首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Experimental data from analysis of exogenous DNA (T-DNA) insertion sites in transgenic plants are summarized. Arguments are considered in favor and against the existence of genome DNA regions preferred for transgene integration that are determined by distinctive features characterizing the organization and nucleotide composition of the plant genome and the structure and conformational state of the chromatin. The main stages of T-DNA integration into a plant chromosome and possible molecular mechanisms of this process are discussed.  相似文献   

3.
Epigenetic control of Agrobacterium T-DNA integration   总被引:1,自引:0,他引:1  
To genetically transform plants, Agrobacterium transfers its T-DNA into the host cell and integrates it into the plant genome, resulting in neoplastic growths. Over the past 2 decades, a great deal has been learned about the molecular mechanism by which Agrobacterium produces T-DNA and transports it into the host nucleus. However, T-DNA integration, which is the limiting, hence, the most critical step of the transformation process, largely remains an enigma. Increasing evidence suggests that Agrobacterium utilizes the host DNA repair machinery to facilitate T-DNA integration. Meanwhile, it is well known that chromatin modifications, including the phosphorylation of histone H2AX, play an important role in DNA repair. Thus, by implication, such epigenetic codes in chromatin may also have a considerable impact on T-DNA integration, although the direct evidence to demonstrate this hypothesis is still lacking. In this review, we summarize the recent advances in our understanding of Agrobacterium T-DNA integration and discuss the potential link between this process and the epigenetic information in the host chromatin. This article is part of a Special Issue entitled: Epigenetic Control of cellular and developmental processes in plants.  相似文献   

4.
Chilton MD  Que Q 《Plant physiology》2003,133(3):956-965
Agrobacterium tumefaciens T-DNA normally integrates into random sites in the plant genome. We have investigated targeting of T-DNA by nonhomologous end joining process to a specific double-stranded break created in the plant genome by I-CeuI endonuclease. Sequencing of genomic DNA/T-DNA junctions in targeted events revealed that genomic DNA at the cleavage sites was usually intact or nearly so, whereas donor T-DNA ends were often resected, sometimes extensively, as is found in random T-DNA inserts. Short filler DNAs were also present in several junctions. When an I-CeuI site was placed in the donor T-DNA, it was often cleaved by I-CeuI endonuclease, leading to precisely truncated targeted T-DNA inserts. Their structure requires that T-DNA cutting occurred before or during integration, indicating that T-DNA is at least partially double stranded before integration is complete. This method of targeting full-length T-DNA with considerable fidelity to a chosen break point in the plant genome may have experimental and practical applications. Our findings suggest that insertion at break points by nonhomologous end joining is one normal mode of entry for T-DNA into the plant genome.  相似文献   

5.
6.
Rearrangements of T-DNAs during genetic transformation of plants can result in the insertion of transgenes in the form of repeats into the host genome and frequently lead to loss of transgene expression. To obtain insight into the mechanism of repeat formation we screened 45 transgenic lines of aspen and hybrid aspen transformed with six different gene constructs. The frequency of T-DNA repeat formation among randomly screened transgenic lines was found to be about 21%. In ten transgenic lines direct repeats were detected. An inverted repeat was found in one other transgenic line. Sequencing of the junctions between the T-DNA inserts revealed identical residual right-border repeat sequences at the repeat junctions in all ten transgenic lines that had direct repeats. Formation of "precise" junctions based on short regions of sequence similarity between recombining strands was observed in three transgenic lines transformed with the same plasmid. Additional DNA sequences termed filler DNAs were found to be inserted between the T-DNA repeats at eight junctions where there was no similarity between recombining ends. The length of the filler DNAs varied from 4 to almost 300 bp. Small filler DNAs--a few base pairs long--were in most cases copied from T-DNA near the break points. The large filler sequences of about 300 bp in two transgenic lines were found to be of host plant origin, suggesting that transgene repeat formation occurred as a result of the simultaneous invasion of a receptive site in the host genome by two independent T-DNA strands. On the basis of the results obtained, and in the light of previous reports on T-DNA/plant DNA junctions in aspen and other crop plants, a mechanistic model for transgene rearrangement and filler formation is suggested.  相似文献   

