首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Summary Two PstI fragments (5.3x106 and 4.3x106 daltons) coding for Anacystis nidulans rRNA genes were cloned. The cloned rDNAs were characterized by restriction endonuclease mapping, DNA-RNA hybridization analysis and the R-loop technique. The results indicated that both fragments contained 16S, 23S and 5S rRNA genes in this order. A tRNA gene(s) was detected in the spacer region between 16S and 23S rRNA genes. The organization of A. nidulans rRNA genes resembles those of E. coli and of Euglena chloroplasts rather than those of higher plant chloroplasts.  相似文献   

2.
Complete chloroplast 23S rRNA and psbA genes from five peridinin-containing dinoflagellates (Heterocapsa pygmaea, Heterocapsa niei, Heterocapsa rotun-data, Amphidinium carterae, and Protoceratium reticulatum) were amplified by PCR and sequenced; partial sequences were obtained from Thoracosphaera heimii and Scrippsiella trochoidea. Comparison with chloroplast 23S rRNA and psbA genes of other organisms shows that dinoflagellate chloroplast genes are the most divergent and rapidly evolving of all. Quartet puzzling, maximum likelihood, maximum parsimony, neighbor joining, and LogDet trees were constructed. Intersite rate variation and invariant sites were allowed for with quartet puzzling and neighbor joining. All psbA and 23S rRNA trees showed peridinin-containing dinoflagellate chloroplasts as monophyletic. In psbA trees they are related to those of chromists and red algae. In 23S rRNA trees, dinoflagellates are always the sisters of Sporozoa (apicomplexans); maximum likelihood analysis of Heterocapsa triquetra 16S rRNA also groups the dinoflagellate and sporozoan sequences, but the other methods were inconsistent. Thus, dinoflagellate chloroplasts may actually be related to sporozoan plastids, but the possibility of reproducible long-branch artifacts cannot be strongly ruled out. The results for all three genes fit the idea that dinoflagellate chloroplasts originated from red algae by a secondary endosymbiosis, possibly the same one as for chromists and Sporozoa. The marked disagreement between 16S rRNA trees using different phylogenetic algorithms indicates that this is a rather poor molecule for elucidating overall chloroplast phylogeny. We discuss possible reasons why both plastid and mitochondrial genomes of alveolates (Dinozoa, Sporozoa and Ciliophora) have ultra-rapid substitution rates and a proneness to unique genomic rearrangements. Received: 27 December 1999 / Accepted: 24 March 2000  相似文献   

3.
Summary DNA was isolated from chloroplasts of Euglena gracilis var. bacillaris (ATCC No. 10616). The structure of the rDNA was studied using partial denaturation mapping and heteroduplex analysis. Seven GC-rich stretches representing the rDNA were apparent in the partial denaturation pattern. To analyse the structure of the rDNA in detail, heteroduplexes with the E. coli rrnD operon cloned in the plasmid pBK8 were prepared. Five complete rRNA operons were found. In addition one extra 16S rRNA gene was located between the second and third complete operons and another extra 16S rRNA gene was upstream of all five operons. Each one was associated with a small inverted repeat structure.  相似文献   

4.
Oligonucleotide catalogues from 16S rRNA have been a major source of information for phylogenetic reconstruction among procaryotes. Several large procaryote groups have been analyzed and phylogenies presented. Catalogues are also available for many chloroplasts. The hypotheses of phylogeny are derived mainly from similarity (phenetic) comparisons of the catalogues and the extent of the homoplasy (parallelisms and reversals) involved has not been estimated properly. Although catalogues are currently being superseded by complete sequence data, an evaluation of the strength of catalogue data, and hence of the strength of the extensive phylogenetic hypotheses derived from them, is in order. Cladistic analysis of 16S rRNA oligonucleotide catalogues from three blue-green procaryotes, Prochloron, and chloroplasts of a red alga, Euglena, a green alga and two flowering plants shows that there is extensive homoplasy in the catalogues and several phylogenetic trees are possible. The corresponding consensus trees indicate that little or nothing can be said about interrelationships and chloroplast origin on the basis of these particular catalogues, except that Prochloron may be more closely related to the blue-greens than to chloroplasts.  相似文献   

5.
Summary The nucleotide sequence of an entire spacer region between the 16S and 23S rRNA genes of the rrnA operon from a blue-green alga, Anacystis nidulans, has been determined. The spacer region is 545 base pairs long and encodes tRNAfle and tRNAAla in the order of 16S rRNA-tRNAfle-tRNAAla-23S rRNA. A striking feature is that the A. nidulans tRNAfle gene contains no 3-CCA sequence while the tRNAAla gene does. These spacer tRNA genes show strong sequence homology with those of chloroplasts and bacteria.  相似文献   

