首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Therevidae (stilleto flies) are a little-known family of asiloid brachyceran Diptera (Insecta). Separate and combined phylogenetic analyses of 1200 bases of the 28S ribosomal DNA and 1100 bases of elongation factor-1alpha were used to infer phylogenetic relationships within the family. The position of the enigmatic taxon Apsilocephala Kr?ber is evaluated in light of the molecular evidence. In all analyses, molecular data strongly support the monophyly of Therevidae, excluding Apsilocephala, and the division of Therevidae into two main clades corresponding to a previous classification of the family into the subfamilies Phycinae and Therevinae. Despite strong support for some relationships within these groups, relationships at the base of the two main clades are weakly supported. Short branch lengths for Australasian clades at the base of the Therevinae may represent a rapid radiation of therevids in Australia.  相似文献   

2.
The therevoid clade represents a group of four families (Apsilocephalidae, Evocoidae, Scenopinidae and Therevidae) of lower brachyceran Diptera in the superfamily Asiloidea. The largest of these families is that of the stiletto flies (Therevidae). A large‐scale (i.e. supermatrix) phylogeny of Therevidae is presented based on DNA sequence data from seven genetic loci (16S, 18S and 28S ribosomal DNA and four protein‐encoding genes: elongation factor 1‐alpha, triose phosphate isomerase, short‐wavelength rhodopsin and the CPSase region of carbamoyl‐phosphate synthase‐aspartate transcarbamoylase‐dihydroorotase). Results are presented from Bayesian phylogenetic analyses of approximately 8.7 kb of sequence data for 204 taxa representing all subfamilies and genus groups of Therevidae. Our results strongly support the sister‐group relationship between Therevidae and Scenopinidae, with Apsilocephalidae as sister to Evocoidae. Previous estimates of stiletto fly phylogeny based on morphology or DNA sequence data, or supertree analysis, have failed to find significant support for relationships among subfamilies. We report for the first time strong support for the placement of the subfamily Phycinae as sister to the remaining Therevidae, originating during the Mid Cretaceous. As in previous studies, the sister‐group relationship between the species‐rich subfamilies Agapophytinae and Therevinae is strongly supported. Agapophytinae are recovered as monophyletic, inclusive of the Taenogera group. Therevinae comprise the bulk of the species richness in the family and appear to be a relatively recent and rapid radiation originating in the southern hemisphere (Australia + Antarctica + South America) during the Late Cretaceous. Genus groups are defined for all subfamilies based on these results.  相似文献   

3.
记述中国斑翅剑虻属Hoplosathe 2新种:盛氏斑翅剑虻Hoplosathe shengi sp. nov.和吐鲁番斑翅剑虻Hoplosathe turpanensis sp. nov.。盛氏斑翅剑虻的额在斑翅剑虻属中最宽,雄虫和雌虫的额宽在触角水平上分别是头宽的42%和 46%;触角第1鞭节长是宽的2.0倍;雄性生殖器近似科氏斑翅剑虻Hoplosathe kozlovi Lyneborg & Zaitzev.吐鲁番斑翅剑虻体多毛或短鬃;额宽正常;触角第1鞭节长是宽的2.8倍;雄性生殖器与斑翅剑虻属其它种皆有很大区别。  相似文献   

4.
Comprehensive molecular analyses of phylogenetic relationships within euplotid ciliates are relatively rare, and the relationships among some families remain questionable. We performed phylogenetic analyses of the order Euplotida based on new sequences of the gene coding for small-subunit RNA (SSrRNA) from a variety of taxa across the entire order as well as sequences from some of these taxa of other genes (ITS1-5.8S-ITS2 region and histone H4) that have not been included in previous analyses. Phylogenetic trees based on SSrRNA gene sequences constructed with four different methods had a consistent branching pattern that included the following features: (1) the “typical” euplotids comprised a paraphyletic assemblage composed of two divergent clades (family Uronychiidae and families Euplotidae–Certesiidae–Aspidiscidae–Gastrocirrhidae), (2) in the family Uronychiidae, the genera Uronychia and Paradiophrys formed a clearly outlined, well-supported clade that seemed to be rather divergent from Diophrys and Diophryopsis, suggesting that the Diophrys-complex may have had a longer and more separate evolutionary history than previously supposed, (3) inclusion of 12 new SSrRNA sequences in analyses of Euplotidae revealed two new clades of species within the family and cast additional doubt on the present classification of genera within the family, and (4) the intraspecific divergence among five species of Aspidisca was far greater than those of closely related genera. The ITS1-5.8S-ITS2 coding regions and partial histone H4 genes of six morphospecies in the Diophrys-complex were sequenced along with their SSrRNA genes and used to compare phylogenies constructed from single data sets to those constructed from combined sets. Results indicated that combined analyses could be used to construct more reliable, less ambiguous phylogenies of complex groups like the order Euplotida, because they provide a greater amount and diversity of information.  相似文献   

