首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Summary   This article describes the context, evolution and structure of the Monaro Grassland Conservation Management Network, a loose framework of private and public land managers and their grassland properties located in the Monaro region of south-eastern New South Wales. The Monaro region is characterized by lower rainfall, lower temperatures and less productive soils than other agricultural regions in south-eastern Australia containing natural temperate grasslands. As such, it offers important opportunities for conservation of natural temperate grasslands as a significant and functional component of the landscape, under a variety of land tenures and uses including pastoral agriculture.  相似文献   

2.
Invasion by exotic grasses is a severe threat to the integrity of grassland ecosystems all over the world. Because grasslands are typically grazed by livestock and wildlife, the invasion is a community process modulated by herbivory. We hypothesized that the invasion of native South American grasslands by Eragrostis plana Nees, an exotic tussock-forming grass from Africa, could be deterred by grazing if grazers switched dietary preferences and included the invasive grass as a large proportion of their diets. Bos taurus (heifers) and Ovis aries (ewes) grazed plots with varying degrees of invasion by E. plana in a replicated manipulative experiment. Animal positions and species grazed were observed every minute in 45-min grazing session. Proportion of bites and steps in and out of E. plana tussocks were measured and used to calculate several indices of selectivity. Both heifers and ewes exhibited increasing probability of grazing E. plana as the proportion of area covered by tussocks increased, but they behaved differently. In agreement with expectations based on the allometry of dietary preferences and morphology, ewes consumed a low proportion of E. plana, except in areas that had more than 90% E. plana cover. Heifers consumed proportionally more E. plana than ewes. Contrary to our hypothesis, herbivores did not exhibit dietary switching towards the invasive grass. Moreover, they exhibited avoidance of the invasive grass and preference for short-statured native species, both of which should tend to enhance invasion. Unless invasive plants are highly palatable to livestock, the effect of grazing to deter the invasion is limited, due to the inherent avoidance of the invasive grass by the main grazers in the ecosystem, particularly sheep.  相似文献   

3.
Monitoring programs for butterflies and moths are focused on the adult stage, rarely considering other life stages. Transect-based counts of adults and searches for empty pupal cases have been suggested as standard monitoring protocols for the critically endangered golden sun moth Synemon plana in Australia. To date, surveys and monitoring have focused only on counts of adults. However, undertaking such counts is constrained by the short adult life of the species (1–2 days), and the fact that prevailing weather conditions can seriously influence detectability. We tested whether empty pupal cases of S. plana can be used to supplement the monitoring of adults and whether this technique can be undertaken by citizen scientists. Volunteers from Canberra (Australia) collected 650 pupal cases from 11 grassland areas. The cases were found in native grasslands and in grassland comprised entirely of the exotic Chilean needle grass (Nassella neesiana). Pupal cases of S. plana were found to be durable, with most persisting in the field for greater than 3 weeks after first sighting, and exhibited a male biased sex ratio. This study demonstrates that detection of empty pupal cases provides a potential additional tool to monitor S. plana that is not dependent on the restrictions of prevailing weather conditions and time of day, and can be undertaken by citizen scientists.  相似文献   

4.
Australia’s natural temperate grasslands have diminished to 0.5 % of their former area since European settlement and, as a consequence, are highly fragmented and modified. Many vertebrate species that live in temperate grasslands are habitat specialists and therefore are at risk of decline through habitat loss and fragmentation. The grassland earless dragon (Tympanocryptis pinguicolla) is one such species. Once widespread, T. pinguicolla is now restricted to two general locations; the first is near Canberra in the Australian Capital Territory (including some adjacent land near Queanbeyan), and the second is the Monaro Tablelands in New South Wales. Here, we use microsatellite DNA data collected from the largest remaining populations near Canberra to examine genetic structure in this species in the context of the rapidly expanding urban landscape in this region. Our study revealed that, despite separation by only relatively small distances (largest distance ~13 km), the T. pinguicolla populations are highly genetically structured with little admixture. Our analyses also revealed that the population with the largest census size, but which has recently crashed in population size, exhibited little detectable gene flow to other populations and is essentially isolated. Our data indicate that significant barriers to dispersal exist among the remaining T. pinguicolla populations and that management of this species cannot rely on natural dispersal to bolster declining populations. Many different agencies and landholders are responsible for the protection of these remnant populations and a co-ordinated effort is required to provide reasonable confidence that the species will persist.  相似文献   

