首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingolipids are a class of membrane lipids conserved from yeast to mammals which determine whether a cell dies or survives. Perturbations in sphingolipid metabolism cause apoptotic cell death. Recent studies indicate that reduced sphingolipid levels trigger the cell death, but little is known about the mechanisms. In the budding yeast Saccharomyces cerevisiae, we show that reduction in complex sphingolipid levels causes loss of viability, most likely due to the induction of mitochondria‐dependent apoptotic cell death pathway, accompanied by changes in mitochondrial and endoplasmic reticulum morphology and endoplasmic reticulum stress. Elevated cytosolic free calcium is required for the loss of viability. These results indicate that complex sphingolipids are essential for maintaining endoplasmic reticulum homeostasis and suggest that perturbation in complex sphingolipid levels activates an endoplasmic reticulum stress‐mediated and calcium‐dependent pathway to propagate apoptotic signals to the mitochondria.  相似文献   

2.
Trafficking and sorting of lipids during transport from the endoplasmic reticulum to the Golgi apparatus was studied using a cell-free system from rat liver. Transitional elements of the endoplasmic reticulum were prepared from liver slices prelabeled with [14C]- or [3H]acetate as the donor fraction. Non-radioactive Golgi apparatus were immobilized on nitrocellulose as the acceptor. When reconstituted, the radiolabeled donor retained a capacity to transfer labeled lipids to the non-radioactive Golgi apparatus acceptor. Transfer exhibited two kinetically different components. One was stimulated by ATP, facilitated by cytosol and inhibited by guanosine 5'-O-(thiotriphosphate) and N-ethylmaleimide. In parallel with protein transport, the ATP-dependent lipid transfer occurred with a temperature transition at about 20 degrees C. The other was not stimulated by ATP, did not require cytosol, was acceptor unspecific, was unaffected by inhibitors and, while temperature dependent, did not exhibit a sharp temperature transition. The ATP-independent transfer was non-vesicular. In contrast, the ATP-dependent transfer was vesicular. Transition vesicles isolated by preparative free-flow electrophoresis, when used as the donor fraction, transferred lipids to Golgi apparatus acceptor with a 5-6-fold greater efficiency than that exhibited by the unfractionated transitional endoplasmic reticulum. Formation of transition vesicles was ATP-dependent. Transferred lipids were chiefly phosphatidylcholine and cholesterol. Membrane triglycerides, major constituents of the transitional endoplasmic reticulum membranes, were both depleted in the transition vesicle-enriched fractions and not transferred to Golgi apparatus suggestive of lipid sorting prior to or during transition vesicle formation. The characteristics of the ATP plus cytosol-dependent transfer were similar to those for protein transfer mediated by transition vesicles. Thus, the 50-70-nm vesicles derived from transitional endoplasmic reticulum appear to function in the trafficking of both newly synthesized proteins and lipids from the endoplasmic reticulum to the Golgi apparatus.  相似文献   

3.
《The Journal of cell biology》1984,99(6):1917-1926
To study the assembly of newly synthesized lipids with apoprotein A1, we administered [2-3H]glycerol to young chickens and determined the hepatic intracellular sites of lipid synthesis and association of nascent lipids with apoprotein A1. [2-3H]glycerol was rapidly incorporated into hepatic lipids, reaching maximal levels at 5 min, and this preceded the appearance of lipid radioactivity in the plasma. The liver was fractionated into rough and smooth endoplasmic reticulum and Golgi cell fractions. The isolated cell fractions were further subfractionated into membrane and soluble (content) fractions by treatment with 0.1 M Na2CO3, pH 11.3. At various times, the lipid radioactivity was measured in each of the intracellular organelles, in immunoprecipitable apoprotein A1, and in materials that floated at buoyant densities similar to those of plasma lipoproteins. Maximal incorporation occurred at 1 min in the rough endoplasmic reticulum, at 3-5 min in the smooth endoplasmic reticulum, and at 5 min in the Golgi cell fractions. The majority (66-93%) of radioactive glycerol was incorporated into triglycerides with smaller (4-27%) amounts into phospholipids. About 80% of the lipid radioactivity in the endoplasmic reticulum and 70% of that in the Golgi cell fractions was in the membranes. The radioactive lipids in the content subfraction were distributed in various density classes with most nascent lipids floating at a density less than or equal to 1.063 g/ml. Apoprotein A1 from the Golgi apparatus, obtained by immunoprecipitation, contained sixfold more nascent lipids than did that from the endoplasmic reticulum. These data indicate that [2-3H]glycerol is quickly incorporated into lipids of the endoplasmic reticulum and the Golgi cell fractions, that most of the nascent lipids are conjugated with apoproteins A1 in the Golgi apparatus, and that very little association of nascent lipid to apoprotein A1 occurs in the endoplasmic reticulum.  相似文献   

