首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Miyata  K Takaya 《Histochemistry》1985,83(3):201-205
Acid phosphatase (ACPase) was ultracytochemically demonstrated in the lymph-node sinus reticular cells and macrophages of rats. After the uptake of horseradish peroxidase (HRP), marked ACPase activities were seen in both reticular cells and macrophages, although only sparse ACPase activity was detected in the reticular cells of the control. After the injection of HRP into the footpad, the mast cells in the regional lymph node became degranulated, and the released granules were taken up by reticular cells and macrophages. In macrophages, these taken-up mast-cell granules exhibited ACPase reaction products, whereas none of the granules taken up by reticular cells showed ACPase activity. The heparin-protamine complex was also engulfed by reticular cells and macrophages, and ACPase activity was demonstrable in the complex taken up by both types of cell. It is probable that, as is the case in macrophages, reticular cells in the lymph-node sinuses take up and digest foreign substances through the formation of phagolysosomes, but they do not digest granules originating from the mast cells in the lymph node of the same animal.  相似文献   

2.
Summary Acid phosphatase (ACPase) was ultracytochemically demonstrated in the lymph-node sinus reticular cells and macrophages of rats. After the uptake of horseradish peroxidase (HRP), marked ACPase activities were seen in both reticular cells and macrophages, although only sparse ACPase activity was detected in the reticular cells of the control. After the injection of HRP into the footpad, the mast cells in the regional lymph node became degranulated, and the released granules were taken up by reticular cells and macrophages. In macrophages, these taken-up mast-cell granules exhibited ACPase reaction products, whereas none of the granules taken up by reticular cells showed ACPase activity. The heparin-protamine complex was also engulfed by reticular cells and macrophages, and ACPase activity was demonstrable in the complex taken up by both types of cell. It is probable that, as is the case in macro-phages, reticular cells in the lymph-node sinuses take up and digest foreign substances through the formation of phagolysosomes, but they do not digest granules originating from the mast cells in the lymph node of the same animal.  相似文献   

3.
35S-labelled mast-cell granules isolated from mouse mastocytomas were added to mouse macrophages in vitro. The granules were avidly phagocytosed, and subsequently the radioactivity was released to the medium as inorganic [35S]sulphate. After pulse-labelling, a total of about 80% of the cell-associated radioactivity was thus released in the course of 24 h, indicating an extensive breakdown of the sulphated polysaccharides, mainly heparin, present in the granules. The uptake of the mast-cell granules caused pronounced, but reversible, spreading of the macrophages.  相似文献   

4.
To study the interaction between low-density lipoprotein (LDL) and granules from rat serosal mast cells in vitro, mast cells were stimulated with the degranulating agent 48/80 to induce exocytosis of the secretory granules. Subsequent incubation of the exocytosed granules with 125I-LDL resulted in binding of the labelled LDL to the granules. When increasing amounts of agent 48/80 were added to mast-cell suspensions, a dose-dependent release of granules was observed and a parallel increase in the amount of 125I-LDL bound to granules resulted. 125I-LDL bound to a single class of high-affinity binding sites on the granules. At saturation, 105 ng of LDL were bound per microgram of granule protein. The lipoprotein binding to mast-cell granules was apolipoprotein(apo)-B + E-specific. Thus 125I-LDL binding to the granules was effectively compared for by LDL (apo-B) or by dimyristoyl phosphatidylcholine vesicles containing apo-E, but not by high-density lipoprotein (HDL3) containing apo-AI as their major protein component. Neutralization by acetylation of the positively charged amino groups of apo-B of LDL or presence of a high ionic strength in the incubation medium prevented LDL from binding to the granules, indicating the presence of ionic interactions between the positively charged amino acids of LDL and negatively charged groups of the granules. It could be demonstrated that LDL bound to the negatively charged heparin proteoglycan of the granules. Thus treatment of granules with heparinase resulted in loss of their ability to bind LDL, and substances known to bind to heparin, such as Toluidine Blue, avidin, lipoprotein lipase, fibronectin and protamine, all effectively competed with LDL for binding to the granules. The results show that LDL is efficiently bound to the heparin proteoglycan component of mast-cell granules once the mast cells are stimulated to release their granules into the extracellular space.  相似文献   

