首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
The c-fyn proto-oncogene is a member of a family of closely related genes of which c-src is the prototype. Using peptide antibodies which had been raised against sequences predicted to be specific for the human c-fyn gene product, the c-fyn protein was identified. It is a tyrosine kinase with apparent mol. wt of 59 kd that is also phosphorylated and myristylated. Like pp60c-src and pp62c-yes, pp59c-fyn is able to form a stable complex with middle-T antigen, the transforming protein of polyomavirus. The transformation-defective middle-T mutant NG59, which is unable to associate stably with pp60c-src does not associate with pp59c-fyn. In contrast to pp60c-src, complex formation with middle-T antigen does not lead to a significant increase in the tyrosine kinase activity of pp59c-fyn. These findings lead us to suggest that middle-T mediated transformation may be a consequence of the deregulation of several members of the src-family of protein tyrosine kinases.  相似文献   

2.
The biological and biochemical properties of pp60c-src are regulated, in part, by phosphorylation at Tyr-416 and Tyr-527. The tyrosine kinase and transforming activities of pp60c-src are suppressed by phosphorylation at Tyr-527, whereas full activation of pp60c-src requires phosphorylation at Tyr-416. To test specifically the significance of the negatively charged phosphate moieties on these tyrosine residues, we have substituted the codons for both residues with codons for either Glu or Gln. A negatively charged Glu at position 527 was unable to mimic a phosphorylated Tyr at this position, and, in consequence, the mutated pp60c-src was activated and transforming. Similarly, substitution of Tyr-416 with Glu was unable to stimulate the activities of the enzyme. However, mutagenesis of Tyr-416 to Gln (to form the mutant 416Q) activated the kinase activity approximately twofold over that observed for wild-type pp60c-src. When introduced into the mutant 527F (containing Phe-527 instead of Tyr), the double mutant 416Q-527F exhibited weak transforming activity. This is in contrast to the other double mutants 416E-527F and 416F-527F, which were nontransforming. The biochemical basis by which 416Q activates pp60c-src is not understood but probably involves some local conformational perturbation. Deletion of residues 519 to 524 (RH5), a region previously shown to be necessary for association with middle-T antigen, led to loss of phosphorylation at Tyr-527 and activation of the enzymatic and focus-forming activities of pp60c-src. Hence, the sequences necessary for complex formation with middle-T antigen may also be required by the kinase(s) which phosphorylates Tyr-527 in vivo. This suggests that normal cells contain cellular proteins which are analogous to middle-T antigen and whose action regulates the activity of pp60c-src by controlling phosphorylation or dephosphorylation at residue 527.  相似文献   

3.
The complex of polyoma virus middle-T antigen and pp60c-src.   总被引:44,自引:7,他引:37       下载免费PDF全文
We have recently proposed that the transforming protein of polyoma virus, middle-T antigen, forms a complex with pp60c-src. Here we provide additional evidence for the existence of the complex using both monoclonal antibodies specific for middle-T and antibodies raised against synthetic peptides corresponding to sequences from both middle-T and pp60c-src. The complex was retained during partial purification of middle-T and was stable to incubation under various conditions. A survey of a number of mutants of middle-T antigen showed that there was a complete correlation between the ability of middle-T to accept phosphate in the in vitro kinase reaction and the presence of a middle-T: pp60c-src complex. This result is in accord with our hypothesis that middle-T itself is not a protein kinase but rather that pp60c-src phosphorylates middle-T. All mutant forms of middle-T antigen capable of transformation had associated pp60c-src. The middle-T of two non-transforming mutants (hr-t mutants) did not have associated pp60c-src, whereas other non-transforming middle-T species did associate with pp60c-src. We propose that the complex plays an essential role in transformation by polyoma virus, but that the existence of the complex per se may not be sufficient.  相似文献   