4.
Acyl-CoAs are substrates for acyl lipid synthesis in the endoplasmic reticulum. In addition, they may also be substrates for lipid acylation in other membranes. In order to assess whether lipid acylation may have a role in plastid lipid metabolism, we have studied the incorporation of radiolabelled fatty acids from acyl-CoAs into lipids in isolated, intact pea chloroplasts. The labelled lipids were phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylinositol and free fatty acids. With oleoyl-CoA, the fatty acid was incorporated preferably into the sn-2 position of PC and the acylation activity mainly occurred in fractions enriched in inner chloroplast envelope. Added lysoPC stimulated the activity. With palmitoyl-CoA, the fatty acid was incorporated primarily into the sn-1 position of PG and the reaction occurred at the surface of the chloroplasts. As chloroplast-synthesized PG generally contains 16C fatty acids in the sn-2 position, we propose that the acylation of PG studied represents activities present in a domain of the endoplasmic reticulum or an endoplasmic reticulum-derived fraction that is associated with chloroplasts and maintains this association during isolation. This domain or fraction contains a discreet population of lipid metabolizing activities, different from that of bulk endoplasmic reticulum, as shown by that with isolated endoplasmic reticulum, acyl-CoAs strongly labelled phosphatidic acid and phosphatidylethanolamine, lipids that were never labelled in the isolated chloroplasts.  相似文献   

5.
Proteins of the Bcl-2 family are important regulators of cell fate. The role of these proteins in controlling mitochondrial apoptotic processes has been extensively investigated, although exact molecular mechanisms are incompletely understood. However, mounting evidence indicates that these proteins also function at the endoplasmic reticulum and other locations within the cell. Both pro- and anti-apoptotic Bcl-2 family members can regulate endoplasmic reticulum calcium, cellular pH and endoplasmic reticulum resident proteins. In this review, we discuss the activities and potential targets of Bcl-2 family members at the endoplasmic reticulum and other cellular locations.  相似文献   

6.
The transport of proteins and lipids between the endoplasmic reticulum and Golgi apparatus is initiated by the collection of secretory cargo from within the lumen of the endoplasmic reticulum. Subsequently, transport carriers are formed that bud from this membrane and are transported to, and subsequently merge with, the Golgi. The principle driving force behind the budding process is the multi-subunit coat protein complex, COPII. A considerable amount of information is now available regarding the molecular mechanisms by which COPII components operate together to drive cargo selection and transport carrier formation. In contrast, the precise nature of the transport carriers formed is still a matter of considerable debate. Vesicular and tubular carriers have been characterized that are, or in other cases are not, coated with the COPII complex. Here, we seek to integrate much of the data surrounding this topic and try to understand the mechanisms by which vesicular and/or tubular carriers might be generated.  相似文献   

7.
Electron microscopic and biochemical investigations of developing embryonic mustard cotyledons provided no evidence for the widely accepted hypothesis that oleosomes of fat-storing tissues originate from the endoplasmic reticulum and are surrounded by a unit- or half-unit membrane. In contrast, it was found that the first lipid droplets appear (about 12–14 d after pollination) in the ground cytoplasm near the surface of plastids. Subsequently these nascent lipid droplets, which lack any detectable boundary structure at this stage, become encircled by a cisterna of rough endoplasmic reticulum. At the same time an osmiophilic coat of about 3 nm thickness becomes detectable at the lipid/water interface. In the cotyledon cells of germinating seedlings a centrifugally moving front of fat degradation moves from the central vacuoles(s) towards the cell periphery, leaving behind collapsed coats of oleosomes which are depleted of their lipid contents (saccules). Although saccules appear tripartite in cross section, they are structurally different from endoplasmic reticulum membranes. The oleosome coats can be isolated from oleosome preparations by extracting lipids with organic solvents. The coat material is insoluble in detergents like Triton X-100 or deoxycholate and shows a tripartite, lamellar structure (similar to collapsed saccules) under the electron microscope. Upon dissolution with dodecylsulfate, polyacrylamide gel electrophoresis revealed a polypeptide composition (9 major bands) which is qualitatively different from that of the endoplasmic reticulum membrane. Also the buoyant densities of defatted oleosome coats and defatted endoplasmic reticulum membranes are very different. It is concluded that oleosome lipids accumulate in the ground cytoplasm and are bounded by a lamellar structure originating de novo from proteinaceous elements synthesized by specific regions of the endoplasmic reticulum.Abbreviation ER endoplasmic reticulum  相似文献   