5.
Small subunit rDNA sequences of 42 taxa belonging to 10 genera were used to infer phylogenetic relationships among euglenoids. Members of the phototrophic genera Euglena, Phacus, Lepocinclis, Colacium, Trachelomonas, and Strombomonas plus the osmotrophs Astasia longa, Khawkinea quartana, and Hyalophacus ocellatus were included. Six major clades were found in most trees using multiple methods. The utility of Bayesian analyses in resolving these clades is demonstrated. The genus Phacus was polyphyletic with taxa sorting into two main clades. The two clades correlated with overall morphology and corresponded in large part to the previously defined sections, Pleur‐ aspis Pochmann and Proterophacus Pochmann. Euglena was also polyphyletic and split into two clades. In Bayesian analyses species with less plastic pellicles and small disk‐like chloroplasts diverged at the base of the tree. They grouped into a single clade which included the two Lepocinclis spp., which also are rigid and bear similar chloroplasts. The metabolic Euglena species with larger plastids bearing pyrenoids and paramylon caps arose near the top of the tree. The loricates Strombomonas and Trachelomonas formed two well‐ supported, but paraphyletic, clades. The strong support for the individual clades confirmed the value of using lorica features as taxonomic criteria. The separation of the osmotrophic species A. longa, K. quartana, and H. ocellatus into different clades suggested that the loss of the photosynthetic ability has occurred multiple times.  相似文献   

6.
Blue‐tailed skinks (genus Plestiodon) are a common component of the terrestrial herpetofauna throughout their range in eastern Eurasia and North and Middle America. Plestiodon species are also frequent subjects of ecological and evolutionary research, yet a comprehensive, well‐supported phylogenetic framework does not yet exist for this genus. We construct a comprehensive molecular phylogeny of Plestiodon using Bayesian phylogenetic analyses of a nine‐locus data set comprising 8308 base pairs of DNA, sampled from 38 of the 43 species in the genus. We evaluate potential gene tree/species tree discordance by conducting phylogenetic analyses of the concatenated and individual locus data sets, as well as employing coalescent‐based methods. Specifically, we address the placement of Plestiodon within the evolutionary tree of Scincidae, as well as the phylogenetic relationships between Plestiodon species, and their taxonomy. Given our sampling of major Scincidae lineages, we also re‐evaluate ‘deep’ relationships within the family, with the goal of resolving relationships that have been ambiguous in recent molecular phylogenetic analyses. We infer strong support for several scincid relationships, including a major clade of ‘scincines’ and the inter‐relationships of major Mediterranean and southern African genera. Although we could not estimate the precise phylogenetic affinities of Plestiodon with statistically significant support, we nonetheless infer significant support for its inclusion in a large ‘scincine’ clade exclusive of Acontinae, Lygosominae, Brachymeles, and Ophiomorus. Plestiodon comprises three major geographically cohesive clades. One of these clades is composed of mostly large‐bodied species inhabiting northern Indochina, south‐eastern China (including Taiwan), and the southern Ryukyu Islands of Japan. The second clade comprises species inhabiting central China (including Taiwan) and the entire Japanese archipelago. The third clade exclusively inhabits North and Middle America and the island of Bermuda. A vast majority of interspecific relationships are strongly supported in the concatenated data analysis, but there is nonetheless significant conflict amongst the individual gene trees. Coalescent‐based gene tree/species tree analyses indicate that incongruence amongst the nuclear loci may severely obscure the phylogenetic inter‐relationships of the primarily small‐bodied Plestiodon species that inhabit the central Mexican highlands. These same analyses do support the sister relationship between Plestiodon marginatus Hallowell, 1861 and Plestiodon stimpsonii (Thompson, 1912), and differ with the mitochondrial DNA analysis that supports Plestiodon elegans (Boulenger, 1887) + P. stimpsonii. Finally, because the existing Plestiodon taxonomy is a poor representation of evolutionary relationships, we replace the existing supraspecific taxonomy with one congruent with our phylogenetic results. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 163–189.  相似文献   

