首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a variable antigen expressed by P. falciparum, the malarial parasite. PfEMP-1, present on the surface of infected host erythrocytes, mediates erythrocyte binding to vascular endothelium, enabling the parasite to avoid splenic clearance. In addition, PfEMP-1 is proposed to regulate host immune responses via interactions with the CD36 receptor on antigen-presenting cells. We investigated the immunoregulatory function of PfEMP-1 by comparing host cell responses to erythrocytes infected with either wild-type parasites or transgenic parasites lacking PfEMP-1. We showed that PfEMP-1 suppresses the production of the cytokine interferon-gamma by human peripheral blood mononuclear cells early after exposure to P. falciparum. Suppression of this rapid proinflammatory response was CD36 independent and specific to interferon-gamma production by gammadelta-T, NK, and alphabeta-T cells. These data demonstrate a parasite strategy for downregulating the proinflammatory interferon-gamma response and further establish transgenic parasites lacking PfEMP-1 as powerful tools for elucidating PfEMP-1 functions.  相似文献   

2.
The human malarial parasite Plasmodium falciparum exports virulence determinants, such as the P. falciparum erythrocyte membrane protein 1 (PfEMP1), beyond its own periplasmatic boundaries to the surface of its host erythrocyte. This is remarkable given that erythrocytes lack a secretory pathway. Here we present evidence for a continuous membrane network of parasite origin in the erythrocyte cytoplasm. Co-localizations with antibodies against PfEMP1, PfExp-1, Pf332 and PfSbpl at the light and electron microscopical level indicate that this membrane network is composed of structures that have been previously described as tubovesicular membrane network (TVM), Maurer's clefts and membrane whorls. This membrane network could also be visualized in vivo by vital staining of infected erythrocytes with the fluorescent dye LysoSensor Green DND-153. At sites where the membrane network abuts the erythrocyte plasma membrane we observed small vesicles of 15-25 nm in size, which seem to bud from and/or fuse with the membrane network and the erythrocyte plasma membrane, respectively. On the basis of our data we hypothesize that this membrane network of parasite origin represents a novel secretory organelle that is involved in the trafficking of PfEMP1 across the erythrocyte cytoplasm.  相似文献   

3.
After invading human erythrocytes, the malarial parasite Plasmodium falciparum, initiates a remarkable process of secreting proteins into the surrounding erythrocyte cytoplasm and plasma membrane. One of these exported proteins, the knob-associated histidine-rich protein (KAHRP), is essential for microvascular sequestration, a strategy whereby infected red cells adhere via knob structures to capillary walls and thus avoid being eliminated by the spleen. This cytoadherence is an important factor in many of the deaths caused by malaria. Green fluorescent protein fusions and fluorescence recovery after photobleaching were used to follow the pathway of KAHRP deployment from the parasite endomembrane system into an intermediate depot between parasite and host, then onwards to the erythrocyte cytoplasm and eventually into knobs. Sequence elements essential to individual steps in the pathway are defined and we show that parasite-derived structures, known as Maurer's clefts, are an elaboration of the canonical secretory pathway that is transposed outside the parasite into the host cell, the first example of its kind in eukaryotic biology.  相似文献   

4.
The intra-erythrocytic stages of Plasmodium falciparum assemble a unique protein trafficking system that targets parasite proteins to the red cell cytoplasm and cell surface. It is through this trafficking pathway that the primary virulence determinants of P. falciparum infections are targeted to the erythrocyte surface to mediate adhesion to host endothelial cells. A recent study has shown that SBP-1, a parasite protein associated with Maurer's clefts in the infected red cell cytosol, is essential for transport of the virulence factor PfEMP-1. This discovery sheds new light on the little-understood mechanisms that regulate protein trafficking in infected cells.  相似文献   

5.
6.
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of antigenically diverse proteins is expressed on the surface of human erythrocytes infected with the malaria parasite P. falciparum, and mediates cytoadherence to the host vascular endothelium. In this report, we show that export of PfEMP1 is slow and inefficient as it takes several hours to traffic newly synthesized proteins to the erythrocyte membrane. Upon removal by trypsin treatment, the surface-exposed population of PfEMP1 is not replenished during subsequent culture indicating that there is no cycling of PfEMP1 between the erythrocyte surface and an intracellular compartment. The role of Maurer's clefts as an intermediate sorting compartment in trafficking of PfEMP1 was investigated using immunoelectron microscopy and proteolytic digestion of streptolysin O-permeabilized parasitized erythrocytes. We show that PfEMP1 is inserted into the Maurer's cleft membrane with the C-terminal domain exposed to the erythrocyte cytoplasm, whereas the N-terminal domain is buried inside the cleft. Transfer of PfEMP1 to the erythrocyte surface appears to involve electron-lucent extensions of the Maurer's clefts. Thus, we have delineated some important aspects of the unusual trafficking mechanism for delivery of this critical parasite virulence factor to the erythrocyte surface.  相似文献   

