirus-induced virus-associated RNA as well as intact molecules complex with SS-B/La antigen and are immune precipitated with autoimmune sera.  相似文献   

13.
The role and control of the four rapamycin-sensitive phosphorylation sites that govern the association of PHAS-I with the mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), were investigated by using newly developed phospho-specific antibodies. Thr(P)-36/45 antibodies reacted with all three forms of PHAS-I that were resolved when cell extracts were subjected to SDS-polyacrylamide gel electrophoresis. Thr(P)-69 antibodies bound the forms of intermediate and lowest mobility, and Ser(P)-64 antibodies reacted only with the lowest mobility form. A portion of PHAS-I that copurified with eIF4E reacted with Thr(P)-36/45 and Thr(P)-69 antibodies but not with Ser(P)-64 antibodies. Insulin and/or amino acids increased, and rapamycin decreased, the reactivity of all three antibodies with PHAS-I in both HEK293 cells and 3T3-L1 adipocytes. Immunoprecipitated epitope-tagged mammalian target of rapamycin (mTOR) phosphorylated Thr-36/45. mTOR also phosphorylated Thr-69 and Ser-64 but only when purified immune complexes were incubated with the activating antibody, mTAb1. Interestingly, the phosphorylation of Thr-69 and Ser-64 was much more sensitive to inhibition by rapamycin-FKBP12 than the phosphorylation of Thr-36/45, and the phosphorylation of Ser-64 by mTOR was facilitated by phosphorylation of Thr-36, Thr-45, and Thr-69. In these respects the phosphorylation of PHAS-I by mTOR in vitro resembles the ordered phosphorylation of PHAS-I in cells.  相似文献   

14.
Phospho-telokin is a target of elevated cyclic nucleotide concentrations that lead to relaxation of gastrointestinal and some vascular smooth muscles (SM). Here, we demonstrate that in telokin-null SM, both Ca(2+)-activated contraction and Ca(2+) sensitization of force induced by a GST-MYPT1(654-880) fragment inhibiting myosin light chain phosphatase were antagonized by the addition of recombinant S13D telokin, without changing the inhibitory phosphorylation status of endogenous MYPT1 (the regulatory subunit of myosin light chain phosphatase) at Thr-696/Thr-853 or activity of Rho kinase. Cyclic nucleotide-induced relaxation of force in telokin-null ileum muscle was reduced but not correlated with a change in MYPT1 phosphorylation. The 40% inhibited activity of phosphorylated MYPT1 in telokin-null ileum homogenates was restored to nonphosphorylated MYPT1 levels by addition of S13D telokin. Using the GST-MYPT1 fragment as a ligand and SM homogenates from WT and telokin KO mice as a source of endogenous proteins, we found that only in the presence of endogenous telokin, thiophospho-GST-MYPT1 co-precipitated with phospho-20-kDa myosin regulatory light chain 20 and PP1. Surface plasmon resonance studies showed that S13D telokin bound to full-length phospho-MYPT1. Results of a protein ligation assay also supported interaction of endogenous phosphorylated MYPT1 with telokin in SM cells. We conclude that the mechanism of action of phospho-telokin is not through modulation of the MYPT1 phosphorylation status but rather it contributes to cyclic nucleotide-induced relaxation of SM by interacting with and activating the inhibited full-length phospho-MYPT1/PP1 through facilitating its binding to phosphomyosin and thus accelerating 20-kDa myosin regulatory light chain dephosphorylation.  相似文献   

15.
When we were studying phosphorylated proteins in the rat brain after electroconvulsive shock (ECS), we observed the rapid phosphorylation of a 75-kDa protein, which cross-reacted with the anti-phospho-p70 S6 kinase antibody. The phosphorylated protein was purified and identified as moesin, a member of the ezrin/radixin/moesin (ERM) family and a general cross-linker between cortical actin filaments and plasma membranes. The purified moesin from rat brain was phosphorylated at serine and threonine residues. Moesin was rapidly phosphorylated at the threonine 558 residue after ECS in the rat hippocampus, peaked at 1 min, and returned to the basal level by 2 min after ECS. To investigate the mechanism of moesin phosphorylation in neuronal cells, we stimulated a rat hippocampal progenitor cell, H19-7/IGF-IR, with glutamate, and observed the increased phosphorylation of moesin at Thr-558. Glutamate transiently activated RhoA, and constitutively active RhoA increased the basal level phosphorylation of moesin. The inhibition of RhoA and its effector, Rho kinase, abolished increased Thr-558 phosphorylation by glutamate in H19-7/IGF-IR cells, suggesting that the phosphorylation of moesin at Thr-558 in H19-7/IGF-IR cells by glutamate is mediated by RhoA and Rho kinase activation.  相似文献   