4.
The transforming activity of polyoma virus middle-T antigen is believed to be dependent on its ability to form a complex with the cellular tyrosine protein kinase, pp60c-src. This hypothesis is based on observations of mutants of middle-T which demonstrated a correlation between these two activities. To investigate further the significance of pp60c-src association in transformation by middle-T, a series of deletion and point mutants were constructed around the NG59 lesion since this region has been implicated in pp60c-src binding. Analysis of the middle-T variants revealed a complete correlation between the presence of associated activated pp60c-src and the ability to transform. Further, this ability of pp60c-src to associate with middle-T may depend on the presence of a beta-turn between amino acids 177 and 180. The results indicate the NG59 phenotype results from the introduction of an isoleucine residue between amino acids 177 and 178 rather than the transition mutation at 179. The mutant MG1 is a single point mutation (at residue 180) and represents the smallest change in the middle-T which abolishes both the transformating and kinase activity of middle-T. Taken together, the data suggest the region surrounding the NG59 lesion is involved in the formation of an active complex between middle-T and pp60c-src and strongly suggest that this association is an absolute requirement for polyoma virus-induced transformation.  相似文献   

5.
Polyomavirus middle-T antigen contains a contiguous sequence of 22 hydrophobic amino acids near the carboxyl terminus, which is the putative membrane-binding domain of the protein. The DNA encoding this region was mutated to form a series of deletions, insertions, and substitutions called RX mutants. The phenotypes of these mutants fall into three groups based on the transforming and biochemical properties of their encoded proteins. The first group, with deletions outside but proximal to the hydrophobic domain, displayed an essentially wild-type phenotype. A second group, with extensive deletions within the region encoding the hydrophobic domain, expressed middle-T species which did not fractionate with cellular membranes or associate with pp60c-src and which were defective in their ability to transform. A third group of mutants with more subtle predicted alterations in the hydrophobic domain were wild type for the biochemical parameters investigated but were unable to transform cultured rodent cells. These observations are consistent with previous findings that membrane association plays an important role in transformation by middle-T and that, whereas association between middle-T and pp60c-src is a necessary correlate of transformation, it is not sufficient. A comparison of murine polyomavirus middle-T and a newly described hamster papovavirus putative middle-T revealed a strong homology between their respective hydrophobic-domain amino acid sequences. This homology is not observed in the anchorage domains of other model proteins, and this may imply that the middle-T hydrophobic domain is important in transformation for reasons other than simple membrane association.  相似文献   

6.
A large number of mutations were introduced into the carboxy-terminal domain of pp60c-src. The level of phosphorylation on Tyr-416 and Tyr-527, the transforming activity (as measured by focus formation on NIH 3T3 cells), kinase activity, and the ability of the mutant pp60c-src to associate with the middle-T antigen of polyomavirus were examined. The results indicate that Tyr-527 is a major carboxy-terminal element responsible for regulating pp60c-src in vivo. A good but not perfect correlation exists between lack of phosphorylation at Tyr-527 and increased phosphorylation at Tyr-416, between elevated phosphorylation on Tyr-416 and activated kinase activity, and between activated kinase activity and transforming activity. Phosphorylation of Tyr-527 was insensitive to the mutation of adjacent residues, indicating that the primary sequence only has a minor role in recognition by kinases or phosphatases which regulate it in vivo. Three mutants which have in common a modified Glu-524 residue were phosphorylated on Tyr-416 and Tyr-527 and were weakly transforming. This suggests that other mechanisms besides complete dephosphorylation of Tyr-527 can lead to increased phosphorylation of Tyr-416 and activation of the transforming activity of pp60c-src. Furthermore, the residues between Asp-518 and Pro-525 were required to form a stable complex with middle-T antigen. The proximity of these sequences to Tyr-527 suggests a model in which middle-T activates pp60c-src by binding directly to this region of the molecular and thereby preventing phosphorylation of Tyr-527. Alternatively, middle-T binding may mediate a conformational change in this region, which in turn induces an alteration in the level of phosphorylation at Tyr-527 and Tyr-416.  相似文献   