5.
The effects of a single intraperitoneal injection of polyamino acids (lysine, glutamic, aspartic) on mast cells of the rat are described. In vitro interaction of mast-cell components with these polyamino acids is also explored. Poly-DL-lysine (but not the acidic amino acids) has both immediate (minutes-hours) and long-term (days-weeks) effects on mast cells. At the dosage selected, some cells evidence rapid fusion of granules and degranulation, but without concomitant swelling; most display intracellular changes only. Neither degranulation nor granule fusion appears to be lethal. Rather, these spur the cell to greater synthetic activity which involves first the Golgi apparatus and subsequently also the endoplasmic reticulum. Early involvement of macrophages and eosinophils is described. Sequential studies after polylysine injection support the following concepts: (a) mast-cell granules exist as "physiological sets," several being confined to a common membranous "sac;" (b) each set can respond independently to applied stimuli; (c) each set can connect directly to the extracellular milieu; (d) poly-DL-lysine binds directly to the granules and stabilizes them; it is not readily digested; (e) mast-cell granules are produced directly; they do not arise by intake of exogenous polysaccharides. It is hypothesized that mast-cell granules are topologically outside the cell while held intimately within extensive cytoplasmic folds and recesses. Mast cells may function by causing intercellular connective tissue fluids to percolate over their granules which may process this fluid in some as yet undefined way(s).  相似文献   

6.
Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F1-+/+ mice after various doses of irradiation and injected into the skin of the congenic W/Wv mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bgJ/bgJ. Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the back of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosensitive than those localized in the skin. D0 value was about 100 rad for the former and about 800 rad for the latter.  相似文献   

7.
1H NMR spectroscopy was used to evaluate histamine release and lactate production in intact mast cells isolated from rats. The resonance lines of the aromatic histamine protons in mast cells, detected by the selective spin-excitation technique, were broader and located in a lower magnetic field than those in free histamine solution. When exocytosis of mast-cell granules was induced by compound 48/80, free histamine appeared, with a corresponding decrease in the amount of histamine in the mast cells; the lactate signal was also detected in the spectrum. On the addition of compound 48/80, there was a further release of histamine from mast cells, accompanied by further production of lactate. This result indicates that the mechanisms which induce the exocytosis of granules, and/or the events following exocytosis, activate glycolysis.  相似文献   

8.
1H NMR spectroscopy was used to evaluate histamine release and lactate production in intact mast cells isolated from rats. The resonance lines of the aromatic histamine protons in mast cells, detected by the selective spin-excitation technique, were broader and located in a lower magnetic field than those in free histamine solution. When exocytosis of mast-cell granules was induced by compound 48/80, free histamine appeared, with a corresponding decrease in the amount of histamine in the mast cells; the lactate signal was also detected in the spectrum. On the addition of compound 48/80, there was a further release of histamine from mast cells, accompanied by further production of lactate. This result indicates that the mechanisms which induce the exocytosis of granules, and/or the events folowing exocytosis, activate glycolysis.  相似文献   

9.
Large amounts of membranes enriched either in perigranular membranes or in plasma membranes have been successfully isolated from rat peritoneal mast cells. A cycle consisting of a single sonication pulse to disrupt the mast cells followed by centrifugation to separate the released granules was repeated until 90% of the mast cells were disrupted. This technique resulted in a high yield of intact granules since the released granules were only exposed to the single sonication pulse. The intact granules were separated from plasma membrane fragments by centrifugation through a Percoll gradient. The perigranular membranes were then obtained by osmotic lysis of the purified intact granules. The plasma membrane fraction was enriched 4.5-fold (range, 4.1-6.1) in 5'-nucleotidase activity, a plasma membrane marker enzyme. No suitable marker enzyme activity was found for the perigranular membrane fraction. An important aspect of this procedure is its potential for obtaining both a plasma and perigranular membrane preparation in high yield and purity from the same mast cell preparation.  相似文献   