16.
Despite the near universal association of congenital heart block and maternal Abs to SSA/Ro and SSB/La, the intracellular location of these Ags has made it difficult to substantiate their involvement in pathogenicity. To define whether components of the SSA/Ro-SSB/La complex, which translocate during apoptosis, are indeed accessible to extracellular Abs, two approaches were taken: immunoprecipitation of surface biotinylated proteins and scanning electron microscopy. Human fetal cardiocytes from 16-24-wk abortuses were cultured and incubated with staurosporine to induce apoptosis. Surface biotinylated 48-kDa SSB/La was reproducibly immunoprecipitated from apoptotic, but not nonapoptotic cardiocytes. Surface expression of SSA/Ro and SSB/La was further substantiated by scanning electron microscopy. Gold particles (following incubation with gold-labeled sera containing various specificities of anti-SSA/Ro-SSB/La Abs and murine mAb to SSB/La and 60-kDa SSA/Ro) were consistently observed on early and late apoptotic cardiocytes. No particles were seen after incubation with control antisera. To evaluate whether opsonized apoptotic cardiocytes promote inflammation, cells were cocultured with macrophages. Compared with nonapoptotic cardiocytes or apoptotic cardiocytes incubated with normal sera, apoptotic cardiocytes preincubated with affinity-purified Abs to SSB/La, 52-kDa SSA/Ro, or 60-kDa SSA/Ro increased the secretion of TNF-alpha from cocultured macrophages. In summary, apoptosis results in surface accessibility of all SSA/Ro-SSB/La Ags for recognition by circulating maternal Abs. It is speculated that in vivo such opsonized apoptotic cardiocytes promote an inflammatory response by resident macrophages with damage to surrounding conducting tissue.  相似文献   

17.
14-3-3 proteins constitute a family of well conserved proteins interacting with a large number of phosphorylated binding partners in eukaryotic cells. The plant plasma membrane H+-ATPase is an unusual target in that a unique phosphothreonine motif (946YpTV, where pT represents phosphothreonine) in the extreme C-terminal end of the H+-ATPase interacts with the binding cleft of 14-3-3 protein (Wurtele, M., Jelich-Ottmann, C., Wittinghofer, A., and Oecking, C. (2003) EMBO J. 22, 987-994). We report binding of 14-3-3 protein to a nonphosphorylated peptide representing the 34 C-terminal residues of the Arabidopsis plasma membrane H+-ATPase isoform 2 (AHA2). Following site-directed mutagenesis within the 45 C-terminal residues of AHA2, we conclude that, in addition to the 946YpTV motif, a number of residues located further upstream are required for phosphorylation-independent binding of 14-3-3. Among these, Thr-924 is important for interaction with 14-3-3 protein even when Thr-947 is phosphorylated. We suggest that the role of phosphorylation, which is accentuated by fusicoccin, is to stabilize protein-protein interaction between 14-3-3 protein and several residues of the H+-ATPase C-terminal domain.  相似文献   

