首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In plant cells, Ca2+ is required for both structural and biophysical roles. In addition, changes in cytosolic Ca2+ concentration ([Ca2+]cyt) orchestrate responses to developmental and environmental signals. In many instances, [Ca2+]cyt is increased by Ca2+ influx across the plasma membrane through ion channels. Although the electrophysiological and biochemical characteristics of Ca2+-permeable channels in the plasma membrane of plant cells are well known, genes encoding putative Ca2+-permeable channels have only recently been identified. By comparing the tissue expression patterns and electrophysiology of Ca2+-permeable channels in the plasma membrane of root cells with those of genes encoding candidate plasma membrane Ca2+ channels, the genetic counterparts of specific Ca2+-permeable channels can be deduced. Sequence homologies and the physiology of transgenic antisense plants suggest that the Arabidopsis AtTPC1 gene encodes a depolarisation-activated Ca2+ channel. Members of the annexin gene family are likely to encode hyperpolarisation-activated Ca2+ channels, based on their corresponding occurrence in secretory or elongating root cells, their inhibition by La3+ and nifedipine, and their increased activity as [Ca2+]cyt is raised. Based on their electrophysiology and tissue expression patterns, AtSKOR encodes a depolarisation-activated outward-rectifying (Ca2+-permeable) K+ channel (KORC) in stelar cells and AtGORK is likely to encode a KORC in the plasma membrane of other Arabidopsis root cells. Two candidate gene families, of cyclic-nucleotide gated channels (CNGC) and ionotropic glutamate receptor (GLR) homologues, are proposed as the genetic correlates of voltage-independent cation (VIC) channels.  相似文献   

2.
This review explores the relationships between electrical long-distance signalling, Ca2+ influx coincident with propagation of electropotential waves, and cellular responses to Ca2+ influx including the consequences for sieve-tube conductivity and mass flow. Ca2+ influx is inherent to electropotential waves and appears to constitute the key link between rapid physical signals and resultant chemical cascades in sieve tubes and adjacent cells. Members of several channel groups are likely involved the regulation of Ca2+ levels in sieve elements. Among them are hyperpolarization-activated, depolarization-activated, and mechanosensitive Ca2+ channels located in the plasma membrane and Ca2+ dependent Ca2+ channels that reside in ER-membranes of sieve elements. These channels collectively determine intracellular Ca2+ levels in sieve elements and their neighbour cells. The latter cells react to Ca2+ elevation by inducing diverse functional responses dependent on the cell type. If the Ca2+ concentration in sieve elements surpasses a threshold level, dual sieve-plate occlusion by proteins and callose deposition is triggered. Occlusion is reversed when Ca2+ levels subside. Electrical messages may regulate the degree of sieve plate hydraulic conductivity in intact plants by partial sieve-plate occlusion that has a major impact on volume flow through sieve tubes. Furthermore, complete but temporary occlusion of sieve tubes may modify mass flow patterns in intact plants.  相似文献   

3.
In the last 15 years, remarkable progress has been realized in identifying the genes that encode the ion-transporting proteins involved in exocrine gland function, including salivary glands. Among these proteins, Ca2+-dependent K+ channels take part in key functions including membrane potential regulation, fluid movement and K+ secretion in exocrine glands. Two K+ channels have been identified in exocrine salivary glands: (1) a Ca2+-activated K+ channel of intermediate single channel conductance encoded by the KCNN4 gene, and (2) a voltage- and Ca2+-dependent K+ channel of large single channel conductance encoded by the KCNMA1 gene. This review focuses on the physiological roles of Ca2+-dependent K+ channels in exocrine salivary glands. We also discuss interesting recent findings on the regulation of Ca2+-dependent K+ channels by protein–protein interactions that may significantly impact exocrine gland physiology.  相似文献   

4.
高海波  张淑静  沈应柏 《生态学报》2012,32(20):6520-6526
植物对昆虫取食活动进行成功防御的关键,取决于对昆虫口腔反吐物的激发子的快速识别。实验利用无损伤微测系统及激光共聚焦显微镜,研究了沙冬青细胞经灰斑古毒蛾口腔反吐物诱导后Ca2+流及H2O2的变化。结果发现:灰斑古毒蛾口腔反吐物诱导沙冬青细胞Ca2+内流及H2O2的积累,表明Ca2+内流及H2O2的积累是沙冬青细胞对口腔反吐物产生应答的早期响应事件;Ca2+钙通道阻断剂仅部分抑制Ca2+内流,说明Ca2+内流除经过质膜上的Ca2+通道进入细胞外,尚存在其他的内流途径;灰斑古毒蛾口腔反吐物中的某些成分与沙冬青细胞的质膜结合后,诱导质膜上形成允许Ca2+通过的孔道,而GdCl3不能抑制这类孔道的活性。胞外Ca2+螯合剂EGTA完全抑制H2O2的积累,GdCl3预处理仅部分抑制了H2O2的积累,说明灰斑古毒蛾诱导的沙冬青细胞内H2O2的积累依赖于Ca2+内流;抑制剂实验表明,H2O2的积累主要来源于质膜上NADPH氧化酶的作用。  相似文献   