10.
Chymase, a potent secretagogue for airway gland serous cells, is stored in secretory granules and released from mast cells together with proteoglycans. To investigate the hypothesis tha tproteoglycans modulate chymase-induced effects, we studied the influence of proteoglycans purified from dog mastocytoma cells on chymase-induced secretion from cultured bovine airway gland serous cells. Heparin proteoglycans reduced the chymase-induced secretory response, whereas glycosaminoglycans and chondroitin sulfate proteoglycans had less of an effect. Chymase released together with proteoglycans from activated mast cells caused secretion comparable to that caused by purified chymase reconstituted with purified proteoglycans. Despite partial inhibition by exocytosed proteoglycans, the secretagogue activity of chymase remains substantial compared to that of histamine. However, proteoglycans virtually abolished chymase-induced degradation of the products of serous cell secretion. Although the secretagogue and proteoglycanase activities of chymase are inhibited by most classes of mast cell granule-associated glycans, the amidolytic activity of chymase toward tripeptide 4-nitroanilide substrates is augmented. These findings suggest that mast cell proteoglycans modulate the secretagogue, proteoglycanase, and peptidase activity of chymase, and the results predict that the extent of this modulation in vivo depends on the nature of the proteoglycans with which chymase is released from mast cells.  相似文献   

11.
When hematopoietic cells of congenic +/+ mice were injected into the skin of genetically mast-cell-depleted (WB × C57BL/6)F1-W/Wv mice, mast cells appeared at the injection site. The donor origin of developing mast cells was confirmed by using granules of C57BL/6-bgl/bgl mice as a marker. When the number of injected cells was decreased, the proportion of injection sites at which mast cells did not appear increased according to the expected frequency of null response in a Poisson distribution. Therefore, such proportions were used to calculate the concentration of mast-cell precursors in the bone marrow, spleen, and peripheral blood. The relative concentration of mast-cell precursors in these tissues was similar to that of spleen-colony-forming cells. The present method seems useful as a semiquantitative in vivo assay for a population of progenitor cells which are committed to differentiate into mast cells.  相似文献   

12.
Mast cells and macrophages live in close proximity in vivo and reciprocally regulate one another's function in various ways. Although activated macrophages possess a powerful reactive oxygen species (ROS) generating system, there is conflicting evidence regarding whether mast cells can produce ROS. We used the highly sensitive real-time chemiluminescent probe Pholasin to examine ROS release by peritoneal macrophages and mast cells isolated from OVA-sensitized rats. Macrophages stimulated with PMA (0.8 microM) or ionomycin (1 microM), but not OVA (1 microg/ml), released high-level ROS, levels of which peaked after 3-7 min and declined to baseline levels within 1 h. Superoxide was identified as the major ROS species induced by PMA but not by ionomycin. In contrast, purified mast cells stimulated with PMA released low-level ROS, which was entirely due to the contaminating (2%) macrophages, and did not release any detectable ROS in response to ionomycin or OVA at concentrations that induced degranulation. Stimulation of mixed cell populations with PMA to induce macrophage ROS release led to 50% inhibition of serotonin release from mast cells stimulated 5 min later with OVA. The PMA-induced inhibitory factor was identified as hydrogen peroxide. In conclusion, activated rat peritoneal macrophages but not mast cells produce ROS, and macrophage-derived hydrogen peroxide inhibits mast cell degranulation. The latter could be an important mechanism whereby phagocytic cells regulate mast cell activation and promote resolution of IgE-mediated inflammation.  相似文献   