18.
Huang Z  Guo XX  Chen SX  Alvarez KM  Bell MW  Anderson RE 《Biochemistry》2001,40(15):4550-4559
Type II phosphatidylinositol phosphate kinase (PIPKII) is an enzyme responsible for the synthesis of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P(2)) from phosphatidylinositol-5-phosphate (PI-5-P). In this study, we demonstrate the presence of PIPKII alpha in bovine photoreceptor rod outer segments (ROS) and the involvement of tyrosine phosphorylation in the regulation of its activity. PIPKII activity in bovine ROS was verified by the preferential conversion of synthetic dipalmitoyl PI-5-P to PI-4,5-P(2), lack of effect of phosphatidic acid, inhibition by heparin, immunoreaction with an anti-PIPKII alpha antibody on Western blots, and immunocytochemical localization in bovine and rat ROS by anti-PIPKII alpha. Immunoprecipitates of bovine ROS with the anti-PIPKII alpha antibody possessed PIPK enzymatic activity and preferentially used PI-5-P as substrate for PI-4,5-P(2) biosynthesis. The activity of PIPKII was greatly increased under conditions favoring tyrosine phosphorylation in ROS, and PIPKII activity was immunoprecipitated with anti-phosphotyrosine (anti-PY) antibodies from tyrosine phosphorylated ROS. Preincubation of ROS with tyrosine kinase inhibitors almost abolished the kinase activity in the anti-PY immunoprecipitates. Immunoblot analysis showed that PIPKII alpha was present in anti-PY immunoprecipitates from phosphorylated ROS but not from nonphosphorylated controls. We conclude that PIPKII alpha is present in ROS and that its activity is regulated by tyrosine phosphorylation.  相似文献   

19.
The G(i)-coupled somatostatin 2A receptor (sst2A) mediates many of the neuromodulatory and neuroendocrine actions of somatostatin (SS) and is targeted by the SS analogs used to treat neuroendocrine tumors. As for other G protein-coupled receptors, agonists stimulate sst2A receptor phosphorylation on multiple residues, and phosphorylation at different sites has distinct effects on receptor internalization and uncoupling. To elucidate the spatial and temporal regulation of sst2A receptor phosphorylation, we examined agonist-stimulated phosphorylation of multiple receptor GPCR kinase sites using phospho-site-specific antibodies. SS increased receptor phosphorylation sequentially, first on Ser-341/343 and then on Thr-353/354, followed by receptor internalization. Reversal of receptor phosphorylation was determined by the duration of prior agonist exposure. In acutely stimulated cells, in which most receptors remained on the cell surface, dephosphorylation occurred only on Thr-353/354. In contrast, both Ser-341/343 and Thr-353/354 were rapidly dephosphorylated when cells were stimulated long enough to allow receptor internalization before agonist removal. Consistent with these observations, dephosphorylation of Thr-353/354 was not affected by either hypertonic sucrose or dynasore, which prevent receptor internalization, whereas dephosphorylation of Ser-341/343 was completely blocked. An okadaic acid- and fostriecin-sensitive phosphatase catalyzed the dephosphorylation of Thr-353/354 both intracellularly and at the cell surface. In contrast, dephosphorylation of Ser-341/343 was insensitive to these inhibitors. Our results show that the phosphorylation and dephosphorylation of neighboring GPCR kinase sites in the sst2A receptor are subject to differential spatial and temporal regulation. Thus, the pattern of receptor phosphorylation is determined by the duration of agonist stimulation and compartment-specific enzymatic activity.  相似文献   

20.
Our previous studies have advanced the idea that the folliculostellate cell GJA1 (gap junction membrane channel protein alpha1; previously known as connexin 43)-mediated gap junctions contribute to the establishment of an intercellular network that regulates the paracrine messages and the endocrine response within the anterior pituitary. The folliculostellate cells are targets for growth factors and cytokines that modulate hormone secretion. Proinflammatory cytokines modulate the cell-to-cell communication in many tissues of the body. The present study measured the effect of the proinflammatory cytokines tumor necrosis factor and interleukin-1 on the GJA1-mediated intercellular communication, specifically the expression, localization, degradation, and phosphorylation status of GJA1 in the folliculostellate cell line TtT/GF. The GJA1 localized to the plasma membrane and to minute cytoplasmic vesicles in the perinuclear area. Using different antibodies that recognize distinctly the nonphosphorylated from the phosphorylated forms of GJA1, we showed that nonphosphorylated GJA1 in Ser-368 (NP-GJA1) localized chiefly in the cytoplasm, whereas GJA1 phosphorylated in Ser-368 (P-GJA1) localized to the plasma membrane in controls. The cytokine treatment transiently increased 1) GJA1, NP-GJA1, and P-GJA1 levels; 2) NP-GJA1 and P-GJA1 degradation by both the lysosomal and proteasomal pathways; and 3) cell-to-cell communication in TtT/GF cells. The results suggest that the cytokine-evoked, transient enhancement of folliculostellate cell-mediated intercellular communication contributes to the coordination of the response among folliculostellate cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号