8.
The endoplasmic reticulum is the site of synthesis of most glycerophospholipids, neutral lipids and the initial steps of sphingolipid biosynthesis of the secretory pathway. After synthesis, these lipids are distributed within the cells to create and maintain the specific compositions of the other secretory organelles. This represents a formidable challenge, particularly while there is a simultaneous and quantitatively important flux of membrane components stemming from the vesicular traffic of proteins through the pathway, which can also vary depending on the cell type and status. To meet this challenge cells have developed an intricate system of interorganellar contacts and lipid transport proteins, functioning in non-vesicular lipid transport, which are able to ensure membrane lipid homeostasis even in the absence of membrane trafficking. Nevertheless, under normal conditions, lipids are transported in cells by both vesicular and non-vesicular mechanisms. In this review we will discuss the mechanism and roles of vesicular and non-vesicular transport of lipids from the ER to other organelles of the secretory pathway.  相似文献   

9.
Purified spinach chloroplasts incorporate [1-14C]isopentenyl diphosphate into prenyl lipids in high yields. The immediate biosynthetic precursors of isopentenyl diphosphate (hydroxymethylglutaryl-CoA, mevalonate, mevalonate-5-phosphate, mevalonate-5-diphosphate), on the other hand, are not accepted as substrates and the corresponding enzymes hydroxymethylglutaryl-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and diphosphomevalonate decarboxylase are not present in the organelles. These enzymes can only be detected in a membrane-bound form at the endoplasmic reticulum (hydroxymethylglutaryl-CoA reductase) and as soluble activities in the cytoplasm. The concept is developed that isopentenyl diphosphate is formed in the cytoplasm as a 'central intermediate' and is distributed then to other cellular compartments (endoplasmic reticulum, plastids, mitochondria) for further biosynthetic utilization.  相似文献   

10.
V Gomord  E Wee  L Faye 《Biochimie》1999,81(6):607-618
Protein transport along the secretory pathway is supported by a noria of vesicles that bud and fuse, load and unload their cargo from one compartment into the other. However, despite this constant flow-through of proteins and lipids the various compartments of the secretory pathway are able to maintain their own specific composition. Here, we discuss recent insights into mechanisms of protein retention and localization that are necessary for the maintenance of endoplasmic reticulum (ER)- and Golgi-associated typical functions such as protein folding and glycosylation in plant cells.  相似文献   

11.
Intracellular origin and secretion of milk fat globules   总被引:2,自引:0,他引:2  
The cream or fat fraction of milk consists of fat droplets composed primarily of triacylglycerols that are surrounded by cellular membranes. In this review we discuss what is known about how these droplets are formed in and secreted by mammary epithelial cells during lactation. This secretion mechanism, which appears to be unique, is unlike the exocytotic mechanism used by other cell types to secrete lipids. Milk fat globules originate as small, triacylglycerol-rich, droplets that are formed on or in endoplasmic reticulum membranes. These droplets are released from endoplasmic reticulum into the cytosol as microlipid droplets coated by proteins and polar lipids. Microlipid droplets can fuse with each other to form larger cytoplasmic lipid droplets. Droplets of all sizes appear to be unidirectionally transported to apical cell regions by as yet unknown mechanisms that may involve cytoskeletal elements. These lipid droplets appear to be secreted from the cell in which they were formed by being progressively enveloped in differentiated regions of apical plasma membrane. While plasma membrane envelopment appears to be the primary mechanism by which lipid droplets are released from the cell, a mechanism involving exocytosis of lipid droplets from cytoplasmic vacuoles also has been described. As discussed herein, while we have a general overview of the steps leading to the fat globules of milk, virtually nothing is known about the molecular mechanisms involved in milk fat globule formation, intracellular transit, and secretion.  相似文献   