5.
6.
7.
The TRIC channel subtypes, namely TRIC-A and TRIC-B, are intracellular monovalent cation-specific channels and likely mediate counterion movements to support efficient Ca2+ release from the sarco/endoplasmic reticulum. Vascular smooth muscle cells (VSMCs) contain both TRIC subtypes and two Ca2+ release mechanisms; incidental opening of ryanodine receptors (RyRs) generates local Ca2+ sparks to induce hyperpolarization and relaxation, whereas agonist-induced activation of inositol trisphosphate receptors produces global Ca2+ transients causing contraction. Tric-a knock-out mice develop hypertension due to insufficient RyR-mediated Ca2+ sparks in VSMCs. Here we describe transgenic mice overexpressing TRIC-A channels under the control of a smooth muscle cell-specific promoter. The transgenic mice developed congenital hypotension. In Tric-a-overexpressing VSMCs from the transgenic mice, the resting membrane potential decreased because RyR-mediated Ca2+ sparks were facilitated and cell surface Ca2+-dependent K+ channels were hyperactivated. Under such hyperpolarized conditions, L-type Ca2+ channels were inactivated, and thus, the resting intracellular Ca2+ levels were reduced in Tric-a-overexpressing VSMCs. Moreover, Tric-a overexpression impaired inositol trisphosphate-sensitive stores to diminish agonist-induced Ca2+ signaling in VSMCs. These altered features likely reduced vascular tonus leading to the hypotensive phenotype. Our Tric-a-transgenic mice together with Tric-a knock-out mice indicate that TRIC-A channel density in VSMCs is responsible for controlling basal blood pressure at the whole-animal level.  相似文献   

8.
9.
10.
11.
An increased concentration of cytosolic calcium ions (Ca2+) is an early response by plant cells to heat shock. However, the molecular mechanism underlying the heat‐induced initial Ca2+ response in plants is unclear. In this study, we identified and characterized a heat‐activated Ca2+‐permeable channel in the plasma membrane of Arabidopsis thaliana root protoplasts using reverse genetic analysis and the whole‐cell patch‐clamp technique. The results indicated that A. thaliana cyclic nucleotide‐gated ion channel 6 (CNGC6) mediates heat‐induced Ca2+ influx and facilitates expression of heat shock protein (HSP) genes and the acquisition of thermotolerance. GUS and GFP reporter assays showed that CNGC6 expression is ubiquitous in A. thaliana, and the protein is localized to the plasma membrane of cells. Furthermore, it was found that the level of cytosolic cAMP was increased by a mild heat shock, that CNGC6 was activated by cytosolic cAMP, and that exogenous cAMP promoted the expression of HSP genes. The results reveal the role of cAMP in transduction of heat shock signals in plants. The correlation of an increased level of cytosolic cAMP in a heat‐shocked plant with activation of the Ca2+ channels and downstream expression of HSP genes sheds some light on how plants transduce a heat stimulus into a signal cascade that leads to a heat shock response.  相似文献   

12.
Two-pore channels (TPCs) are cation channels with a voltage-sensor domain conserved in plants and animals. Rice OsTPC1 is predominantly localized to the plasma membrane (PM), and assumed to play an important role as a Ca2+-permeable cation channel in the regulation of cytosolic Ca2+ rise and innate immune responses including hypersensitive cell death and phytoalexin biosynthesis in cultured rice cells triggered by a fungal elicitor, xylanase from Trichoderma viride. In contrast, Arabidopsis AtTPC1 is localized to the vacuolar membrane (VM). To gain further insights into the intracellular localization of OsTPC1, we stably expressed OsTPC1-GFP in tobacco BY-2 cells. Confocal imaging and membrane fractionation revealed that, unlike in rice cells, the majority of OsTPC1-GFP fusion protein was targeted to the VM in tobacco BY-2 cells. Intracellular localization and functions of the plant TPC family is discussed.  相似文献   