5.
In the world scenario of declining grassland bird populations, South American species are a particular concern. The Saffron-Cowled Blackbird Xanthopsar flavus is endemic to grasslands in Central and southern South America and its status is vulnerable. Natural history studies stress a number of factors responsible for the decline in its populations. In this paper, we present results from a grassland fire experiment aimed at evaluating the effect of grassland fires on foraging (grasses) and breeding (marshes) habitat use by the Saffron-Cowled Blackbird in a region where fire has been used for centuries as a tool for cattle management. We compare burned grasslands with a control treatment and grasslands within a conservation unit, evaluating uses before and after burning as well as relating bird abundance with environmental characteristics. We found that the Saffron-Cowled Blackbird used the burned treatments more frequently and avoided habitats with tall grasses and developed vegetation. Thus, this species is absent from the conservation unit, which has not experienced fires in nearly three decades. The Saffron-Cowled Blackbird depends on the existence of marshes (breeding habitat) surrounded by short grasses (foraging habitat). In the study region, short grasses are a result of burning practices. As the burning period coincides with the breeding season, the lack of criteria on the part of landowners regarding how to apply and control fire poses a permanent threat to these populations.  相似文献   

6.
Native grasslands, and the fauna that inhabit them, are globally some of the most threatened ecosystems and organisms. Knowledge of the relative importance of climate, landscape context and site-based resources for local insect populations is critical for the restoration and conservation of these communities. We investigated the site and landscape-scale best predictors of occurrence and abundance over three consecutive years of sampling, for the critically endangered golden sun moth Synemon plana in south-eastern Australia. We found eight vegetation factors to be significantly associated with golden sun moth occurrence using data from combined survey data and data for each year alone; we identified just three common factors from year to year. Modelling indicated that Austrostipa and Rytidosperma species richness was the most consistent parameter, but for each year alone, there was a combination of aspect, landscape position and Austrostipa and Rytidosperma species richness. Our study shows that environmental characteristics where golden sun moth occur are relatively predictable over multiple years. This information can be used to protect sites where monitoring of extant populations is yet to occur, predict the location of new populations in the region, and restore adjacent habitat that is suitable but degraded.  相似文献   

7.
Restoration of species‐rich grasslands is a key issue of conservation. The transfer of seed‐containing local plant material is a proven technique to restore species‐rich grassland, since it potentially allows to establish genetically variable and locally adapted populations. In our study, we tested how the transfer of local plant material affected the species diversity and composition of restored grasslands and the genetic variation of the typical grassland plant species Knautia arvensis and Plantago lanceolata.For our study, we selected fifteen study sites in southeastern Germany. We analyzed species diversity and composition and used molecular markers to investigate genetic variation within and among populations of the study species from grasslands that served as source sites for restoration and grasslands, which were restored by transfer of green hay and threshed local plant material.The results revealed no significant differences in species diversity and composition between grasslands at source and restoration sites. Levels of genetic variation within populations of the study species Knautia arvensis and Plantago lanceolata were comparable at source and restoration sites and genetic variation among populations at source and their corresponding restoration sites were only marginal different.Our study suggests that the transfer of local plant material is a restoration approach highly suited to preserve the composition of species‐rich grasslands and the natural genetic pattern of typical grassland plant species.  相似文献   