7.
Previous phylogenetic analyses of Ranunculales, which have mostly been focused on an individual family and were based on molecular data alone, have recovered three main clades within the order. However, support for relationships among these three clades was weak. Earlier hypotheses were often hampered by limited taxon sampling; to date less than one-tenth of the genera in the order have been sampled. In this study, we used a greatly enlarged taxon sampling (105 species, representing 99 genera of all seven families in the order). Our study is, furthermore, the first to employ morphology (65 characters) in combination with sequence data from four genomic regions, including plastid rbcL, matK and trnL-F, and nuclear ribosomal 26S rDNA to reconstruct phylogenetic relationships within Ranunculales. Maximum parsimony and Bayesian inference were performed on the individual and combined data sets. Our analyses concur with those of previous studies, but in most cases provide stronger support and better resolution for relationships among the three main clades retrieved. The first, comprised solely of the monogeneric family Eupteleaceae, is the earliest-diverging lineage. The second clade is composed exclusively of taxa of Papaveraceae, which is sister to the third clade, the core Ranunculales, comprising the other five families of the order. Circaeasteraceae and Lardizabalaceae form a strongly supported clade. Pteridophyllum is supported as sister to Hypecoum, contradicting the viewpoint that the former is the earliest-diverging genus in Papaveraceae. Glaucidium is basalmost in Ranunculaceae. Within this phylogenetic framework, the evolution of selected characters is inferred and diagnostic morphological characters at different taxonomic levels are identified and discussed. Based on both morphological and molecular evidence, a classification outline for Ranunculales is presented, including the proposal of two new subfamilies, Menispermoideae and Tinosporoideae in Menispermaceae and a new tribe, Callianthemeae, for the genus Callianthemum (Ranunculaceae).  相似文献   

8.
Ranunculaceae are a nearly cosmopolitan plant family with the highest diversity in northern temperate regions and with relatively few representatives in the tropics. As a result of their position among the early diverging eudicots and their horticultural value, the family is of great phylogenetic and taxonomic interest. Despite this, many genera remain poorly sampled in phylogenetic studies and taxonomic problems persist. In this study, we aim to clarify the infrageneric relationships of Clematis by greatly improving taxon sampling and including most of the relevant subgeneric and sectional types in a simultaneous dynamic optimization of phenotypic and molecular data. We also investigate how well the available data support the hypothesis of phylogenetic relationships in the family. At the family level, all five currently accepted subfamilies are resolved as monophyletic. Our analyses strongly imply that Anemone s.l. is a grade with respect to the Anemoclema Clematis clade. This questions the recent sinking of well‐established genera, including Hepatica, Knowltonia and Pulsatilla, into Anemone. In Clematis, 12 clades conceptually matching the proposed sectional division of the genus were found. The taxonomic composition of these clades often disagrees with previous classifications. Phylogenetic relationships between the section‐level clades remain highly unstable and poorly supported and, although some patterns are emerging, none of the proposed subgenera is in evidence. The traditionally recognized and horticulturally significant section Viorna is both nomenclaturally invalid and phylogenetically unsupported. Several other commonly used sections are likewise unjustified. Our results provide a phylogenetic background for a natural section‐level classification of Clematis.  相似文献   