7.
转基因植物中T-DNA整合的分子特征及表达   总被引:1,自引:0,他引:1  
植物中不同转基因方法转化外源基因的T-DNA整合特征既具有共性,又具有特性,使得转基因的遗传在各独立转化体间呈现多样性,另外多种遗传因子和限制因素使受体植物中外源基因的表达存在下降,甚至出现基因沉默等复杂现象。本文主要对农杆菌介导及裸露DNA直接转化转基因植物中T-DNA的分子特征和转基因表达的影响因子进行了介绍和概述。转化体中转基因的遗传稳定性和表达主要取决于转基因在植物基因组中的整合位置、拷贝数及组成结构。因而,通过对具有表达水平各异的转化体进行深入的遗传分析和分子生物学研究以及转化体之间进行的比较研究,将对转基因技术自身的完善、定点整合以及更有效的利用转基因技术都具有十分重要的意义。  相似文献   

8.
To study the influence of genomic context on transgene expression, we have determined the T-DNA structure, flanking DNA sequences, and chromosomal location of four independent transgene loci in tobacco. Two of these loci were stably expressed in the homozygous condition over many generations, whereas the other two loci became unstable after several generations of homozygosity. The stably expressed loci comprised relatively simple T-DNA arrangements that were flanked on at least one side by plant DNA containing AT-rich regions that bind to nuclear matrices in vitro. Of the unstably expressed loci, one consisted of multiple incomplete T-DNA copies, and the second contained a single intact T-DNA; in both cases, however, binary vector sequences were directly contiguous to a right T-DNA border. Fluorescence in situ hybridization demonstrated that the two stably expressed inserts were present in the vicinity of telomeres. The two unstably expressed inserts occupied intercalary and paracentromeric locations, respectively. Results on the stability of transgene expression in F1 progeny obtained by intercrossing the four lines and the sensitivity of the four transgene loci to inactivation in the presence of an unlinked "trans-silencing" locus are also presented. The findings are discussed in the context of repetitive DNA sequences and the allotetraploid nature of the tobacco genome.  相似文献   

9.
Pelczar P  Kalck V  Gomez D  Hohn B 《EMBO reports》2004,5(6):632-637
Agrobacterium tumefaciens-mediated plant transformation, a unique example of interkingdom gene transfer, has been widely adopted for the generation of transgenic plants. In vitro synthesized transferred DNA (T-DNA) complexes comprising single-stranded DNA and Agrobacterium virulence proteins VirD2 and VirE2, essential for plant transformation, were used to stably transfect HeLa cells. Both proteins positively influenced efficiency and precision of transgene integration by increasing overall transformation rates and by promoting full-length single-copy integration events. These findings demonstrate that the virulence proteins are sufficient for the integration of a T-DNA into a eukaryotic genome in the absence of other bacterial or plant factors. Synthetic T-DNA complexes are therefore unique protein:DNA delivery vectors with potential applications in the field of mammalian transgenesis.  相似文献   

10.
Agrobacterium tumefaciens causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T-DNA), derived from its tumour-inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts, Agrobacterium can deliver the T-DNA also to monocotyledonous plants, yeasts and fungi. The T-DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast Saccharomyces cerevisiae as a T-DNA recipient to demonstrate that the non-homologous end-joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T-DNA into the host genome. We discovered a minor pathway for T-DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T-DNA integration at the telomeric regions in the rad50, mre11 and xrs2 mutants was accompanied by gross chromosomal rearrangements.  相似文献   