12.
Effects of N-glycosylation on the folding and structure of plant proteins   总被引:3,自引:0,他引:3  
The synthesis of many of the proteins that are translocated into the endoplasmic reticulum is accompanied by the co-translational attachment of preformed oligosaccharide chains to certain Asn residues. These glycoproteins can play a variety of roles in the mature proteins, including the one of stabilizing the protein and protecting the polypeptide backbone from the action of proteases. In addition, they can have a crucial function during the process of polypeptide folding, when aggregation with other proteins would hamper the acquisition of the native conformation. Their influence on protein folding can be direct, or mediated by interactions with endoplasmic reticulum-located molecular chaperones. The elucidation of the mechanisms that govern glycoprotein folding in the plant endoplasmic reticulum should contribute to the understanding of how much plant cells rely on glycan chains to achieve the efficient folding of many proteins under diverse environmental conditions. In addition, a better knowledge of the level of conservation of the in vivo folding mechanisms will be important for the exploitation of plant cells in the production of heterologous glycoproteins.Keywords: Calnexin, calreticulin, endoplasmic reticulum, glucose trimming, glycoprotein stability.   相似文献   

13.
C E Martin  G A Thompson 《Biochemistry》1978,17(17):3581-3586
Fluorescence polarization of 1,6-diphenylhexatriene (DPH) was used to study the effects of temperature acclimation on Tetrahymena membranes. The physical properties of membrane lipids were found to be highly dependent on cellular growth temperature. DPH polarization in lipids from three different membrane fractions correlated well with earlier freeze-fracture and electron spin resonance observations showing that membrane fluidity progressively decreases in the order microsomes greater than pellicles greater than cilia throughout a wide range of growth temperatures. Changes in membrane lipid fluidity following a shift from high to low growth temperatures proceed rapidly in the microsomes, whereas there is a pronounced lag in the changes of peripheral cell membrane lipids. These data support previous observations that adaptive changes in membrane fluidity proceed via lipid modifications in the endoplasmic reticulum, followed by dissemination of lipid components to other cell membranes. The rapid changes in polarization observed in the microsomal lipids following a temperature shift correspond closely with the time-dependent alterations in both lipid fatty acid composition and freeze-fracture patterns of membrane particle distribution, suggesting that, in the endoplasmic reticulum, lipid phase separation is the primary cause of membrane particle rearrangements.  相似文献   

14.
Structural lipids are mostly synthesized in the endoplasmic reticulum (ER), from which they are actively transported to the membranes of other organelles. Lipids can leave the ER through vesicular trafficking or non-vesicular lipid transfer and, curiously, both processes can be regulated either by the transported lipid cargos themselves or by different secondary lipid species. For most structural lipids, transport out of the ER membrane is a key regulatory component controlling their synthesis. Distribution of the lipids between the two leaflets of the ER bilayer or between the ER and other membranes is also critical for maintaining the unique membrane properties of each cellular organelle. How cells integrate these processes within the ER depends on fine spatial segregation of the molecular components and intricate metabolic channeling, both of which we are only beginning to understand. This review will summarize some of these complex processes and attempt to identify the organizing principles that start to emerge. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.  相似文献   

15.
内质网是蛋白质折叠和蛋白质糖基化修饰的重要场所。在内质网中存在多种调控机制来确保其中的蛋白质被正确地折叠、修饰和组装,以维持内质网稳态,这对于细胞正常的生理活动十分重要。然而,多种物理、化学因素均可使内质网稳态失衡,即在应激条件下,错误折叠和未折叠蛋白质的大量积累将导致内质网胁迫(endoplasmic reticulum stress, ERS),进而会引起未折叠蛋白质响应(unfolded protein response, UPR),极端情况下还会启动细胞程序性死亡(program cell death, PCD)。目前,植物内质网胁迫方面的研究较酵母和动物滞后,因此,从内质网质量控制系统和未折叠蛋白质响应2个方面对植物内质网胁迫现有研究进行了综述,以期为进一步理解内质网胁迫与植物逆境胁迫的关系提供参考。  相似文献   