13.
Rat peritoneal mast cells and mast cell granules were evaluated by radioimmunoassay for the presence of beta-thromboglobulin and platelet factor 4. The initial assays indicated that a beta-thromboglobulin cross reacting material was released from mast cells by compound 48/80 in a similar dose-dependent manner as histamine release. The material was also found to be associated with purified granules. However, the use of protease inhibitors in the buffers completely abolished the positive assays. Further evaluation of the effects of various proteases on the beta-thromboglobulin assay indicated that elastase would also generate a false positive assay which could then be neutralized by the use of alpha 1-antitrypsin as a protease inhibitor. There was no protease effect on the platelet factor 4 radioimmunoassay which always showed no detectable amounts with mast cells, granules or proteases. These results clearly indicate the artifactual positive assays which can arise when using certain radioimmunoassay tests in the presence of cell proteases. The use of protease inhibitors is a necessary control when applying a radioimmunoassay to a system with potentially active proteases.  相似文献   

14.
The complex of porcine seminal plasma heterodimers I and II (PSP-I/PSP-II), which are heterodimers of glycosylated spermadhesins, is the major component of porcine seminal fluid. The proinflammatory and immunostimulatory activities of this spermadhesin complex suggest its participation in modulation of the uterine immune activity that may ensure reproductive success. Spermadhesin PSP-I/PSP-II induced the migration of neutrophils into the peritoneal cavity of rats via activation of resident cells. In the present study, we have investigated the involvement of macrophages and mast cells in the neutrophil chemotactic activity of PSP-I/PSP-II and the underlying mechanism. Macrophages and mast cells were isolated, cultured, and stimulated with purified PSP-I/PSP-II. Pharmacological modulation was performed using the glucocorticoid dexamethasone, indomethacin (cyclooxygenase inhibitor), MK886 (leukotriene inhibitor), and the supernatant of spermadhesin-stimulated mast cells. Macrophages stimulated with PSP-I/PSP-II released into the culture supernatant a neutrophil chemotactic substance. This activity was partly inhibited by both dexamethasone (85%) and the supernatant of spermadhesin-stimulated mast cells (74%) but not by indomethacin and MK886. An anti-tumor necrosis factor (TNF) alpha antibody neutralized (by 68%) the neutrophil chemotactic activity of PSP-I/PSP-II-stimulated macrophages. An anti-interleukin (IL)-4 antibody blocked the inhibitory activity of spermadhesin-stimulated mast cells on release of a neutrophil chemotactic substance by PSP-I/PSP-II-stimulated macrophages. As a whole, these data indicate that the neutrophil migration-inducing ability of spermadhesin PSP-I/PSP-II involves the release of the inflammatory cytokine TNFalpha by stimulated macrophages and that this activity is modulated by the lymphokine IL-4 liberated by mast cells. The balance between these two cytokines may control onset of the local inflammatory reaction, avoiding excessive neutrophil recruitment that would lead to tissue damage.  相似文献   

15.
As part of an ongoing investigation of human mast cell heterogeneity, we have isolated, partially purified, and characterized the uterine mast cell and compared it with mast cells isolated from other organs. The average histamine content of myometrium and leiomyofibroma obtained from hysterectomies was 2.1 +/- 0.3 (mean +/- SEM) microgram/g of tissue (n = 10), and the histamine content of the two tissues did not differ significantly. A mild collagenase, hyaluronidase, and DNase digestion was used to disperse the uterine mast cells, with an average yield of 9.5% (range, 0 to 21%). The average histamine/uterine mast cell was 2.1 +/- 0.2 pg (n = 3), and 61 +/- 7% (n= 3) of the uterine mast cells survived overnight culture. Early purification efforts with Percoll gradients have yielded up to 80% pure uterine mast cells, with an average of 27 +/- 10% (n = 5). Uterine mast cells released histamine in response to the secretogogues anti-IgE and A23187 but did not respond to substance P or to the basophil secretogogues FMLP, C5a, and 12-O-tetradecanoylphorbol-13-acetate. After 1 microgram/ml anti-IgE stimulation, the uterine mast cell appeared to make significant quantities of PGD2 (89 +/- 26 ng/10(6) cells, n = 6) (p less than 0.05), as assayed by RIA. Simultaneously, leukotriene C4 release was 45 +/- 15 ng/10(6) cells, (n = 6) (p less than 0.05), as assayed by RIA. Combined gas-chromatography mass spectroscopy analysis of anti-IgE-stimulated cell supernatants confirmed the production of PGD2. In pharmacologic studies, isobutyl-methylxanthine and isoproterenol blocked anti-IgE-induced histamine release. The uterine mast cell is similar to the lung mast cell in terms of response to secretogogues and release of arachidonic acid metabolites. Ultrastructurally, the uterine mast cell contains scroll granules, crystal granules, combined granules, homogeneously dense granules, and large lipid bodies, many with focal lucencies within them. Particle granules, most frequently present in gut mast cells of mucosal origin, were absent from uterine mast cells. Although certain features are analogous to the ultrastructure of skin or lung mast cells, the combination of structures is distinctive for uterine mast cells.  相似文献   