7.
The profound changes in the morphology, antigenicity, and functional properties of the host erythrocyte membrane induced by intraerythrocytic parasites of the human malaria Plasmodium falciparum are poorly understood at the molecular level. We have used mouse mAbs to identify a very large malarial protein (Mr approximately 300,000) that is exported from the parasite and deposited on the cytoplasmic face of the erythrocyte membrane. This protein is denoted P. falciparum erythrocyte membrane protein 2 (Pf EMP 2). The mAbs did not react with the surface of intact infected erythrocytes, nor was Pf EMP 2 accessible to exogenous proteases or lactoperoxidase-catalyzed radioiodination of intact cells. The mAbs also had no effect on in vitro cytoadherence of infected cells to the C32 amelanotic melanoma cell line. These properties distinguish Pf EMP 2 from Pf EMP 1, the cell surface malarial protein of similar size that is associated with the cytoadherent property of P. falciparum-infected erythrocytes. The mAbs did not react with Pf EMP 1. In one strain of parasite there was a significant difference in relative mobility of the 125I-surface-labeled Pf EMP 1 and the biosynthetically labeled Pf EMP 2, further distinguishing these proteins. By cryo-thin-section immunoelectron microscopy we identified organelles involved in the transit of Pf EMP through the erythrocyte cytoplasm to the internal face of the erythrocyte membrane where the protein is associated with electron-dense material under knobs. These results show that the intraerythrocytic malaria parasite has evolved a novel system for transporting malarial proteins beyond its own plasma membrane, through a vacuolar membrane and the host erythrocyte cytoplasm to the erythrocyte membrane, where they become membrane bound and presumably alter the properties of this membrane to the parasite's advantage.  相似文献   

8.
The malaria parasite invades the terminally differentiated erythrocytes, where it grows and multiplies surrounded by a parasitophorous vacuole. Plasmodium blood stages translocate newly synthesized proteins outside the parasitophorous vacuole and direct them to various erythrocyte compartments, including the cytoskeleton and the plasma membrane. Here, we show that the remodeling of the host cell directed by the parasite also includes the recruitment of dematin, an actin-binding protein of the erythrocyte membrane skeleton and its repositioning to the parasite. Internalized dematin was found associated with Plasmodium 14-3-3, which belongs to a family of conserved multitask molecules. We also show that, in vitro, the dematin-14-3-3 interaction is strictly dependent on phosphorylation of dematin at Ser(124) and Ser(333), belonging to two 14-3-3 putative binding motifs. This study is the first report showing that a component of the erythrocyte spectrin-based membrane skeleton is recruited by the malaria parasite following erythrocyte infection.  相似文献   

9.
During the development of the asexual stage of the malaria parasite, Plasmodium falciparum, the composition, structure and function of the host cell membrane is dramatically altered, including the ability to adhere to vascular endothelium. Crucial to these changes is the transport of parasite proteins, which become associated with or inserted into the erythrocyte membrane. Protein and membrane targeting beyond the parasite plasma membrane must require unique pathways, given the parasites intracellular location within a parasitophorous vacuolar membrane and the lack of organelles and biosynthetic machinery in the host cell necessary to support a secretory system. It is not clear how these proteins cross the parasitophorous vacuolar membrane or how they traverse the erythrocyte cytosol to reach their final destinations. The identification of: (1) a P. falciparum homologue of the protein Sar1p, which is an essential component of the COPII-based secretory system in mammalian cells and yeast and (2) electron-dense, possibly coated, secretory vesicles bearing P. falciparum erythrocyte membrane protein 1 and P. falciparum erythrocyte membrane protein 3 in the host cell cytosol of P. falciparum infected erythrocytes recently provided the first direct evidence of a vesicle-mediated pathway for the trafficking of some parasite proteins to the erythrocyte membrane. The major advance in uncovering the parasite-induced secretory pathway was made by incubating infected erythrocytes with aluminium tetrafluoride, an activator of guanidine triphosphate-binding proteins, which resulted in the accumulation of the vesicles into multiple vesicle strings. These vesicle complexes were often associated with and closely abutted the erythrocyte membrane, but were apparently prevented from fusing by the aluminium fluoride treatment, making their capture by electron microscopy possible. It appears that malaria parasites export proteins into the host cell cytosol to support a vesicle-mediated protein trafficking pathway.  相似文献   