6.
The nucleotide sequence of 16S rDNA from Euglena gracilis chloroplasts has been determined representing the first complete sequence of an algal chloroplast rRNA gene. The structural part of the 16S rRNA gene has 1491 nucleotides according to a comparative analysis of our sequencing results with the published 5'- and 3'-terminal "T1-oligonucleotides" from 16S rRNA from E. gracilis. Alignment with 16S rDNA from Zea mays chloroplasts and E. coli reveals 80 to 72% sequence homology, respectively. Two deletions of 9 and 23 nucleotides are found which are identical in size and position with deletions observed in 16S rDNA of maize and tobacco chloroplasts and which seem to be characteristic for all chloroplast rRNA species. We also find insertions and deletions in E. gracilis not seen in 16S rDNA of higher plant chloroplasts. The 16S rRNA sequence of E. gracilis chloroplasts can be folded by base pairing according to the general 16S rRNA secondary structure model.  相似文献   

7.
The complete nucleotide sequence of a 16S ribosomal RNA gene from tobacco chloroplasts has been determined. This nucleotide sequence has 96% homology with that of maize chloroplast 16S rRNA gene and 74% homology with that of Escherichia coli16S gene.The 3′ terminal region of this gene contains the sequence ACCTCC which is complementary to sequences found at the 5′ termini of prokaryotic mRNAs.The large stem and loop structure can be constructed from the sequences surrounding the 5′ and 3′ ends of the 16S gene. These observations demonstrate the prokaryotic nature of chloroplast 16S rRNA.  相似文献   

8.
In order to determine the phylogenetic relationships of representatives of three Gram-negative genera, Sporomusa, Selenomonas, and Megasphaera, the 16S ribosomal RNAs were compared by oligonucleotide cataloguing. Surprisingly, Sporomusa ovata, S. sphaeroides, Selenomonas ruminantium, and Megasphaera elsdenii do not group with any of the 200 Gram-negative eubacterial species investigated so far by this method but show a distinct although remote relationship to Gram-positive eubacteria of the Clostridium subdivision. The presence of Gram-negative species within the radiation of the cluster defined by Gram-positive cubacteria reduces the significance the Gram-positive staining behaviour plays in taxonomic and phylogenetic studies. It furthermore supports previous findings showing the Gram-negative and phototrophic species Heliobacterium chlorum to be a member of the Clostridium-Bacillus cluster. The presence of Gram-negative endospore-containing Sporomusa species among the 16S rRNA cluster of Gram-positive endospore-forming eubacteria allow speculations about the evolutionary origin of Gram-positive eubacteria.This paper is dedicated to Professor Dr. O. Kandler, on the occasion of his 65th birthdayEs was supported by the Gesellschaft für Biotechnologische Forschung (GBF) for performing research of relevance for the German Collection of Microorganisms (DSM). CRW was supported by a grant, DEB-8107061, from the National Science Foundation  相似文献   

9.
We sequenced the chloroplast 16S rRNA gene of two Euglena gracilis mutants which contain streptomycin-resistant chloroplasts (Smr 139.12/4 and Smr 139.20/2). These mutants are known to contain a single intact rrn operon per circular chloroplast genome. Nucleotide sequence comparison between a 16S rRNA gene of wild type Euglena gracilis, strain Z, with streptomycin-sensitive chloroplasts, and the 16S rRNA gene of both Smr-strains reveals a single base change (C to T) at position 876. This position is equivalent to the invariant position 912 of the E. coli 16S rRNA gene. The analogous position is also conserved in all chloroplast small subunit RNA genes from lower and higher plants sequenced so far. Light dependent protein synthesis with purified chloroplasts from streptomycin-resistant cells is not inhibited by streptomycin. Based on the results reported here we postulate linkage between the observed point mutation on the 16S rRNA gene and streptomycin-resistance of chloroplast 70S ribosomes.  相似文献   