7.
Tyrosine residues of middle-T and tyrosine phosphorylation are thought to be important in the transformation of cultured rodent cells by polyomavirus. Of the potential tyrosine sites in the carboxyl-terminal half of middle-T, tyrosines 297, 315, and 322 have been studied previously, whereas tyrosine 250 has not. Two mutant plasmids, XD121 and pT250, encode polyomavirus middle-T species in which the tyrosine 250 residue is affected. XD121 is a deletion mutant in which the region encoding tyrosine 250, together with three adjacent amino acids, is deleted, whereas pT250 is a point mutant in which the tyrosine 250 codon has been converted to a phenylalanine codon. The plasmids were handicapped in transforming ability, as judged by focus formation on a monolayer of Rat-1 cells. Both demonstrated a reduction in the number of foci produced and a lag in the time of appearance of foci when compared with wild-type plasmid. The importance of residue 250 in this phenotype was indicated by the observation that plasmids containing multiple mutations proximal to the tyrosine 250 codon were wild type in their transforming ability. Furthermore, a revertant of pT250 (pT250-w.t.), which utilized the alternative tyrosine codon of TAC, was shown to regain full transforming activity. A combined-mutant plasmid, pTH, encodes a middle-T species in which both tyrosines 250 and 315 are converted to phenylalanine. This plasmid was totally defective in the transformation of rodent cells in a focus formation assay; however, it did impart a small measure of anchorage-independent growth when the encoded protein was expressed in NIH 3T3 cells. The in vitro kinase activity and pp60c-src association of the mutant middle-T antigens were examined. These assays demonstrated a reduction in phosphate acceptor activity for the middle-T species encoded by pT250 and pTH. Quantitative kinase assays showed that all of the tyrosine-mutant middle-T species, encoded by pAS131 (containing the tyrosine 315 codon-to-phenylalanine codon mutation), pT250, and pTH, were able to enhance pp60c-src kinase activity but only at levels which were intermediate and which reflected their transforming abilities relative to wild type.  相似文献   

8.
A p60K protein in human colon adenocarcinoma tumor cell lines was identified as a myristoylated pp60c-src by fluorography and radioimmunoprecipitation analysis. Prevention of the myristoylation of pp60c-src was determined with N-fatty acyl glycinal compounds. Of the compounds tested, N-myristoyl glycinal diethylacetal, N-lauroyl glycinal diethylacetal, N-myristoyl glycyl glycinal diethylacetal, and N-myristoyl-4-aminobutyl-aldehyde diethylacetal strongly blocked the myristoylation, but N-decanoyl glycinal diethylacetal and N-palmitoyl glycinal diethylacetal did not. The myristoyl blocking compounds depressed colony formation, cell proliferation, and specific localization to the plasma membrane of pp60c-src. The results taken together suggest that myristoylation of the c-src oncogene product may be very important for tumorigenicity of c-src gene expressed cells.  相似文献   

9.
Polyomavirus middle T antigen (MT) is the major transforming protein of the virus. It functions through interactions with a number of cellular proteins involved in cell proliferation. MT forms complexes with protein phosphatase 2A (PP2A), pp60c-src, phosphatidylinositol 3-kinase, and Shc. We introduced both deletion and point mutations into three regions of MT and examined their ability to associate with PP2A and pp60c-src. The first 25 amino acid residues of MT are required for association with PP2A and pp60c-src. Amino acids 105 to 111, comprising the sequence Cys-Arg-Met-Pro-Leu-Thr-Cys, is also required for complex formation between MT and PP2A. However, the sequence Asp-Lys-Gly-Gly (amino acids 44 to 47), also found in the B subunit of PP2A, is dispensable for complex formation between MT and PP2A. We find a strict correlation between the ability of MT to associate with PP2A and the ability of MT to associate with pp60c-src. One mutant, L5E, associates with a phosphatase other than PP2A, pp60c-src, and phosphatidylinositol 3-kinase in a manner similar to that of wild-type MT yet is reduced in its transforming ability on NIH 3T3 cells.  相似文献   

10.
The transforming protein of polyomavirus, middle T (mT), forms a complex with two cellular enzymes: the protein tyrosine kinase pp60c-src and a phosphatidylinositol (PtdIns) 3-kinase. A mutant virus, Py1178T, encodes an mT protein which associates with and activates pp60c-src to the same extent as the wild type but fails to associate with PtdIns 3-kinase. To investigate relationships between activation of pp60c-src, association of PtdIns 3-kinase, and cellular levels of the second messenger inositol 1,4,5-trisphosphate (InsP3), we examined the effects of wild-type and mutant mT proteins on inositol metabolism in rat and mouse fibroblasts. Expression of either wild-type or 1178T mT caused a 300 to 500% increase in the InsP3 level. Cells transformed by Rous sarcoma virus also showed similar increases in InsP3 levels. Mutant mT proteins which failed to activate pp60c-src (NG59 and 1387T) had no effect on InsP3 levels. Pulse-chase experiments with [3H]inositol showed that the turnover of phosphoinositides was increased in cells transformed by either wild-type polyomavirus or Py1178T as compared with the normal parent cell line. The turnover of inositol phosphates was unchanged upon transformation. These data indicate that cells expressing either wild-type or mutant 1178T mT or pp60v-src exhibit elevated levels of InsP3 because of activation of phospholipase C. This activation appears to depend, directly or indirectly, upon activation of pp60src protein kinase activity. Activation of pp60c-src and elevation of InsP3 content are not sufficient for full transformation. Full transformation also requires the association of mT-pp60c-src complexes with PtdIns 3-kinase.  相似文献   