10.
The particular virulence of the human malaria parasite Plasmodium falciparum derives from export of parasite-encoded proteins to the surface of the mature erythrocytes in which it resides. The mechanisms and machinery for the export of proteins to the erythrocyte membrane are largely unknown. In other eukaryotic cells, cholesterol-rich membrane microdomains or "rafts" have been shown to play an important role in the export of proteins to the cell surface. Our data suggest that depletion of cholesterol from the erythrocyte membrane with methyl-beta-cyclodextrin significantly inhibits the delivery of the major virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). The trafficking defect appears to lie at the level of transfer of PfEMP1 from parasite-derived membranous structures within the infected erythrocyte cytoplasm, known as the Maurer's clefts, to the erythrocyte membrane. Thus our data suggest that delivery of this key cytoadherence-mediating protein to the host erythrocyte membrane involves insertion of PfEMP1 at cholesterol-rich microdomains. GTP-dependent vesicle budding and fusion events are also involved in many trafficking processes. To determine whether GTP-dependent events are involved in PfEMP1 trafficking, we have incorporated non-membrane-permeating GTP analogs inside resealed erythrocytes. Although these nonhydrolyzable GTP analogs reduced erythrocyte invasion efficiency and partially retarded growth of the intracellular parasite, they appeared to have little direct effect on PfEMP1 trafficking.  相似文献   

11.
The malarial parasite Plasmodium falciparum transposes a Golgi-like compartment, referred to as Maurer's clefts, into the cytoplasm of its host cell, the erythrocyte, and delivering parasite molecules to the host cell surface. We report here a novel role of the Maurer's clefts implicating a parasite protein phosphatase 1 (PP1) and related to the phosphorylation status of P. falciparum skeleton-binding protein 1 (PfSBP1), a trans-membrane protein of the clefts interacting with the host cell membrane via its carboxy-terminal domain. Based on co-immunoprecipitation and inhibition studies, we show that the parasite PP1 type phosphatase modulates the phosphorylation status of the amino-terminal domain of PfSBP1 in the lumen of Maurer's clefts. Importantly, the addition of a PP1 inhibitor, calyculin A, to late schizonts results in the hyperphosphorylation of PfSBP1 and prevents parasite release from the host cell. We propose that the hyperphosphorylation of PfSBP1 interferes with the release of merozoites, the invasive blood stage of the parasite, by increasing the red cell membrane stability. Moreover, the parasite PP1 phosphatase is the first enzyme essential for the parasite development detected in the Maurer's clefts.  相似文献   

12.
The intraerythrocytic malaria parasite, Plasmodium falciparum, derives amino acids from the digestion of host cell haemoglobin. However, it also takes up amino acids from the extracellular medium. Isoleucine is absent from adult human haemoglobin and an exogenous source of isoleucine is essential for parasite growth. An extracellular source of methionine is also important for the normal growth of at least some parasite strains. In this study we have characterised the uptake of methionine by P. falciparum-infected human erythrocytes, and by parasites functionally isolated from their host cells by saponin-permeabilization of the erythrocyte membrane. Infected erythrocytes take up methionine much faster than uninfected erythrocytes, with the increase attributable to the flux of this amino acid via the New Permeability Pathways induced by the parasite in the erythrocyte membrane. Having entered the infected cell, methionine is taken up by the intracellular parasite via a saturable, temperature-dependent process that is independent of ATP, Na+ and H+. Substrate competition studies, and comparison of the transport of methionine with that of isoleucine and leucine, yielded results consistent with the hypothesis that the parasite has at its surface one or more transporters which mediate the flux into and out of the parasite of a broad range of neutral amino acids. These transporters function most efficiently when exchanging one neutral amino acid for another, thus providing a mechanism whereby the parasite is able to import important exogenous amino acids in exchange for surplus neutral amino acids liberated from the digestion of host cell haemoglobin.  相似文献   

13.
Adhesion of parasite-infected red blood cells to the vascular endothelium is a critical event in the pathogenesis of malaria caused by Plasmodium falciparum. Adherence is mediated by the variant erythrocyte membrane protein 1 (PfEMP1). Another protein, erythrocyte membrane protein-3 (PfEMP3), is deposited under the membrane of the parasite-infected erythrocyte but its function is unknown. Here we show that mutation of PfEMP3 disrupts transfer of PfEMP1 to the outside of the P.FALCIPARUM:-infected cell. Truncation of the C-terminal end of PfEMP3 by transfection prevents distribution of this large (>300 kDa) protein around the membrane but does not disrupt trafficking of the protein from the parasite to the cytoplasmic face of the erythrocyte membrane. The truncated PfEMP3 accumulates in structures that appear to be associated with the erythrocyte membrane. We show that accumulation of mutated PfEMP3 blocks the transfer of PfEMP1 onto the outside of the parasitized cell surface and suggest that these proteins traffic through an erythrocyte membrane-associated compartment that is involved in the transfer of PfEMP1 to the surface of the parasite-infected red blood cell.  相似文献   