10.
DNA samples from various higher plants (Phaseolus aureus, Glycine max, Matthiola incana, Brassica pekinensis, Cucumis melo) were centrifuged in actinomycin-caesium chloride gradients and the genes coding for the ribosomal RNAs were detected by hybridisation with tritium labelled 5S and 25S+18S rRNA, respectively. With DNA of low molecular weight (< 5×106 daltons) the 5S and 25S+18S rRNA genes are often fractionated together. A good separation of the genes for 25S+18S rRNA from the 5S rRNA genes occurred only with high molecular weight DNA (> 10×106 daltons) indicating that at least most of the 5S rRNA genes are not linked to, or interspersed with, the genes coding for 25S and 18S rRNA. This result is in agreement with the situation in animal cells and in contrast to that reported for bacteria, lower eukaryotes and chloroplasts.  相似文献   

11.
The number of organization of rrn genes of two members of the order Planctomycetales, Planctomyces limnophilus and Gemmata obscuriglobus, as well as three species from other bacterial phyla, namely Thermotoga maritima, Thermus aquaticus and Verrucomicrobium spinosum were examined by Southern blot hybridization analysis of restricted DNA with labeled 16S- and 23S rRNAs. Ribotyping analysis revealed that two species contain unlinked 16S- and 23S rRNA genes. Planctomyces limnophilus possessed two unlinked rrn genes which were separated from each other by at least 4.3 kb, and Thermus aquaticus had to unlinked 16S and 23S rRNA genes, separated from each other by at least 2.5 kb. Gemmata obscuriglobus exhibited five genes for which the organization could as yet not be determined because of the complex hybridization patterns. In the other two species, rrn genes clustered in operons. Thermotoga maritima had a single gene for each rRNA species which were separated by not more than 1.5 kb, while Verrucomicrobium spinosum had four copies of probably linked 16S and 23S rRNA genes with a maximal distance between 16S and 23S rRNA genes of 1.3 kb.  相似文献   

12.
13.
Wetland ecosystems are the natural centers of freshwater formation in northern Russia lowland landscapes. The humic acidic waters formed in bogs feed the numerous lakes of the northern regions. One milliliter of the water in these lakes contains up to 104 ultrasmall microbial cells that pass through “bacterial” filters with a pore size of 0.22 μm. The vast majority of these cells do not grow on nutrient media and cannot be identified by routine cultivation-based approaches. Their identification was performed by analysis of clone libraries obtained by PCR amplification of archaeal and bacterial 16S rRNA genes from the fraction of cells collected from water filtrates of acidic lakes. Most of the obtained bacterial 16S rRNA gene sequences represented the class Betaproteobacteria and exhibited the highest homology of (94–99%) with 16S rRNA genes of representatives of the genera Herbaspirillum, Herminiimonas, Curvibacter, and Burkholderia. The archaeal 16S rRNA gene clone library comprised genes of Euryarchaeota representatives. One-third of these genes exhibited 97–99% homology to the 16S rRNA genes of taxonomically described organisms of the orders Methanobacteriales and Methanosarcinales. The rest of the cloned archaeal 16S rRNA genes were only distantly related (71–74% homology) to those in all earlier characterized archaea.  相似文献   

14.
Prokaryotic Nostoc, one of the world's most conspicuous and widespread algal genera (similar to eukaryotic algae, plants, and animals) is known to support a microbiome that influences host ecological roles. Past taxonomic characterizations of surface microbiota (epimicrobiota) of free‐living Nostoc sampled from freshwater systems employed 16S rRNA genes, typically amplicons. We compared taxa identified from 16S, 18S, 23S, and 28S rRNA gene sequences filtered from shotgun metagenomic sequence and used microscopy to illuminate epimicrobiota diversity for Nostoc sampled from a wetland in the northern Chilean Altiplano. Phylogenetic analysis and rRNA gene sequence abundance estimates indicated that the host was related to Nostoc punctiforme PCC 73102. Epimicrobiota were inferred to include 18 epicyanobacterial genera or uncultured taxa, six epieukaryotic algal genera, and 66 anoxygenic bacterial genera, all having average genomic coverage ≥90X. The epicyanobacteria Geitlerinemia, Oscillatoria, Phormidium, and an uncultured taxon were detected only by 16S rRNA gene; Gloeobacter and Pseudanabaena were detected using 16S and 23S; and Phormididesmis, Neosynechococcus, Symphothece, Aphanizomenon, Nodularia, Spirulina, Nodosilinea, Synechococcus, Cyanobium, and Anabaena (the latter corroborated by microscopy), plus two uncultured cyanobacterial taxa (JSC12, O77) were detected only by 23S rRNA gene sequences. Three chlamydomonad and two heterotrophic stramenopiles genera were inferred from 18S; the streptophyte green alga Chaetosphaeridium globosum was detected by microscopy and 28S rRNA genes, but not 18S rRNA genes. Overall, >60% of epimicrobial taxa were detected by markers other than 16S rRNA genes. Some algal taxa observed microscopically were not detected from sequence data. Results indicate that multiple taxonomic markers derived from metagenomic sequence data and microscopy increase epimicrobiota detection.  相似文献   