8.
Natural grasslands in southern Australia commonly exist in altered states. One widespread altered state is grassland pasture dominated by cool‐season (C3) native grasses maintained by ongoing grazing. This study explores the consequences of removing grazing and introducing fire as a conservation management tool for such a site. We examined the abundance of two native and three exotic species, across a mosaic of fire regimes that occurred over a three‐year period: unburnt, summer wild‐fire (>2 years previous), autumn management fire (<1 year previously) and burnt in both fires. Given that one aim of conservation management is to increase native species at the expense of exotics, the impacts of the fires were largely positive. Native grasses were at higher cover levels in the fire‐managed vegetation than in the unburnt vegetation. Of the three exotic species, one was consistently at lower density in the burnt plots compared to the unburnt plots, while the others were lower only in those plots burnt in summer. The results show that the response of a species varies significantly between different fire events, and that the effects of one fire can persist through subsequent fires. Importantly, some of the effects were large, with changes in the density of plants of over 100‐fold. Fire is potentially a cost‐effective tool to assist the ecological restoration of retired grassland pastures at large scales.  相似文献   

9.
Abstract Invasion by Mediterranean annual grasses, such as Avena L. spp. and Bronms L. spp, is one of the major threats to temperate perennial grassland. This study investigated the effects of annual grasses and their litter on the species composition of a grassland near Burra, South Australia. The placement of annual grass litter on soil samples in the glasshouse decreased the establishment or growth of several exotic annual dicots. In the field the addition of annual grass litter slightly decreased the frequency of Danthonia Lam. & DC. tussocks. Furthermore, litter strongly reduced the species richness from 13 species in plots with no litter to nine species in plots with the highest litter level, mainly by decreasing the frequency of common exotic dicots. Native dicot frequency similarly appeared to be decreased by litter addition. In addition to the negative effects of their litter, annual grasses also directly competed with perennial grasses. The magnitude of the competitive effect varied systematically along a slope, suggesting that other factors such as soil properties may control competitive inter actions. The biomass of annual grasses also tended to increase with the addition of their own litter. This combination of positive and negative feedback mechanisms suggests that brief periods favourable for annual grasses, either through management changes or environmental conditions, can lead to persistent changes in the species composition of the system.  相似文献   

10.
Little is known about the specific role of exotic species on measures of grassland plant diversity, including how this may vary with climatic conditions or large mammal herbivory. This study examined vegetation responses to long-term livestock grazing, including plant richness and diversity, as well as the contribution of exotic species to these metrics, across a network of 107 northern temperate grasslands in Alberta, Canada, spanning a broad aridity gradient. Exposure to grazing modestly increased plant richness, but did not alter Shannon’s diversity, Simpson’s diversity, or evenness, suggesting stability in floral diversity relative to grazing. However, grazing did increase grass cover while reducing shrub cover, the latter of which was only apparent in mesic grasslands. Unlike total plant diversity, exotic species richness and cover, together with exotic plant contributions to diversity, varied jointly with grazing and aridity. While long-term grazing increased exotic species, this response was most apparent in wetter areas, and non-grazed grasslands remained more resistant to the presence of exotics. Several exotic species were positive indicators of grazing in wetter grasslands, and coincided with lower native species cover, indicating grazing may be facilitating a shift from native to exotic vegetation under these conditions. Overall, our results indicate that while long-term grazing has altered the composition and cover of certain functional groups, including favoring exotics and minimizing woody vegetation in mesic areas, overall changes to plant diversity were limited. Additionally, these findings suggest that semi-arid northern temperate grasslands remain relatively resistant to grazing effects, including their susceptibility to exotic plant encroachment. These results improve our understanding of how ongoing grazing exposure may impact grassland diversity, including efforts to conserve native vegetation, as well as the important role of climate in altering fundamental grassland responses to grazing.  相似文献   