11.
To examine how amino acid sequences outside of the catalytic domain of pp60c-src influence the functional activity of this protein, we have introduced deletion mutations within the amino-terminal half of pp60c-src. These mutations caused distinct changes in the biochemical properties of the c-src gene products and in the properties of cells infected with retroviruses carrying these mutant c-src genes. Cells expressing the c-srcNX protein, which contains a deletion of amino acids 15 to 89, displayed a refractile, spindle-shaped morphology, formed intermediate-sized, tightly packed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Thus, deletion of amino acids 15 to 89 can activate the kinase activity and transforming potential of the c-src gene product. Deletion of amino acids 112 to 225, however, did not increase the kinase activity or transforming ability of pp60c-src; indeed, deletion of these sequences in c-srcHP suppressed phenotypic alterations induced by pp60c-src. Cells expressing the c-srcNP or c-srcBS gene products (containing deletions of amino acids 15 to 225 and 55 to 169, respectively) displayed a fusiform, refractile morphology and formed diffuse colonies in soft agar; the mutant proteins displayed an increased in vitro protein-tyrosine kinase activity. However, only a few cellular proteins contained elevated levels of phosphotyrosine in vivo. Thus, deletions downstream of amino acid 89 severely restricted the ability of c-src to phosphorylate cellular substrates in vivo without affecting the intrinsic tyrosine kinase activity of the c-src gene product. These results suggest the existence of at least two modulatory regions within the amino-terminal half of pp60c-src that are important for the regulation of tyrosine kinase activity and for the interaction of pp60c-src with cellular substrates.  相似文献   

12.
We have previously found that Rous sarcoma virus variants in which the viral src (v-src) gene is replaced by the cellular src (c-src) gene have no transforming activity. In this study, we analyzed the basis for the inability of the p60c-src overproduced by these variants to transform cells. Phosphorylations of tyrosine residues in total cell protein or in cellular 34K protein are known to be markedly enhanced upon infection with wild-type Rous sarcoma virus. We found that these tyrosine phosphorylations were only slightly increased in the c-src-containing virus-infected cells, whereas both levels were significantly increased by infection with wild-type Rous sarcoma virus, or transforming mutant viruses which are derived from c-src-containing viruses by spontaneous mutation. Phosphorylation at tyrosine 416 of p60 itself was also extremely low in overproduced p60c-src and high in p60s of transforming mutant viruses. In immunoprecipitates with monoclonal antibody, the overproduced p60c-src had much lower casein tyrosine kinase activity than did p60v-src. We previously showed that p60 myristylation and plasma membrane localization may be required for cell transformation. p60c-src was similar to transforming p60s in these properties. These results strongly suggest that the low level of tyrosine phosphorylation by overproduced p60c-src accounts for its inability to transform cells.  相似文献   

13.
Phosphorylation at tyrosine 527 of the proto-oncogene product, pp60c-src, has been proposed to decrease the tyrosine kinase activity of the enzyme. We have investigated potential factors that might influence phosphorylation at this site by making mutant variants of the pp60c-src protein. By effectively eliminating the site of N-terminal myristylation, we demonstrated that stable membrane association is not necessary for tyrosine 527 phosphorylation. Furthermore, mutational elimination of the enzymatic activity of this mutant pp60c-src protein did not alter the efficiency of phosphorylation at tyrosine 527. These data are consistent with the proposal that pp60c-src may be phosphorylated at tyrosine 527 by a cellular tyrosine kinase distinct from pp60c-src. In addition, using detergent-permeabilized cells, we established conditions that allow efficient phosphorylation of tyrosine 527 in vitro.  相似文献   