11.
12.
T-DNA integration is a key step in the process of plant transformation, which is proven to be important for analyzing T-DNA integration mechanism. The structures of T-DNA right borders inserted into the rice (Oryza sativa L.) genome and their flanking sequences were analyzed. It was found that the integrated ends of the T-DNA right border occurred mainly on five nucleotides "TGACA" in inverse repeat (IR)sequence of 25 bp, especially on the third base "A". However, the integrated ends would sometimes lie inward of the IR sequence, which caused the IR sequence to be lost completely. Sometimes the right integrated ends appeared on the vector sequences rightward of the T-DNA right border, which made the TDNA, carrying vector sequences, integrated into the rice genome. These results seemingly suggest that the IR sequence of the right border plays an important role in the process of T-DNA integration into the rice genome, but is not an essential element. The appearance of vector sequences neighboring the T-DNA right border suggested that before being transferred into the plant cell from Agrobacterium, the entire T-DNA possibly began from the left border in synthesis and then read through at the right border. Several nucleotides in the T-DNA right border homologous with plant DNA and filler DNAs were frequently discovered in the integrated position ofT-DNA. Some small regions in the right border could match with the plant sequence, or form better matches, accompanied by the occurrence of filler DNA, through mutual twisting, and then the TDNA was integrated into plant chromosome through a partially homologous recombination mechanism. The appearance of filler DNA would facilitate T-DNA integration. The fragments flanking the T-DNA right border in transformed rice plants could derive from different parts of the inner T-DNA region; that is, disruption and recombination could occur at arbitrary positions in the entire T-DNA, in which the homologous area was comparatively easier to be disrupted. The structure of flanking sequences of T-DNA integrated in the rice chromosome presented various complexities. These complexities were probably a result of different patterns of recombination in the integrating process. Some types of possible integrating mechanism are detailed.  相似文献   

13.
Key message

Combining with a CRISPR/Cas9 system, Agrobacterium-mediated transformation can lead to precise targeted T-DNA integration in the rice genome.

Abstract

Agrobacterium-mediated T-DNA integration into the plant genomes is random, which often causes variable transgene expression and insertional mutagenesis. Because T-DNA preferentially integrates into double-strand DNA breaks, we adapted a CRISPR/Cas9 system to demonstrate that targeted T-DNA integration can be achieved in the rice genome. Using a standard Agrobacterium binary vector, we constructed a T-DNA that contains a CRISPR/Cas9 system using SpCas9 and a gRNA targeting the exon of the rice AP2 domain-containing protein gene Os01g04020. The T-DNA also carried a red fluorescent protein and a hygromycin resistance (hptII) gene. One version of the vector had hptII expression driven by an OsAct2 promoter. In an effort to detect targeted T-DNA insertion events, we built another T-DNA with a promoterless hptII gene adjacent to the T-DNA right border such that integration of T-DNA into the targeted exon sequence in-frame with the hptII gene would allow hptII expression. Our results showed that these constructs could produce targeted T-DNA insertions with frequencies ranging between 4 and 5.3% of transgenic callus events, in addition to generating a high frequency (50?80%) of targeted indel mutations. Sequencing analyses showed that four out of five sequenced T-DNA/gDNA junctions carry a single copy of full-length T-DNA at the target site. Our results indicate that Agrobacterium-mediated transformation combined with a CRISPR/Cas9 system can efficiently generate targeted T-DNA insertions.

  相似文献   

14.
Using the Cre/lox recombination system, we analyzed the extent to which T-DNA transfer to the plant cell and T-DNA integration into the plant genome determine the transformation and cotransformation frequencies of Arabidopsis root cells. Without selection for transformation competence, the stable transformation frequency of shoots obtained after cocultivation and regeneration on nonselective medium is below 0.5%. T-DNA transfer and expression occur in 5% of the shoots, indicating that the T-DNA integrates in less than 10% of the transiently expressing plant cells. A limited fraction of root cells, predominantly located at the wounded sites and in the pericycle, are competent for interaction with agrobacteria and the uptake of a T-DNA, as demonstrated by histochemical GUS staining. When selection for transformation competence is applied, the picture is completely different. Then, approximately 50% of the transformants show transient expression of a second, nonselected T-DNA and almost 50% of these cotransferred T-DNAs are integrated into the plant genome. Our results indicate that both T-DNA transfer and T-DNA integration limit the transformation and cotransformation frequencies and that plant cell competence for transformation is based on these two factors.  相似文献   