11.
Question. Can strategic burning, targeting differing ecological characteristics of native and exotic species, facilitate restoration of native understorey in weed‐invaded temperate grassy eucalypt woodlands? Location. Gippsland Plains, eastern Victoria, Australia. Methods. In a replicated, 5‐year experimental trial, the effects of repeated spring or autumn burning were evaluated for native and exotic plants in a representative, degraded Eucalyptus tereticornis grassy woodland. Treatments aimed to reduce seed banks and modify establishment conditions of exotic annual grasses, and to exhaust vegetative reserves of exotic perennial grasses. Treatments were applied to three grassland patch types, dominated by the native grass Austrodanthonia caespitosa, ubiquitous exotic annuals, or the common exotic perennial grass Paspalum dilatatum. Results. The dominant native grass Austrodanthonia caespitosa and native forbs were resilient to repeated fires, and target exotic annuals and perennials were suppressed differentially by autumn and spring fires. Exotic annuals were also suppressed by drought, reducing the overall treatment effects but indicating important opportunities for restoration. The initially sparse exotic geophyte Romulea rosea increased in cover with fire and the impact of this species on native forbs requires further investigation. There was minimal increase in diversity of subsidiary natives with fire, probably owing to lack of propagules. Conclusions. While fire is often considered to increase ecosystem invasibility, our study showed that strategic use of fire, informed by the relative responses of available native and exotic taxa, is potentially an effective step towards restoration of weed‐invaded temperate eucalypt woodlands.  相似文献   

12.
Traditional conservation biology regards environmental fluctuations as detrimental to persistence, reducing long-term average growth rates and increasing the probability of extinction. By contrast, coexistence models from community ecology suggest that for species with dormancy, environmental fluctuations may be essential for persistence in competitive communities. We used models based on California grasslands to examine the influence of interannual fluctuations in the environment on the persistence of rare forbs competing with exotic grasses. Despite grasses and forbs independently possessing high fecundity in the same types of years, interspecific differences in germination biology and dormancy caused the rare forb to benefit from variation in the environment. Owing to the buildup of grass competitors, consecutive favorable years proved highly detrimental to forb persistence. Consequently, negative temporal autocorrelation, a low probability of a favorable year, and high variation in year quality all benefited the forb. In addition, the litter produced by grasses in a previously favorable year benefited forb persistence by inhibiting its germination into highly competitive grass environments. We conclude that contrary to conventional predictions of conservation and population biology, yearly fluctuations in climate may be essential for the persistence of rare species in invaded habitats.  相似文献   

13.
Habitat modification alters several aspects of the original fauna, among them the opportunity for thermoregulation. Here, we studied the thermal biology of sympatric populations of two lizard species (Liolaemus multimaculatus and Liolaemus wiegmannii) in two different situations; a grassland without trees (natural habitat) and in a grassland plus the exotic tree Acacia longifolia (modified habitat), aiming to assess whether the structural alteration of native Pampean coastal grasslands of Argentina affects the thermal biology of these lizards. Field body temperatures, laboratory preferred temperatures, micro-environmental temperatures, operative temperatures, thermoregulatory efficiency and spatial distribution of each species were analyzed in both habitats. Environmental operative temperature was 0.64 °C lower in the modified habitat (Te=38.39 °C) than in the natural (Te=39.03 °C). Thermoregulatory efficiency (E) of L. wiegmannii was lower in modified sites (E=0.58) than in natural sites (E=0.70). This difference may be because this lizard occupied shaded microhabitats under acacias, with suboptimal thermal features. In contrast, L. multimaculatus in the modified habitat restricted its activity to open microenvironments that retained a similar structure to that of the native habitat, while maintaining high thermoregulatory efficiency in both habitat types (Emodified=0.92; Enatural=0.96). Although these two lizard species are phylogenetically close, they respond differently to human-induced changes in their thermal environments. The introduction of A. longifolia into coastal grasslands for L. wiegmannii in particular, this introduction converts its native habitat into a suboptimal thermal environment.  相似文献   