14.
The majority of the carboxy-terminal half of polyomavirus middle-T antigen has been variously mutated and, with the exception of the putative membrane-binding domain (amino acids 394 to 415), was found to be largely dispensible for the transforming activity of the protein. A comparison of the small-T antigen amino acid sequences (equivalent to the region of middle-T encoded by exon 1) of simian virus 40, BK virus, polyomavirus, and a recently described hamster papovavirus highlighted regions of potential interest in mapping functions to the amino-terminal half of polyomavirus middle-T antigen. The regions of interest include amino acids 168 to 191 (previously investigated by this group [S. H. Cheng, W. Markland, A. F. Markham, and A. E. Smith, EMBO J. 5:325-334, 1986]), two cysteine-rich clusters (amino acids 120 to 125 and 148 to 153), and amino acids 92 to 117 (within the limits of the previously described hr-t mutant, SD15). Point mutations, multiple point mutations, and deletions were made by site-specific and site-directed mutagenesis within the cysteine-rich clusters and residues 92 to 117. Studies of the transforming ability of the altered middle-T species demonstrated that this activity is highly sensitive to amino acid changes. All four regions (as defined above) within the amino-terminal half of middle-T have now been studied in detail. The phenotype of the mutants is predominantly transformation defective, and the corresponding variant middle-T species are characterized by being either totally or severely handicapped in the ability to associate actively with pp60c-src. Whether the mutations affect the regions of interaction between middle-T and pp60c-src or simply interfere with the overall conformation of this domain is not known. However, there would appear to be a conformational constraint on this portion of the molecule with regard to its interaction with pp60c-src and by extension to the ability of the middle-T species to transform.  相似文献   

15.
We introduced two mutations into the carboxy-terminal regulatory region of chicken pp60c-src. One, F527, replaces tyrosine 527 with phenylalanine. The other, Am517, produces a truncated pp60c-src protein lacking the 17 carboxy-terminal amino acids. Both mutant proteins were phosphorylated at tyrosine 416 in vivo. The specific activity of the Am517 mutant protein kinase was similar to that of wild-type pp60c-src whereas that of the F527 mutant was 5- to 10-fold higher. Both mutant c-src genes induced focus formation on NIH 3T3 cells, but the foci appeared at lower frequency, and were smaller than foci induced by polyoma middle tumor antigen (mT). The wild-type or F527 pp60c-src formed a complex with mT, whereas the Am517 pp60c-src did not. The results suggest that one, inability to phosphorylate tyrosine 527 increases pp60c-src protein kinase activity and transforming ability; two, transformation by mT involves other events besides lack of phosphorylation at tyrosine 527 of pp60c-src; three, activation of the pp60c-src protein kinase may not be required for transformation by the Am517 mutant; and four, the carboxyl terminus of pp60c-src appears to be required for association with mT.  相似文献   

16.
Phosphoinositide kinase activity and transformation   总被引:1,自引:0,他引:1  
We have used the DNA tumor virus polyoma as a model system to examine whether the phosphatidylinositol (PI) turnover pathway is a critical target for transforming gene products. Polyoma-infected cells show elevated levels of polyphosphoinositides and polyphosphoinositols, and a PI kinase activity is associated with middle T antigen, a transforming gene product of polyoma virus. In anti-T immunoprecipitates from polyoma-infected or -transformed cells, comparisons of wild-type and polyoma mutants defective for transformation show a strong correlation between middle T-associated PI kinase activity and transforming ability. Middle T has previously been found to associate at the plasma membrane with pp60 c-src and to activate it as a tyrosine kinase. c-src itself does not appear to phosphorylate PI; however, the middle T/pp60 c-src tyrosine kinase activity may be important for activation of PI kinase. Ammonium orthovanadate, a tyrosine phosphatase inhibitor, elevates the middle T/pp60 c-src-associated PI kinase activity. We propose that middle T/pp60 c-src activates a PI kinase and modulates PI turnover in vivo by tyrosine phosphorylation.  相似文献   

17.
Interaction between the heterodimeric form of protein phosphatase 2A (PP2A) and polyomavirus middle T antigen (MT) is required for the subsequent assembly of a transformation-competent MT complex. To investigate the role of PP2A catalytic activity in MT complex formation, we undertook a mutational analysis of the PP2A 36-kDa catalytic C subunit. Several residues likely to be involved in the dephosphorylation mechanism were identified and mutated. The resultant catalytically inactive C subunit mutants were then analyzed for their ability to associate with a cellular (B subunit) or a viral (MT) B-type subunit. Strikingly, while all of the inactive mutants were severely impaired in their interaction with B subunit, most of these mutants formed complexes with polyomavirus MT. These findings indicate a potential role for these catalytically important residues in complex formation with cellular B subunit, but not in complex formation with MT. Transformation-competent MT is known to associate with, and modulate the activity of, several cellular proteins, including pp60(c-src) family kinases. To determine whether association of MT with an active PP2A A-C heterodimer is necessary for subsequent association with pp60(c-src), catalytically inactive C subunits were examined for their ability to form complexes containing pp60(c-src) in MT-expressing cells. Two catalytically inactive C subunit mutants that efficiently formed complexes with MT also formed complexes that included an active pp60(c-src) kinase, demonstrating that PP2A activity is not essential in cis in MT complexes for subsequent pp60(c-src) association.  相似文献   