9.
The family Cudoniaceae (Rhytismatales, Ascomycota) was erected to accommodate the “earth tongue fungi” in the genera Cudonia and Spathularia. There have been no recent taxonomic studies of these genera, and the evolutionary relationships within and among these fungi are largely unknown. Here we explore the molecular phylogenetic relationships within Cudonia and Spathularia using maximum likelihood and Bayesian inference analyses based on 111 collections from across the Northern Hemisphere. Phylogenies based on the combined data from ITS, nrLSU, rpb2 and tef-1α sequences support the monophyly of three main clades, the /flavida, /velutipes, and /cudonia clades. The genus Cudonia and the family Cudoniaceae are supported as monophyletic groups, while the genus Spathularia is not monophyletic. Although Cudoniaceae is monophyletic, our analyses agree with previous studies that this family is nested within the Rhytismataceae. Our phylogenetic analyses circumscribes 32 species-level clades, including the putative recognition of 23 undescribed phylogenetic species. Our molecular phylogeny also revealed an unexpectedly high species diversity of Cudonia and Spathularia in eastern Asia, with 16 (out of 21) species-level clades of Cudonia and 8 (out of 11) species-level clades of Spathularia. We estimate that the divergence time of the Cudoniaceae was in the Paleogene approximately 28 Million years ago (Mya) and that the ancestral area for this group of fungi was in Eastern Asia based on the current data. We hypothesize that the large-scale geological and climatic events in Oligocene (e.g. the global cooling and the uplift of the Tibetan plateau) may have triggered evolutionary radiations in this group of fungi in East Asia. This work provides a foundation for future studies on the phylogeny, diversity, and evolution of Cudonia and Spathularia and highlights the need for more molecular studies on collections from Europe and North America.  相似文献   

10.
The Polleniidae (Diptera) are a family of flies best known for species of the genus Pollenia, which overwinter inside human dwellings. Previously divided across the Calliphoridae, Tachinidae and Rhinophoridae, the polleniid genera have only recently been united. Several studies have utilized molecular data to analyse polleniid phylogenetic relationships, although all have suffered from low taxon sampling or insufficient phylogenetic signal in molecular markers. To alleviate these problems, we utilized two automated organellar genome extraction software, GetOrganelle and MitoFinder, to assemble mitogenomes from genome skimming data from 22 representatives of the polleniid genera: Dexopollenia, Melanodexia, Morinia, Pollenia and Xanthotryxus. From these analyses, we provide 14 new mitogenomes for the Polleniidae and perform phylogenetic analyses of 13 protein-coding mitochondrial genes using both maximum likelihood and Bayesian inference. Subfamilial phylogenetic relationships within the Polleniidae are interrogated and Pollenia is found to form a monophyletic clade sister to Melanodexia, Morinia and Dexopollenia, providing no evidence for the synonymisation of any of these genera. Our topology conflicts with previous morphology-based cladistic interpretations, with the amentaria, griseotomentosa, semicinerea and viatica species-groups resolving as non-monophyletic. We provide support for our topology through analysis of adult morphology and male and female terminalia, while identifying new diagnostic characters for some of the clades of the Pollenia. To test the validity of the current diagnostic morphology in the Polleniidae, newly assembled cytochrome C oxidase subunit 1 (COI) data are combined with a polleniid COI barcode reference library and analysed using the species delimitation software ASAP. COI barcodes support the current morphologically defined species within the Pollenia.  相似文献   

11.
Echinocereus is a morphologically diverse genus that includes 64 species grouped into eight taxonomic sections based on morphological traits. In previous molecular phylogenetic analyses, the relationships amongst Echinocereus species were not entirely revealed and useful characters to recognize clades were not provided. The inclusion of several sources of evidence in a phylogenetic analysis is likely to produce more supported hypotheses. Therefore, we performed a combined phylogenetic analysis with a set of 44 morphological characters and six chloroplast DNA sequences. Topologies from parsimony and Bayesian analyses were mostly congruent. However, the relationships of E. poselgeri were not consistent between analyses. A second Bayesian analysis using a long-branch extraction test resulted in a topology with the morphological position of E. poselgeri congruent with that in parsimony analysis. Parsimony and Bayesian analyses corroborated the monophyly of Echinocereus, which included eight monophyletic groups. The combined phylogeny integrated into different clades those taxa that were not determined in previous analyses and changed the relationships of some recognized clades. The clades did not recover the recent infrageneric classification. In the present study, a new sectional classification for Echinocereus is proposed based on the eight recovered clades, which is supported by a combination of morphological and molecular characters. An identification key for sections in the genus is included.  相似文献   