14.
ABSTRACT The grasslands of southeastern South America (SESA), comprising one of the most extensive grassland ecosystems in the Neotropics, have been negatively impacted by the development of the livestock industry, arable agriculture, and forestry. SESA grasslands have a rich avifauna that includes 22 globally threatened and near‐threatened species, and many other species have suffered local population extinctions and range reductions. In addition to habitat loss and fragmentation, grassland birds in SESA are threatened by improper use of agrochemicals, unfavorable fire management regimes, pollution, and illegal capture and hunting. Studies to date have provided information about the distribution of grassland birds, the threats populations face, and the habitat requirements of some threatened species, but more information is needed concerning dispersal and migration patterns, genetics, and factors that influence habitat use and species survival in both natural and agricultural landscapes. There are few public protected areas in the region (1% of original grasslands), and many populations of threatened grassland birds are found on private lands. Therefore, efforts to preserve grassland habitat must reconcile the interests of land owners and conservationists. Current conservation efforts include establishment of public and private reserves, promotion of agricultural activities that reconcile production with biodiversity conservation, development of multilateral conservation projects across countries, and elaboration of action plans. Measures that result in significant losses to private land owners should include economic compensation, and use of economic incentives to promote agriculture and forestry in native grassland areas should be discouraged, especially in priority areas for grassland birds. Although more studies are needed, some actions, particularly habitat protection and improved management of public and private lands, should be taken immediately to improve the conservation status of grassland birds in SESA.  相似文献   

15.
Old fields often become dominated by exotic plants establishing persistent community states. Ecosystem functioning may differ widely between such novel communities and the native-dominated counterparts. We evaluated soil ecosystem attributes in native and exotic (synthetic) grass assemblages established on a newly abandoned field, and in remnants of native grassland in the Inland Pampa, Argentina. We asked whether exotic species alter soil functioning through the quality of the litter they shed or by changing the decomposition environment. Litter decomposition of the exotic dominant Festuca arundinacea in exotic assemblages was faster than that of the native dominant Paspalum quadrifarium in native assemblages and remnant grasslands. Decomposition of a standard litter (Triticum aestivum) was also faster in exotic assemblages than in native assemblages and remnant grasslands. In a common garden, F. arundinacea showed higher decay rates than P. quadrifarium, which reflected the higher N content and lower C:N of the exotic grass litter. Soil respiration rates were higher in the exotic than in the native assemblages and remnant grasslands. Yet there were no significant differences in soil N availability or net N mineralization between exotic and native assemblages. Our results suggest that exotic grass dominance affected ecosystem function by producing a more decomposable leaf litter and by increasing soil decomposer activity. These changes might contribute to the extended dominance of fast-growing exotic grasses during old-field succession. Further, increased organic matter turnover under novel, exotic communities could reduce the carbon storage capacity of the system in the long term.  相似文献   

16.
In this study we analyzed if characteristic calcareous grassland species persist in forest habitats after land use change. Furthermore, we investigated whether the current distribution of such species is related to historical land use of the mid-19th century. Current distributions of nine calcareous grassland species were recorded in a region of Upper Franconia, Germany. Historical (up to 1850) and current land-use data were analyzed using historical maps and aerial photographs. To study the effects of historical land use in current species distributions, we used Generalized Estimating Equations (GEE) and ANOVA, accounting for spatial autocorrelation. Variance partitioning was applied to separate the influence of historical versus current land use. On average 26% of the recorded grassland species occurrences are located in sub-optimal forest habitats. Grassland populations are likely to persist in forest for at least 50 years. Even though current land use explains a higher proportion of the variation in species distribution than historical land use alone, model fit could be significantly improved (P?<?0.001) considering the historical component. We conclude that consideration of historical land use is essential to understand the current grassland species distributions and may be of general importance for perennial species of temperate grasslands. In addition, historical legacy has far-reaching implications for conservation biology in terms of realistic assessments of species threat status in present landscapes.  相似文献   

