首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
CaMKIIγ, the predominant CaMKII isoform in mouse eggs, controls egg activation by regulating cell cycle resumption. In this study we further characterize the involvement and specificity of CaMKIIγ in mouse egg activation. Using exogenous expression of different cRNAs in Camk2g−/− eggs, we show that the other multifunctional CaM kinases, CaMKI, and CaMKIV, are not capable of substituting CaMKIIγ to initiate cell cycle resumption in response to a rise in intracellular Ca2+. Exogenous expression of Camk2g or Camk2d results in activation of nearly 80% of Camk2g−/− MII eggs after stimulation with SrCl2, which does not differ from the incidence of activation of wild-type eggs expressing exogenous Egfp. In contrast, none of the Camk2g−/− MII eggs expressing Camk1 or Camk4 activate in response to SrCl2 treatment. Expression of a constitutively active form of Camk4 (ca-Camk4), but not Camk1, triggers egg activation. EMI2, an APC/C repressor, is a key component in regulating egg activation downstream of CaMKII in both Xenopus laevis and mouse. We show that exogenous expression of either Camk2g, Camk2d, or ca-Camk4, but not Camk1, Camk4, or a catalytically inactive mutant form of CaMKIIγ (kinase-dead) in Camk2g−/− mouse eggs leads to almost complete degradation (~90%) of exogenously expressed EMI2 followed by cell cycle resumption. Thus, degradation of EMI2 following its phosphorylation specifically by CaMKII is mechanistically linked to and promotes cell cycle resumption in MII eggs.  相似文献   

14.
15.
16.
17.
ML Mello  BC Vidal 《PloS one》2012,7(8):e43169

Background

The infrared (IR) analysis of dried samples of DNA and DNA-polypeptide complexes is still scarce. Here we have studied the FT-IR profiles of these components to further the understanding of the FT-IR signatures of chromatin and cell nuclei.

Methodology/Principal Findings

Calf thymus and salmon testis DNA, and complexes of histone H1, protamine, poly-L-lysine and poly-L-arginine (histone-mimic macromolecules) with DNA were analyzed in an IR microspectroscope equipped with an attenuated total reflection diamond objective and Grams software. Conditions including polypeptides bound to the DNA, DNA base composition, and single-stranded form were found to differently affect the vibrational characteristics of the chemical groups (especially, PO2 ) in the nucleic acid. The antisymmetric stretching (νas) of the DNA PO2 was greater than the symmetric stretching (νs) of these groups and increased in the polypeptide-DNA complexes. A shift of the νas of the DNA PO2 to a lower frequency and an increased intensity of this vibration were induced especially by lysine-rich histones. Lysine richness additionally contributed to an increase in the vibrational stretching of the amide I group. Even in simple molecules such as inorganic phosphates, the vibrational characteristics of the phosphate anions were differently affected by different cations. As a result of the optimization of the DNA conformation by binding to arginine-rich polypeptides, enhancements of the vibrational characteristics in the FT-IR fingerprint could be detected. Although different profiles were obtained for the DNA with different base compositions, this situation was no longer verified in the polypeptide-DNA complexes and most likely in isolated chromatin or cell nuclei. However, the νas PO2 s PO2 ratio could discriminate DNA with different base compositions and DNA in a single-stranded form.

Conclusions/Significance

FT-IR spectral profiles are a valuable tool for establishing the vibrational characteristics of individualized chromatin components, such as DNA and DNA-polypeptide complexes in dried samples.  相似文献   

18.
19.

Objective

Sirtuins (SIRTs) and mitochondrial uncoupling proteins (UCPs) have been implicated in cardiovascular diseases through the control of reactive oxygen species production. This study sought to investigate the association between genetic variants in the SIRT and UCP genes and carotid plaque.

Methods

In a group of 1018 stroke-free subjects from the Northern Manhattan Study with high-definition carotid ultrasonography and genotyping, we investigated the associations of 85 single nucleotide polymorphisms (SNPs) in the 11 SIRT and UCP genes with the presence and number of carotid plaques, and evaluated interactions of SNPs with sex, smoking, diabetes and hypertension as well as interactions between SNPs significantly associated with carotid plaque.

Results

Overall, 60% of subjects had carotid plaques. After adjustment for demographic and vascular risk factors, T-carriers of the SIRT6 SNP rs107251 had an increased risk for carotid plaque (odds ratio, OR = 1.71, 95% CI = 1.23–2.37, Bonferroni-corrected p = 0.03) and for a number of plaques (rate ratio, RR = 1.31, 1.18–1.45, Bonferroni-corrected p = 1.4×10−5), whereas T-carriers of the UCP5 SNP rs5977238 had an decreased risk for carotid plaque (OR = 0.49, 95% CI = 0.32–0.74, Bonferroni-corrected p = 0.02) and plaque number (RR = 0.64, 95% CI = 0.52–0.78, Bonferroni-corrected p = 4.9×10−4). Some interactions with a nominal p≤0.01 were found between sex and SNPs in the UCP1 and UCP3 gene; between smoking, diabetes, hypertension and SNPs in UCP5 and SIRT5; and between SNPs in the UCP5 gene and the UCP1, SIRT1, SIRT3, SIRT5, and SIRT6 genes in association with plaque phenotypes.

Conclusion

We observed significant associations between genetic variants in the SIRT6 and UCP5 genes and atherosclerotic plaque. We also found potential effect modifications by sex, smoking and vascular risk factors of the SIRT/UCP genes in the associations with atherosclerotic plaque. Further studies are needed to validate our observations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号