18.
Middle T antigen (MT) of polyomavirus causes transformation by associating with a number of cellular proteins. The association with and activation of two such proteins, phosphatidylinositol 3-kinase (PI 3-kinase) and pp60c-src, appears to be necessary for transformation by MT. The tyrosine kinase activity of MT-associated pp60c-src is significantly increased when assayed in vitro, and levels of phosphotyrosine-containing proteins are elevated in vivo. Similarly, levels of the PI 3-kinase products phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2] and phosphatiylinositol-3,4,5-trisphosphate [PI(3,4,5)P3] are constitutively elevated in MT-transformed cells. However, the formation of a complete MT/cellular protein complex and the activation of tyrosine kinase are not sufficient to cause transformation, since the transformation-defective mutants 248m and dl1015 associate with all wild-type MT-associated proteins, including PI 3-kinase and pp60c-src, and neither mutant appears to be defective in MT-associated tyrosine kinase activity. Studies presented here compared (i) the amount of PI 3-kinase activity associated with the MT complex and (ii) levels of [3H]inositol incorporation into PI 3-kinase products in cells expressing mutant or wild-type MT. The results show that dl1015 is defective in both assays, whereas 248m is defective only for incorporation of [3H]inositol into PI(3,4,5)P2 and PI(3,4)P3. These findings identify a biochemical defect in the 248m mutant and corroborate previous results correlating transformation and elevated levels of PI 3-kinase products in vivo. In addition, they indicate that PI 3-kinase product levels are affected by factors other than simply the amount of PI 3-kinase activity associated with the MT complex.  相似文献   

19.
We have examined the effect of polyoma virus infection of primary mouse embryo cells on the tyrosyl kinase activity associated with the cellular src gene product, pp60c-src. The results of our studies demonstrate that infection of mouse cells with wild-type polyoma virus or viral mutants capable of transforming rodent cells in culture and inducing tumors in animals results in the stimulation of pp60c-src tyrosyl kinase activity. The level of pp60c-src kinase stimulation in infected cells was found to be proportional to both the oncogenic potential of the virus strain used for infection and the characteristic phenotype of rodent cells transformed by the various strains of polyoma virus. Stimulation of pp60c-src kinase activity was not observed in mouse cells infected with transformation-defective strains of polyoma virus. In examining the kinetics of pp60c-src kinase stimulation in mouse cells at various times following wild-type polyoma virus infection, we found that the level of pp60c-src kinase activity correlated directly with the synthesis of polyoma virus-encoded tumor antigens. By comparing wild-type polyoma virus with other viral mutants in these experiments, we conclude that the stimulation of pp60c-src kinase activity in mouse cells following polyoma virus infection is associated with the synthesis of middle tumor antigen.  相似文献   

20.
pp60c-src is developmentally regulated in the neural retina   总被引:60,自引:0,他引:60  
L K Sorge  B T Levy  P F Maness 《Cell》1984,36(2):249-257
We have localized normal cellular pp60c-src in the developing chick neural retina by immunocytochemical staining using antisera raised against bacterially expressed pp60v-src, the src gene product of Rous sarcoma virus. pp60c-src was expressed in developing retinal neurons at the onset of differentiation. Expression of pp60c-src persisted in mature neuronal cells that were postmitotic, fully differentiated, and functional. pp60c-src immunoreactivity was localized within processes and cell bodies of ganglion neurons, processes of rods and cones, and in some but not all neurons of the inner nuclear layer. Protein kinase assays and Western transfer analyses identified the immunoreactive protein as pp60c-src, and confirmed that its expression occurs at the time the first neuronal cells in the retina differentiate. We conclude from these studies that pp60c-src is the product of a developmentally regulated gene that is more important in neuronal differentiation or function than cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号