15.
In many annual plant species, transgene inactivation occurs most often when multiple incomplete/complete copies of the transgene are present in a genome. The expression of single-copy transgene loci may also be negatively influenced by the flanking plant DNA and/or chromosomal location (position effect). To understand transgene silencing in a long-lived tree system, we analyzed several wild (Populus tremula L.) and hybrid (P. tremula L. x P. tremuloides Michx.) aspen lines transgenic to the rolC phenotypical marker system and grown under in vitro, greenhouse and field conditions. The morphological features of the 35S-rolC gene construct were used to screen lines with altered transgene expression, which was later confirmed by Northern experiments. Molecular analyses of hybrid aspen revealed that transgene inactivation was always a consequence of transgene repeats. In wild non-hybrid aspen, however, multiple-insertion-based altered or loss of rolC expression was observed only in three out of six lines showing transgene inactivation. Sequencing analysis revealed AT-rich patches at the transgene flanking genomic regions of some of the wild aspen transgenic lines. One wild aspen line showing variable rolC expression revealed characteristic integration of the transgene into genomic regions containing a high AT content (85% or more). In the remaining two wild aspen transgenic lines unstable for rolC expression, single-copy integration and non-AT-rich or repeat-free transgene flanking regions were found. A partial suppression of rolC was observed in some plants of one of the field-grown wild aspen transgenic lines. In the other wild aspen transgenic line an additional mutant phenotype along with transgene inactivation was found. This indicates that the host genome has some control over expression of a transgene, and the possible role of AT-rich regions in defense against foreign DNA.  相似文献   

16.
Transferred DNA (T-DNA) of the tumor-inducing (Ti) plasmid is transferred from Agrobacterium tumefaciens to plant cells and is stably integrated into the plant nuclear genome. By the inverse polymerase chain reaction DNA fragments were amplified that contained the T-DNA/plant DNA junctions from the total DNA of a transgenic tobacco plant that had a single copy of the T-DNA in a repetitive region of its genome. A DNA fragment containing the target site was amplified from the total DNA of non-transformed tobacco by the polymerase chain reaction using high-stringency conditions. Comparison of the nucleotide sequence of the target site with those of the T-DNA/plant DNA junctions revealed that various duplications of short stretches of nucleotide sequences around the target and in the incoming T-DNA had accompanied the integration of the T-DNA. A deletion of 16 bp at the target site was also found and the target site was similar, in terms of nucleotide sequence, to regions around the breakpoints of the T-DNA. This finding provides a clear example of the occurrence of complex rearrangements during the integration of T-DNA.  相似文献   

17.
Agrobacterium tumefaciens transfers T-DNA to plant cells, where it integrates into the genome, a property that is ensured by bacterial proteins VirD2 and VirE2. Under natural conditions, the protein MobA mobilizes its encoding plasmid, RSF1010, between different bacteria. A detailed analysis of MobA-mediated DNA mobilization by Agrobacterium to plants was performed. We compared the ability of MobA to transfer DNA and integrate it into the plant genome to that of pilot protein VirD2. MobA was found to be about 100-fold less efficient than VirD2 in conducting the DNA from the pTi plasmid to the plant cell nucleus. However, interestingly, DNAs transferred by the two proteins were integrated into the plant cell genome with similar efficiencies. In contrast, most of the integrated DNA copies transferred from a MobA-containing strain were truncated at the 5' end. Isolation and analysis of the most conserved 5' ends revealed patterns which resulted from the illegitimate integration of one transferred DNA within another. These complex integration patterns indicate a specific deficiency in MobA. The data conform to a model according to which efficiency of T-DNA integration is determined by plant enzymes and integrity is determined by bacterial proteins.  相似文献   