13.
The presence of Ca2+-activated Cl currents (ICl(Ca)) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca2+]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with ICl(Ca). Two distinct ICl(Ca) are characterized in VSMCs; the cGMP-dependent ICl(Ca) dependent upon bestrophin expression and the ‘classical’ Ca2+-activated Cl current, which is bestrophin-independent. Interestingly, TMEM16A is essential for both the cGMP-dependent and the classical ICl(Ca). Furthermore, TMEM16A has a role in arterial contraction while bestrophins do not. TMEM16A’s role in the contractile response cannot be explained however only by a simple suppression of the depolarization by Cl channels. It is suggested that TMEM16A expression modulates voltage-gated Ca2+ influx in a voltage-independent manner and recent studies also demonstrate a complex role of TMEM16A in modulating other membrane proteins.  相似文献   

14.
Large-conductance Ca-activated potassium channels (BK channels) are uniquely sensitive to both membrane potential and intracellular Ca2+. Recent work has demonstrated that in the gating of these channels there are voltage-sensitive steps that are separate from Ca2+ binding steps. Based on this result and the macroscopic steady state and kinetic properties of the cloned BK channel mslo, we have recently proposed a general kinetic scheme to describe the interaction between voltage and Ca2+ in the gating of the mslo channel (Cui, J., D.H. Cox, and R.W. Aldrich. 1997. J. Gen. Physiol. In press.). This scheme supposes that the channel exists in two main conformations, closed and open. The conformational change between closed and open is voltage dependent. Ca2+ binds to both the closed and open conformations, but on average binds more tightly to the open conformation and thereby promotes channel opening. Here we describe the basic properties of models of this form and test their ability to mimic mslo macroscopic steady state and kinetic behavior. The simplest form of this scheme corresponds to a voltage-dependent version of the Monod-Wyman-Changeux (MWC) model of allosteric proteins. The success of voltage-dependent MWC models in describing many aspects of mslo gating suggests that these channels may share a common molecular mechanism with other allosteric proteins whose behaviors have been modeled using the MWC formalism. We also demonstrate how this scheme can arise as a simplification of a more complex scheme that is based on the premise that the channel is a homotetramer with a single Ca2+ binding site and a single voltage sensor in each subunit. Aspects of the mslo data not well fitted by the simplified scheme will likely be better accounted for by this more general scheme. The kinetic schemes discussed in this paper may be useful in interpreting the effects of BK channel modifications or mutations.  相似文献   

15.
PHB(polyP) complexes bind calcium and form calcium channels in the cytoplasmic membrane in Escherichia coli and are likely to be important in Ca2+ homeostasis in this organism. E. coli N43, which lacks the AcrA component of a major multidrug resistance pump, was shown to be defective in calcium handling, with an inability to maintain submicromolar levels of free Ca2+ in the cytoplasm. Therefore, using an N-phenyl-1-napthylamine (NPN)-dependent fluorescence assay, we measured temperature-dependent phase transitions in the membranes of intact cells. These transitions specifically depend on the presence of PHB(Ca2+polyP) complexes. PHB(Ca2+polyP) channel complexes, particularly in stationary phase cultures, were detected in wild-type strains; however, in contrast, isogenic acrA strains had greatly reduced amounts of the complexes. This indicates that the AcrAB transporter may have a novel, hitherto undetected physiological role, either directly in the membrane assembly of the PHB complexes or the transport of a component of the membrane, which is essential for assembly of the complexes into the membrane. In other experiments, we showed that the particular defective calcium handling detected in N43 was not due to the absence of AcrA but to other unknown factors in this strain.  相似文献   

16.
The second messenger NAADP triggers Ca2+ release from endo-lysosomes. Although two-pore channels (TPCs) have been proposed to be regulated by NAADP, recent studies have challenged this. By generating the first mouse line with demonstrable absence of both Tpcn1 and Tpcn2 expression (Tpcn1/2−/−), we show that the loss of endogenous TPCs abolished NAADP-dependent Ca2+ responses as assessed by single-cell Ca2+ imaging or patch-clamp of single endo-lysosomes. In contrast, currents stimulated by PI(3,5)P2 were only partially dependent on TPCs. In Tpcn1/2−/− cells, NAADP sensitivity was restored by re-expressing wild-type TPCs, but not by mutant versions with impaired Ca2+-permeability, nor by TRPML1. Another mouse line formerly reported as TPC-null likely expresses truncated TPCs, but we now show that these truncated proteins still support NAADP-induced Ca2+ release. High-affinity [32P]NAADP binding still occurs in Tpcn1/2−/− tissue, suggesting that NAADP regulation is conferred by an accessory protein. Altogether, our data establish TPCs as Ca2+-permeable channels indispensable for NAADP signalling.  相似文献   