15.
An Arabidopsis mutant rnr1, which has a defect in the basic genetic system in chloroplasts, was isolated using the screening of the high chlorophyll fluorescence phenotype. Whereas chlorophyll fluorescence and immunoblot studies showed the mutant had reduced activities of photosystems I and II, molecular characterization of the mutant suggested that a T-DNA insertion impaired the expression of a gene encoding a RNase R family member with a targeting signal to chloroplasts. Since RNase R family members have a 3–5 exoribonuclease activity, we examined the RNA profile in chloroplasts. In rnr1 the intercistronic cleavage between 23S and 4.5S rRNA was impaired, and a significant reduction in rRNA in chloroplasts was found, suggesting that RNR1 functions in the maturation of chloroplast rRNA. The present results suggest that defects in the genetic system in chloroplasts cause high chlorophyll fluorescence, pale green leaf, and marked reduction in the growth rate, whereas the levels of some chloroplast RNA were higher in rnr1 than in the wild-type.  相似文献   

16.
17.
18.
The diversity of 184 isolates from rhizosphere and bulk soil samples taken from the Ni hyperaccumulator Alyssum murale, grown in a Ni-rich serpentine soil, was determined by 16S rRNA gene analysis. Restriction digestion of the 16S rRNA gene was used to identify 44 groups. Representatives of each of these groups were placed within the phyla Proteobacteria, Firmicutes and Actinobacteria by 16S rRNA gene sequence analysis. By combining the 16S rRNA gene restriction data with the gene sequence analysis it was concluded that 44.6% (82/184) of the isolates were placed within the phylum Proteobacteria, among these 35.9% (66/184) were placed within the class α-Proteobacteria, and 20.7% (38/184) had 16S rRNA gene sequences indicative of bacteria within genera that form symbioses with legumes (rhizobia). Of the remaining isolates, 44.6% (82/184) and 5.4% (10/184) were placed within the phyla Actinobacteria and Firmicutes, respectively. No placement was obtained for a small number (10/184) of the isolates. Bacteria of the phyla Proteobacteria and Actinobacteria were the most numerous within the rhizosphere of A. murale and represented 32.1% (59/184) and 42.9% (79/184) of all isolates, respectively. The approach of using 16S rRNA gene sequence analysis in this study has enabled a comprehensive characterization of bacteria that predominate in the rhizosphere of A. murale growing in Ni-contaminated soil.  相似文献   

19.
Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of phytoplankton abundance or biomass is limited by PCR-amplification biases, rRNA gene copy number variations across taxa, and the fact that rRNA genes do not provide insights into metabolic traits such as photosynthesis. Here, we targeted the photosynthetic gene psbO from metagenomes to circumvent these limitations: the method is PCR-free, and the gene is universally and exclusively present in photosynthetic prokaryotes and eukaryotes, mainly in one copy per genome. We applied and validated this new strategy with the size-fractionated marine samples collected by Tara Oceans, and showed improved correlations with flow cytometry and microscopy than when based on rRNA genes. Furthermore, we revealed unexpected features of the ecology of these ecosystems, such as the high abundance of picocyanobacterial aggregates and symbionts in the ocean, and the decrease in relative abundance of phototrophs towards the larger size classes of marine dinoflagellates. To facilitate the incorporation of psbO in molecular-based surveys, we compiled a curated database of >18,000 unique sequences. Overall, psbO appears to be a promising new gene marker for molecular-based evaluations of entire phytoplankton communities.  相似文献   

20.
Abstract

Interactions between RNA molecules have been postulated to play an important role in the assembly of ribosomes. Using the sequence analysis and the search of continuous complementary regions on 16S rRNA and 23S rRNA, the recognition sites involved in the formation of ribosome of E.coli are postulated. The number of postulated sites was narrowed down by taking available experimental data. The suggestive evidence for correct postulation is obtained from sequence comparison studies of 16S and 23S rRNAs from various species. The sites 891–899 and 1195–1203 on 16S rRNA along with the corresponding complementary sites 1904–1912 and 760–768 on 23S rRNA are predicted to be the most probable candidates for the sites of recognition between 16S and 23S rRNAs. The possibility of the involvement of the additional site 630–638 on 16S rRNA with its complementary site 2031–2039 on 23S rRNA cannot be ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号