14.
Plasmodium falciparum is the protozoan parasite that causes the most virulent of human malarias. The blood stage parasites export several hundred proteins into their host erythrocyte that underlie modifications linked to major pathologies of the disease and parasite survival in the blood. Unfortunately, most are 'hypothetical' proteins of unknown function, and those that are essential for parasitization of the erythrocyte cannot be 'knocked out'. Here, we combined bioinformatics and genome-wide expression analyses with a new series of transgenic and cellular assays to show for the first time in malaria parasites that microarray read out from a chemical perturbation can have predictive value. We thereby identified and characterized an exported P. falciparum protein resident in a new vesicular compartment induced by the parasite in the erythrocyte. This protein, named Erythrocyte Vesicle Protein 1 (EVP1), shows novel dynamics of distribution in the parasite and intraerythrocytic membranes. Evidence is presented that its expression results in a change in TVN-mediated lipid import at the host membrane and that it is required for intracellular parasite growth, but not invasion. This exported protein appears to be needed for the maintenance of an essential tubovesicular nutrient import pathway induced by the pathogen in the host cell. Our approach may be generalized to the analysis of hundreds of 'hypothetical' P. falciparum proteins to understand their role in parasite entry and/or growth in erythrocytes as well as phenotypic contributions to either antigen export or tubovesicular import. By functionally validating these unknowns, one may identify new targets in host-microbial interactions for prophylaxis against this major human pathogen.  相似文献   

15.
The rhoptry is an organelle of the malarial merozoite which has been suggested to play a role in parasite invasion of its host cell, the erythrocyte. A monoclonal antibody selected for reactivity with this organelle identifies a parasite synthesized protein of 110 kD. From biosynthetic labeling experiments it was demonstrated that the protein is synthesized midway through the erythrocytic cycle (the trophozoite stage) but immunofluorescence indicates the protein is not localized in the organelle until the final stage (segmenter stage) of intraerythrocytic development. Immunoelectron microscopy shows that the protein is localized in the matrix of the rhoptry organelle and on membranous whorls secreted from the merozoite. mAb recognition of the protein is dithiothreitol (DTT) labile, indicating that the conformation of the epitope is dependent on a disulfide linkage. During erythrocyte reinvasion by the extracellular merozoite, immunofluorescence shows the rhoptry protein discharging from the merozoite and spreading around the surface of the erythrocyte. The protein is located in the plasma membrane of the newly invaded erythrocyte. These studies suggest that the 110-kD rhoptry protein is inserted into the membrane of the host erythrocyte during merozoite invasion.  相似文献   

16.
Maurer's clefts are single-membrane-limited structures in the cytoplasm of erythrocytes infected with the human malarial parasite Plasmodium falciparum. The currently accepted model suggests that Maurer's clefts act as an intermediate compartment in protein transport processes from the parasite across the cytoplasm of the host cell to the erythrocyte surface, by receiving and delivering protein cargo packed in vesicles. This model is mainly based on two observations. Firstly, single-section electron micrographs have shown, within the cytoplasm of infected erythrocytes, stacks of long slender membranes in close vicinity to round membrane profiles considered to be vesicles. Secondly, proteins that are transported from the parasite to the erythrocyte surface as well as proteins facilitating the budding of vesicles have been found in association with Maurer's clefts. Verification of this model would be greatly assisted by a better understanding of the morphology, dimensions and origin of the Maurer's clefts. Here, we have generated and analyzed three-dimensional reconstructions of serial ultrathin sections covering segments of P. falciparum-infected erythrocytes of more than 1 microm thickness. Our results indicate that Maurer's clefts are heterogeneous in structure and size. We have found Maurer's clefts consisting of a single disk-shaped cisternae localized beneath the plasma membrane. In other examples, Maurer' clefts formed an extended membranous network that bridged most of the distance between the parasite and the plasma membrane of the host erythrocyte. Maurer's cleft membrane networks were composed of both branched membrane tubules and stacked disk-shaped membrane cisternae that eventually formed whorls. Maurer's clefts were visible in other cells as a loose membrane reticulum composed of scattered tubular and disk-shaped membrane profiles. We have not seen clearly discernable isolated vesicles in the analyzed erythrocyte segments suggesting that the current view of how proteins are transported within the Plasmodium-infected erythrocyte may need reconsideration.  相似文献   