17.
In the bright fields, stomata of the plants are fully opened to raise the transpiration rate and CO2 uptake required for photosynthesis. Stomatal opening is driven by the activation of plasma membrane H+-ATPase and K+in channels, and the Ca2+-dependent inactivation and blockage of both components were supposed to be inevitable function to regulate the stomatal aperture. Although, it is still obscure how these activities are regulated at the open state. Application of an amphipathic membrane creator, trinitrophenol (TNP), instantly generates the convex curvature in the plasma membrane, which occurs in the phases of stomatal opening and closure. TNP surely activates mechanosensitive Ca2+-permeable channels and attenuates the promotion of stomatal opening, but does not inhibit and promote stomatal closure. These results suggest that activation of mechanosensitive Ca2+-permeable channels regulates the opening phase of stomata in plants.  相似文献   

18.
Otacilio C. Moreira 《BBA》2005,1708(3):411-419
The bidentate complex of ATP with Cr3+, CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca2+-ATPase and the Na+,K+-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca2+ and Na+, respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca2+-ATPase. The complex inhibited with similar efficiency the Ca2+-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T1/2 = 30 min at 37 °C) with a Ki = 28 ± 9 μM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg2+ but unaltered when Ca2+ was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca2+ occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La3+ with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca2+ at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca2+ promoted by the plasma membrane Ca2+-ATPase goes through an enzymatic phospho-intermediate that maintains Ca2+ ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.  相似文献   

19.
Ca2+ homeostasis controls a diversity of cellular processes including proliferation and apoptosis. A very important aspect of Ca2+ signaling is how different Ca2+ signals are translated into specific cell functions. In T cells, Ca2+ signals are induced following the recognition of antigen by the T cell receptor and depend mainly on Ca2+ influx through store-operated CRAC channels, which are mediated by ORAI proteins following their activation by STIM proteins. The complete absence of Ca2+ influx caused by mutations in Stim1 and Orai1 leads to severe immunodeficiency. Here we summarize how Ca2+ signals are tuned to regulate important T cell functions as proliferation, apoptosis and tolerance, the latter one being a special state of immune cells in which they can no longer respond properly to an otherwise activating stimulus. Perturbations of Ca2+ signaling may be linked to immune suppressive diseases and autoimmune diseases.  相似文献   

20.

Background

Arabinogalactan proteins (AGPs) are ubiquitous in green plants. AGPs comprise a widely varied group of hydroxyproline (Hyp)-rich cell surface glycoproteins (HRGPs). However, the more narrowly defined classical AGPs massively predominate and cover the plasma membrane. Extensive glycosylation by pendant polysaccharides O-linked to numerous Hyp residues like beads of a necklace creates a unique ionic compartment essential to a wide range of physiological processes including germination, cell extension and fertilization. The vital clue to a precise molecular function remained elusive until the recent isolation of small Hyp–arabinogalactan polysaccharide subunits; their structural elucidation by nuclear magentic resonance imaging, molecular simulations and direct experiment identified a 15-residue consensus subunit as a β-1,3-linked galactose trisaccharide with two short branched sidechains each with a single glucuronic acid residue that binds Ca2+ when paired with its adjacent sidechain.

Scope

AGPs bind Ca2+ (Kd ∼ 6 μm) at the plasma membrane (PM) at pH ∼5·5 but release it when auxin-dependent PM H+-ATPase generates a low periplasmic pH that dissociates AGP–Ca2+ carboxylates (pka ∼3); the consequential large increase in free Ca2+ drives entry into the cytosol via Ca2+ channels that may be voltage gated. AGPs are thus arguably the primary source of cytosolic oscillatory Ca2+ waves. This differs markedly from animals, in which cytosolic Ca2+ originates mostly from internal stores such as the sarcoplasmic reticulum. In contrast, we propose that external dynamic Ca2+ storage by a periplasmic AGP capacitor co-ordinates plant growth, typically involving exocytosis of AGPs and recycled Ca2+, hence an AGP–Ca2+ oscillator.

Conclusions

The novel concept of dynamic Ca2+ recycling by an AGP–Ca2+ oscillator solves the long-standing problem of a molecular-level function for classical AGPs and thus integrates three fields: AGPs, Ca2+ signalling and auxin. This accounts for the involvement of AGPs in plant morphogenesis, including tropic and nastic movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号