12.
In this study, we used sequences of two mitochondrial genes, cytochrome c oxidase I (COI) and 16S rRNA, and one nuclear gene, 28S rRNA, to test the monophyly of the sea star genus Echinaster, and understand the phylogenetic relationships among species and subgenera within this genus. Phylogenetic analyses based on Bayesian inference and maximum likelihood methods revealed three clades with high values of genetic divergence among them (K2P distances for COI over 23%). One of the clades grouped all Echinaster (Othilia) species, and the other two clades included Echinaster (non‐Othilia) species and Henricia species, respectively. Although the relationships among Henricia, Othilia, and Echinaster could not be completely clarified, the Othilia clade was a well‐supported group with shared diagnostic morphological characters. Moreover, the approximately unbiased test applied to the phylogenetic reconstruction rejected the hypothesis of the genus Echinaster as a monophyletic group. According to these results, we suggest the revalidation of Othilia as a genus instead of a subgenus within Echinaster. Our study clarifies important points about the phylogenetic relationships among species of Echinaster. Other important systematic questions about the taxonomic classification of Echinaster and Henricia still remain open, but this molecular study provides bases for future research on the topic.  相似文献   

13.
14.
Since innovative molecular approaches in phylogenetics solely based on small gene fragments have often generated widely complicated interpretations of crayfish diversity, we propose a geometric morphometric study integrated with previous molecular data to provide robust estimates of phylogeny and classification of the Austropotamobius pallipes complex, genetically divided into several species and subspecies. We discuss whether cephalothorax shape variation can show phylogenetic signals congruent to those derived from analyses of mitochondrial and nuclear markers. Our results support the hypothesis that carapace form is potentially informative in the reconstruction of crayfish phylogeny. In the phenetic analyses, populations collected within the Italian territory form different unexpected clusters, each involving distant populations of different genetic haplogroups, suggesting a within‐species convergence probably due to a series of local adaptations. The phylogenetic analysis performed using a neighbour‐joining algorithm showed interesting relationships amongst the studied populations. In particular, the geometric morphometric matrices showed a slight congruence with some genetic distances, allowing the discrimination of three major lineages: (1) Istran + Apennine group; (2) Arno group; (3) north‐western group. Finally, our observations support some molecular data with a lighter phylogenetic signal that do not suggest a strong separation of A. pallipes into clades and sub‐clades.  相似文献   

15.
Impatiens L. is one of the largest angiosperm genera, containing over 1000 species, and is notorious for its taxonomic difficulty. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the genus to date based on a total evidence approach. Forty‐six morphological characters, mainly obtained from our own investigations, are combined with sequence data from three genetic regions, including nuclear ribosomal ITS and plastid atpB‐rbcL and trnL‐F. We include 150 Impatiens species representing all clades recovered by previous phylogenetic analyses as well as three outgroups. Maximum‐parsimony and Bayesian inference methods were used to infer phylogenetic relationships. Our analyses concur with previous studies, but in most cases provide stronger support. Impatiens splits into two major clades. For the first time, we report that species with three‐colpate pollen and four carpels form a monophyletic group (clade I). Within clade II, seven well‐supported subclades are recognized. Within this phylogenetic framework, character evolution is reconstructed, and diagnostic morphological characters for different clades and subclades are identified and discussed. Based on both morphological and molecular evidence, a new classification outline is presented, in which Impatiens is divided into two subgenera, subgen. Clavicarpa and subgen. Impatiens; the latter is further subdivided into seven sections.  相似文献   

16.
17.
Re-thinking the classification of corticioid fungi   总被引:1,自引:0,他引:1  
Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi are distributed among all major clades within Agaricomycetes. There is a relative consensus concerning the higher order classification of basidiomycetes down to order. This paper presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative families were identified from published phylogenies and preliminary analyses of unpublished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phylogenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly supported and three unsupported clades were identified. These clades are treated as families in a Linnean hierarchical classification and each family is briefly described. Three additional families not covered by the phylogenetic analyses are also included in the classification. All accepted corticioid genera are either referred to one of the families or listed as incertae sedis.  相似文献   

18.

Background

The Campanuloideae (Campanulaceae) are a highly diverse clade of angiosperms found mostly in the Northern Hemisphere, with the highest diversity in temperate areas of the Old World. Chloroplast markers have greatly improved our understanding of this clade but many relationships remain unclear primarily due to low levels of molecular evolution and recent and rapid divergence. Furthermore, focusing solely on maternally inherited markers such as those from the chloroplast genome may obscure processes such as hybridization. In this study we explore the phylogenetic utility of two low-copy nuclear loci from the pentatricopeptide repeat gene family (PPR). Rapidly evolving nuclear loci may provide increased phylogenetic resolution in clades containing recently diverged or closely related taxa. We present results based on both chloroplast and low-copy nuclear loci and discuss the utility of such markers to resolve evolutionary relationships and infer hybridization events within the Campanuloideae clade.