17.
We have purified and characterized a novel high molecular mass glycoprotein of P. chabaudi chabaudi (Pc550gp) that is transported to the erythrocyte membrane during the intraerythrocytic cycle. Immuno fluorescence assays with polyclonal monospecific antibodies against Pc550gp show that the protein to be localized in the periphery of young trophozoite stages i.e., on the plasma membrane or parasitophorous vacuole membrane. However, in late trophozoites and schizonts the antigen is distributed in both parasite and host cell membranes. These results were confirmed by immunoblotting of isolated parasites and infected host cell membranes at different stages of parasite development. Moreover, alkali extraction of purified infected erythrocyte membranes at mature stages of parasite development does not solubilize Pc550gp, suggesting that it is an integral membrane protein. In addition proteinase K digestion of intact infected host cells induced the disappearance of Pc550gp. Further indicating its transmembrane nature and that it presents extracellular domains susceptible to proteolysis. Brefeldin A or low temperature (15 degrees C) treatment did not affect the translocation of Pc550gp from the parasite compartments to the erythrocyte membrane, indicating that the secretion of Pc550gp does not follow the classical transport pathway described in most eukaryotic cells.  相似文献   

18.
The virulence of the malaria parasite Plasmodium falciparum is related to its ability to express a family of adhesive proteins known as P. falciparum erythrocyte membrane protein 1 (PfEMP1) at the infected red blood cell surface. The mechanism for the transport and delivery of these adhesins to the erythrocyte membrane is only poorly understood. In this work, we have used specific immune reagents in a flow cytometric assay to monitor the effects of serum components on the surface presentation of PfEMP1. We show that efficient presentation of the A4 and VAR2CSA variants of PfEMP1 is dependent on the presence of serum in the bathing medium during parasite maturation. Lipid-loaded albumin supports parasite growth but allows much less efficient presentation of PfEMP1 at the red blood cell surface. Analysis of the serum components reveals that lipoproteins, especially those of the low-density lipoprotein fraction, promote PfEMP1 presentation. Cytoadhesion of infected erythrocytes to the host cell receptors CD36 and ICAM-1 is also decreased in infected erythrocytes cultured in the absence of serum. The defect appears to be in the transfer of PfEMP1 from parasite-derived structures known as the Maurer's clefts to the erythrocyte membrane or in surface conformation rather than a down-regulation or switching of particular PfEMP1 variants.  相似文献   

19.
The human malaria parasite Plasmodium falciparum exports determinants of virulence and pathology to destinations within the host erythrocyte, including the erythrocyte cytoplasm, plasma membrane and membrane profiles of parasite origin termed Maurer's clefts. Most of the exported proteins contain a conserved pentameric motif termed plasmodial export element (PEXEL)/vacuolar transfer signal (VTS) that functions as a cleavable sorting signal permitting export to the host erythrocyte. However, there are some exported proteins, such as the skeleton-binding protein 1 (PfSBP1) that lack the PEXEL/VTS motif and that are not N-terminally processed, suggesting the presence of alternative sorting signals and/or mechanisms. In this study, we have investigated trafficking of PfSBP1 to the Maurer's clefts. Our data show that the transmembrane domain of PfSBP1 functions as an internal signal sequence for entry into the parasite's secretory pathway and for transport to the parasite plasma membrane. Trafficking beyond the parasite's plasma membrane required additional N-terminal domains, which are characterized by a high negative net charge. Biochemical data indicate that these domains affect the solubility and extraction profile, the orientation of the protein within the membrane and the subcellular localization. Our findings suggest new principles of protein export in P.   falciparum -infected erythrocytes.  相似文献   

20.
The human malarial parasite Plasmodium falciparum exports proteins to destinations within its host erythrocyte, including cytosol, surface and membranous profiles of parasite origin termed Maurer's clefts. Although several of these exported proteins are determinants of pathology and virulence, the mechanisms and trafficking signals underpinning protein export are largely uncharacterized-particularly for exported transmembrane proteins. Here, we have investigated the signals mediating trafficking of STEVOR, a family of transmembrane proteins located at the Maurer's clefts and believed to play a role in antigenic variation. Our data show that, apart from a signal sequence, a minimum of two addition signals are required. This includes a host cell targeting signal for export to the host erythrocyte and a transmembrane domain for final sorting to Maurer's clefts. Biochemical studies indicate that STEVOR traverses the secretory pathway as an integral membrane protein. Our data suggest general principles for transport of transmembrane proteins to the Maurer's clefts and provide new insights into protein sorting and trafficking processes in P. falciparum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号