16.
Lipid bodies are non-membrane-bound, lipid-rich cytoplasmic inclusions that occur in many mammalian cell types. Because lipid bodies are more prominent in cells associated with inflammation and are repositories of arachidonyl-phospholipids, a role for lipid bodies in the oxidative metabolism of arachidonic acid to form eicosanoids has been suggested. To evaluate further whether lipid bodies, in addition to serving as non-membranous sources of substrate arachidonate, are involved in eicosanoid formation, we used cells isolated from human lung to investigate the intracellular localization of prostaglandin endoperoxide (PGH) synthase (cyclooxygenase), the key initial, rate-limiting enzyme in the formation of prostaglandins and thromboxanes. Isolated lung cells containing a mixture of mast cells, alveolar macrophages, Type II alveolar pneumocytes, and neutrophils from short-term cultures were fixed in suspension in a dilute aldehyde mixture, post-fixed in osmium tetroxide, stained en bloc with uranyl acetate, dehydrated in a graded series of alcohols, and embedded in Epon. A post-embedding immunogold procedure was used with a primary PGH synthase monoclonal antibody and 20-nm gold-conjugated secondary antibody to demonstrate enzyme locations. Specificity controls were also done. We found PGH synthase in lipid bodies of human lung mast cells, alveolar macrophages, Type II alveolar pneumocytes, and neutrophils. Specific secretory and lysosomal granules and plasma membranes did not express PGH synthase. Specificity controls, including omission of the primary antibody or substitution with an irrelevant antibody, were negative. Absorption of the specific PGH synthase antibody with purified solid-phase PGH synthase resulted in a marked reduction of label in lipid bodies of all four cell types. These findings establish the presence of PGH synthase in lipid bodies of human lung mast cells, alveolar macrophages, Type II alveolar pneumocytes, and neutrophils and, in concert with previous studies, suggest that these cytoplasmic lipid-rich organelles may be non-membrane sites of eicosanoid formation.  相似文献   

17.
Group II phospholipase A2 was detected in appreciable amounts in rat peritoneal mast cells. The effect of several inhibitors specific to 14-kDa group-II phospholipase A2, including two proteinaceous inhibitors and a product of microorganisms with a low molecular mass, on mast-cell activation was examined. When rat peritoneal mast cells were sensitized with IgE and then challenged with antigen, the specific phospholipase-A2 inhibitors suppressed histamine release in a concentration-dependent manner. By contrast, these inhibitors showed no effect on prostaglandin generation under the same conditions. Histamine release from rat peritoneal mast cells subjected to non-immunochemical stimuli, such as concanavalin A, the Ca2+ ionophore A23187, compound 48/80 and substance P was also suppressed. When rat peritoneal mast cells were treated with 14-kDa-group-II-phospholipase-A2-specific inhibitors, washed and stimulated, histamine release was not affected appreciably. Similar suppressive effects of the inhibitors on histamine release were observed with mouse cultured bone-marrow-derived mast cells. When bone-marrow-derived mast cells were activated, they secreted both a soluble and an ecto-enzyme form of 14-kDa group-II phospholipase A2, although appearance of the enzyme associated with the external surface of cells was observed transiently. An appreciable amount of membrane phospholipids was degraded during activation of mast cells, which was decreased by treatment with 14-kDa-group-II-phospholipase-A2 inhibitor. These observations suggest that degranulation and eicosanoid generation in mast cells are regulated independently by discrete phospholipases A2 and that the 14-kDa group-II phospholipase A2 released from mast cells during activation may play an essential role in the progression of the degranulation process.  相似文献   