Results

The inclusion of low-copy nuclear genes into the analyses provides increased phylogenetic resolution in two species-rich clades containing recently diverged taxa. We also obtain support for the placement of two early diverging lineages (Jasione and Musschia-Gadellia clades) that have previously been unresolved. Furthermore, phylogenetic analyses of PPR loci revealed potential hybridization events for a number of taxa (e.g., Campanula pelviformis and Legousia species). These loci offer greater overall topological support than obtained with plastid DNA alone.

Conclusion

This study represents the first inclusion of low-copy nuclear genes for phylogenetic reconstruction in Campanuloideae. The two PPR loci were easy to sequence, required no cloning, and the sequence alignments were straightforward across the entire Campanuloideae clade. Although potentially complicated by incomplete lineage sorting, these markers proved useful for understanding the processes of reticulate evolution and resolving relationships at a wide range of phylogenetic levels. Our results stress the importance of including multiple, independent loci in phylogenetic analyses.  相似文献   

19.
The Munnopsidae are a diverse group of asellote isopods that are an important component of deep‐sea fauna. Morphologically‐based phylogenetic inference attempts have proven to be of limited use due to the ecological and morphological diversity within the clade. Monophyly of the family is well‐established but relationships within the group remain unresolved. This project is the first molecularly‐based effort focused specifically on resolving phylogenetic relationships within the Munnopsidae. Partial 28S and COI and complete 18S genes were sequenced for 28 asellotes, 15 additional taxa were included from which only one or two of the three target sequences could be obtained, and 18S sequences for five additional taxa were available from GenBank. Sequences were analysed both as individual genes and in combination using Bayesian and maximum parsimony approaches. Each gene provided a phylogenetic signal that could be identified in the combined analyses, with 18S analyses providing the most resolution of phylogenetic relationships. The available representatives of subfamilies Munnopsinae and Ilyarachninae were monophyletic, as was the genus Munneurycope. Relationships within the subfamily Munnopsinae were well‐resolved by thorough taxon sampling, several new species were placed, and the need for taxonomic revision of Munnopsis/Munnopsoides was supported. These analyses supported putative Eurycope paraphyly and emphasized the need for careful revision of this highly variable genus. Tytthocope was sister to Munnopsurus. Syneurycope was suggested as the sister group to the ilyarachnines. Combined analyses provided increased support for clades suggested in at least two individual gene analyses and for clades not strongly contradicted by individual analyses. Further work is required to fully resolve the munnopsid phylogeny and should consist of increased taxon sampling for the complete 18S sequence and possibly identification of at least one slowly evolving, nuclear protein‐coding gene to resolve the basal polytomy and enable placement of the root.  相似文献   

20.
Phylogenetic relationships within Malvaceae s.l., a clade that includes the traditional families Bombacaceae, Malvaceae s.str., Sterculiaceae, and Tiliaceae, have become greatly clarified thanks to recent molecular systematic research. In this paper, we use DNA sequences of four plastid regions (atpB, matK, ndhF, and rbcL) to study relationships within Malvadendrina, one of the two major clades of Malvaceae s.l. The four data sets were generally in agreement, but five terminal taxa manifested highly unexpected affinities in the rbcL partition, and the non-coding sequences of the trnK intron were found to provide limited phylogenetic information for resolving relationships at the base of Malvadendrina. The remaining data strongly support the existence of six major clades within Malvadendrina: Brownlowioideae, Dombeyoideae, Helicteroideae, Malvatheca (comprising Bombacoideae and Malvoideae), Sterculioideae, and Tilioideae. These data also resolve the placement of two problematic taxa: Nesogordonia (in Dombeyoideae) and Mortoniodendron (in Tilioideae). The relationships among the six clades are not definitively resolved, but the best-supported topology has Dombeyoideae as sister to the remainder of Malvadendrina (posterior probability PP=80%) and Sterculioideae as sister to Malvatheca (PP=86%). This early branching position of Dombeyoideae is supported by similarities in floral characters between members of that clade and outgroup taxa in Byttnerioideae. Similarly, the sister-group relationship of Sterculioideae and Malvatheca receives support from androecial characteristics, like subsessile or sessile anthers and an absence of staminodes, shared by these two clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号