16.
The rate of the reaction catalyzed by UDP-N-acetylglucosamine (GlcNAc):dolichol phosphate GlcNAc-1-phosphate transferase in rat liver endoplasmic reticulum vesicles was shown to be influenced by particular lipids. Utilizing in vitro assay conditions where the membrane vesicles retained latency of glucose-6-phosphatase activity, the addition of phosphatidylethanolamine, cardiolipin, or monogalactosyldiglyceride resulted in severalfold increases in the rate of dolichol pyrophosphate N-acetylglucosamine synthesis. Other phospholipids were not stimulatory. These rates were dependent on the concentrations of the exogenous lipids and of the substrate dolichol phosphate. In the presence of cardiolipin, the membrane-bound enzyme became more susceptible to inactivation by protease K and to inhibition by tunicamycin. Titration of cardiolipin-containing endoplasmic reticulum vesicles with adriamycin indicated that the majority of the cardiolipin was exposed on the outer surface. These results suggest that the particular lipids altered membrane structure in a way that allowed further access of the enzyme to substrate, inhibitor, and other molecules. Lipids observed in these studies to be stimulatory are known to exist in the macromolecular hexagonal phase and may therefore be affecting the GlcNAc-1-phosphate transferase by locally disrupting the bilayer structure of the membrane. As other dolichol-utilizing enzymes have been previously observed by other investigators to be similarly influenced by such lipids, the effects may be common to enzymes of the dolichol cycle.  相似文献   

17.
The mandibular organ of the lobster,Homarus americanus   总被引:8,自引:0,他引:8  
The lobster mandibular organ is well vascularized and its polygonal cells are arranged loosely around blood vessels and blood sinuses. Numerous mitochondria and microbodies (peroxisomes) give the acidophilic cytoplasm a finely granular appearance, but there is no evidence of secretory granules. The abundant endoplasmic reticulum is almost entirely agranular and occurs in two morphologically distinct forms: tubular and cisternal. The tubular reticulum is randomly distributed and may represent the site of synthesis and transport of the mandibular organ product. The cisternal reticulum is frequently associated with microbodies. Both forms of endoplasmic reticulum proliferate during mid to late premolt. Mandibular organ ultrastructure closely resembles that of cells known to synthesize steroids or lipids, which suggests that this organ may have a similar function. There is no functional evidence of involvement in molt control in Homarus, but ultrastructural and other evidence suggests an analogy with insect corpus allatum.  相似文献   

18.
The endoplasmic reticulum and mitochondria are engaged in an intimate relationship: they establish extensive contacts, exchange lipids and calcium, and coordinate their activities in cell life and death. Recent research has revealed a new role for the endoplasmic reticulum in promoting mitochondrial division.  相似文献   

19.
Cholesterol is an important precursor for numerous biologically active molecules, and it plays a major role in membrane structure and function. Cholesterol can be endogenously synthesized or exogenously taken up via the endocytic vesicle system and subsequently delivered to post-endo/lysosomal sites including the plasma membrane and the endoplasmic reticulum. Niemann–Pick C (NPC) disease results in the accumulation of exogenously-derived cholesterol, as well as other lipids, in late endosomes and lysosomes (LE/LY). Identification of the two genes that underlie NPC disease, NPC1 and NPC2, has focused attention on the mechanisms by which lipids, in particular cholesterol, are transported out of the LE/LY compartment. This review discusses the role of the NPC2 protein in cholesterol transport, and the potential for concerted action of NPC1 and NPC2 in regulating normal intracellular cholesterol homeostasis.  相似文献   

20.
Mx proteins are induced by type I interferon and inhibit a broad range of viruses by undefined mechanisms. They are included within the dynamin family of large GTPases, which are involved in vesicle trafficking and share common biophysical features. These properties include the propensity to self-assemble, an affinity for lipids, and the ability to tubulate membranes. In this report we establish that human MxA, despite sharing only 30% homology with conventional dynamin, possesses many of these properties. We demonstrate for the first time that MxA self-assembles into rings that tubulate lipids in vitro, and associates with a specific membrane compartment in cells, the smooth endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号