18.
The interaction between rat serosal mast cells and low density lipoproteins (LDL) was studied in vitro. When rat 125I-LDL was incubated with mast cells, it was bound to a binding site on the mast cell surface but was not internalized by the cells. Even though 125I-LDL was not internalized, its protein component, apolipoprotein B, was rapidly degraded. The proteolytic activity responsible for the degradation of apolipoprotein B was present in the extracellular fluid of mast cells. It could be shown that the degradation was caused entirely by specific cell organelles of mast cells, the granules, which were spontaneously released into the extracellular fluid during preparation and incubation of the cells. In contrast to uncontrolled spontaneous degranulation, a controlled specific degranulation of mast cells can be induced by treating the cells with the compound 48/80. When increasing amounts of 48/80 were added to mast cell suspensions, a dose-dependent release of granules was observed and an increase in the rate of 125I-LDL degradation resulted. The increase in 125I-LDL degradation closely followed the increase in granule release. Thus, a quantitative relationship between the amount of granules present in the extracellular fluid and the amount of degradation of 125I-LDL could be established. The apolipoprotein part of LDL was extensively degraded by isolated mast cell granules. Analysis by polyacrylamide gel electrophoresis showed that upon incubation of LDL with isolated granules, the apolipoprotein B band rapidly disappeared with simultaneous appearance of several low molecular weight bands. The degradation of 125I-LDL by mast cell granules proceeded optimally at neutral pH and at physiological ionic strength. The results show that mast cell granules are able to efficiently degrade LDL in vitro, once released from mast cells into the extracellular fluid.  相似文献   

19.
Abstract: Mast cells play a central role in both immediate allergic reactions and inflammation. A functional nerve-mast cell interaction has been proposed, given the morphological association between mast cells and neuropeptide-containing peripheral nerves. We now show that purified rat peritoneal mast cells contain large quantities of N -acetylaspartate (NAA; 747.50 nmol/mg of protein). Mast cell levels of NAA were rapidly reduced, by 64.0 and 86.4%, following treatment with compound 48/80 and mastoparan, respectively. These secretagogues strongly decreased mast cell histamine content over the same time period, suggesting also that NAA is stored in secretory granules. The data are the first to show that NAA is present in an immune effector cell type. Because NAA may be involved in myelin synthesis and glutamyl peptide metabolism, NAA released from mast cells following nervous or other stimuli could participate in neuroimmune interactions. Mast cells in multiple sclerosis plaques may contribute to the reported elevations in brain NAA in this disease.  相似文献   

20.
Conjugated avidin binds to mast cell granules   总被引:7,自引:0,他引:7  
The glycoprotein, avidin, conjugated either to the enzyme horseradish peroxidase, or to the fluorochrome dyes, fluorescein or rhodamine, identifies the granules of mast cells in both tissues and cell suspensions. In the absence of prior fixation, mast cells were not identified with conjugated avidin; however, granules released from these cells were stained with this labeled glycoprotein. The specificity of avidin for mast cells was confirmed by the absence of conjugated avidin-positive cells in the skin of mice (S1/S1d) deficient in mature dermal mast cells. Electron microscopic studies confirmed that avidin binds specifically to individual mast cell granules rather than to other cellular structures. Rodent and human mast cells were readily stained with avidin conjugated to horseradish peroxidase or to either of the fluorochrome dyes. The conjugated avidin staining technique is a reliable and simple method for identifying rodent and human mast cells, one that is useful as both an investigative and a clinical tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号