18.
The integration and structure of a transgene locus can have profound effects on the level and stability of transgene expression. We screened 28 transgenic birch (Betula platyphylla Suk.) lines transformed with an insect-resistance gene (bgt) using Agrobacterium tumefaciens. Among the transgenic plants, the copy number of transgene varied from one to four. A rearrangement or partial deletion had occurred in the process of T-DNA integration. T-DNA repeat formation, detected by reverse primer PCR, was found among randomly screened transgenic lines. Sequencing of the junctions between the T-DNA inserts revealed deletions of 19–589 bp and an additional 45 bp filler DNA sequence was inserted between the T-DNA repeats at one junction. Micro-homologous sequences (1–6 bp) were observed in the junctions between the T-DNA inserts. Using SiteFinding-PCR, a relatively high percentage of AT value was found for the flanking regions. Deletion of the right border repeat was observed in 12/18 of the T-DNA/plant junctions analyzed. The number of nucleotides deleted varied from 3 to 712. Deletions of 17–89 bp were observed in all left T-DNA/plant junctions analyzed. A vector backbone DNA sequence in the transgene loci was also detected using primer pairs outside the left and right T-DNA borders. Approximately 89.3% of the lines contained some vector backbone DNA. These observations revealed that it is important to check the specificity of the integration. A mechanism of T-DNA transport and integration is proposed for this long-lived tree species.  相似文献   

19.
The transferred DNA (T-DNA) is transported from Agrobacterium tumefaciens to the nucleus and is stably integrated into the genome of many plant species. It has been proposed that the VirD2 protein, tightly attached to the T-DNA, pilots the T-DNA into the plant cell nucleus and that it is involved in integration. Using agroinfection and beta-glucuronidase expression as two different very sensitive transient assays for T-DNA transfer, together with assays for stable integration, we have shown that the C-terminal half of the VirD2 protein and the VirD3 protein are not involved in T-DNA integration. However, the bipartite nuclear localization signal, which is located within the C terminus of the VirD2 protein and which has previously been shown to be able to target a foreign protein into the plant cell nucleus, was shown to be required for efficient T-DNA transfer. virD4 mutants were shown by agroinfection to be completely inactive in T-DNA transfer.  相似文献   

20.
To obtain insight into the mechanism of transferred DNA (T-DNA) integration in a long-lived tree system, we analysed 30 transgenic aspen lines. In total, 27 right T-DNA/plant junctions, 20 left T-DNA/plant junctions, and 10 target insertions from control plants were obtained. At the right end, the T-DNA was conserved up to the cleavage site in 18 transgenic lines (67%), and the right border repeat was deleted in nine junctions. Nucleotides from the left border repeat were present in 19 transgenic lines out of 20 cases analysed. However, only four (20%) of the left border ends were conserved to the processing end, indicating that the T-DNA left and right ends are treated mechanistically differently during the T-DNA integration process. Comparison of the genomic target sites prior to integration to the T-DNA revealed that the T-DNA inserted into the plant genome without any notable deletion of genomic sequence in three out of 10 transgenic lines analysed. However, deletions of DNA ranging in length from a few nucleotides to more than 500 bp were observed in other transgenic lines. Filler DNAs of up to 235 bp were observed on left and/or right junctions of six transgenic lines, which in most cases originated from the nearby host genomic sequence or from the T-DNA. Short sequence similarities between recombining strands near break points, in particular for the left T-DNA end, were observed in most of the lines analysed. These results confirm the well-accepted T-DNA integration model based on single-stranded annealing followed by ligation of the right border which is preserved by the VirD2 protein. However, a second category of T-DNA integration was also identified in nine transgenic lines, in which the right border of the T-DNA was partly truncated. Such integration events are described via a model for the repair of genomic double-strand breaks in somatic plant cells based on synthesis-dependent strand-annealing. This report in a long-lived tree system provides major insight into the mechanism of transgene integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号