17.
In the last few decades unimproved semi-natural grasslands have been affected by intensification of land use and habitat fragmentation. Because of their biodiversity these species-rich grasslands are of high conservation importance and efforts are under way to restore such habitats. Detailed knowledge of within species diversity will aid deciding on the optimal seed source for such restoration projects, e.g. local genotypes or ecotypes. Rhinanthus minor is a species that is typically found in semi-natural grasslands and is commonly used in grassland restoration projects. This is because R. minor is a hemiparasitic plant that takes minerals and nutrients from its host, which in turn decreases the host's biomass and leads to opportunities for less competitive species in the vegetation. Here, we investigate genetic diversity within and between R. minor populations. This allowed us to test whether the six different subspecies of R. minor that have been described in the UK, based on their morphology, flowering time, and habitat, can be differentiated using molecular markers. We identified moderate levels of genetic differentiation between R. minor populations within the UK. In addition, R. minor individuals from the UK appear to be distinct from R. minor and Rhinanthus angustifolius individuals from other European countries based on microsatellite genotyping and DNA sequencing of cpDNA and rDNA ITS. The molecular markers used in the current study did not separate populations of R. minor based on either their subspecies or habitat. The implication for the use of R. minor in grassland restoration projects seems to be that it is not necessary to use local seeds or seeds from the same subspecies.  相似文献   

18.
Understanding how exotic invasive species are spread is fundamental for ecology and conservation biology. Human transport has become one of the primary modes of dispersal for exotic species. We examined how the multiple queen, or polygyne, social form of the fire ant Solenopsis invicta is spread along roadsides in Tallahassee, Florida, USA. We then determined the likely source of this expanding population, which was a central soil depot. A survey of road maintenance practices in counties of several southeastern states and Texas revealed that the use of a central soil depot is a common practice. Road maintenance therefore may be the primary source for the establishment of new polygyne fire ant populations in this region and elsewhere. Control efforts focused on the soil depots will help to limit further spread of polygyne fire ants and perhaps other invasive organisms, particularly invasive weeds.  相似文献   

19.
Previous research has found that plant diversity declines more quickly in exotic than native grassland plots, which offers a model system for testing whether diversity decline is associated with specific plant traits. In a common garden experiment in the Southern Great Plains in central Texas, USA, we studied monocultures and 9-species mixtures of either all exotic or all native grassland species. A total of 36 native and exotic species were paired by phylogeny and functional group. We used community-level measures (relative abundance in mixture) and whole-plant (height, aboveground biomass, and light capture) and leaf-level traits (area, specific leaf area, and C:N ratio) to determine whether trait differences explained native-exotic differences in functional group diversity. Increases in species’ relative abundance in mixture were correlated with high biomass, height, and light capture in both native and exotic communities. However, increasing exotic species were all C4 grasses, whereas, increasing native species included forb, C3 grass and C4 grass species. Exotic C4 grasses had traits associated with relatively high resource capture: greater leaf area, specific leaf area, height, biomass, and light capture, but similar leaf C:N ratios compared to native C4 grasses. Leaf C:N was consistently higher for native than exotic C3 species, implying that resource use efficiency was greater in natives than exotics. Our results suggest that functional diversity will differ between grasslands restored to native assemblages and those dominated by novel collections of exotic species, and that simple plant traits can help to explain diversity decline.  相似文献   

20.
Invasive species belong to the main threats to dry grassland biodiversity. That́s why nature conservation managers seek the best ways to remove them and to support the restoration process of original natural habitats. We studied the effect of clear-cutting of invasive black locust (Robinia pseudoacacia L.) on the recovery of former species rich dry grassland vegetation. Ten permanent plots where R. pseudoacacia was cut down were long-term monitored in nature reserves protecting dry grasslands. The representation of dry grassland plants has been increased four times and the representation of synanthropic plants has been decreased two times during 40 years of succession even though R. pseudoacacia still relatively successfully resisted eradication efforts. During the succession after R. pseudoacacia cutting down, the Ellenberg indicator values for nutrients have decreased significantly, but no decrease in the nitrate content of the soil was observed. The long-term monitoring revealed that the restoration of dry grasslands invaded by R. pseudoacacia is possible but very time consuming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号