首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
对毕氏海蓬子分别进行了不同日照长度处理及不同光周期数的短日照处理,发现:(1)毕氏海蓬子开花的临界日长为15 h;(2)在光照8 h/d处理条件下,毕氏海蓬子开花所需最少光周期数为13;(3)经过13~18个短日照(8 h光照/d)光周期数处理,再移至长日照(17 h光照/d)条件下,有成花逆转现象.  相似文献   

2.
采用去污剂TritonX-100增溶类囊体膜和高速离心的方法,首次分离和纯化了毕氏海蓬子的光系统Ⅱ(photosystemⅡ,PSⅡ)颗粒,通过光谱学和SDS-PAGE对其进行鉴定并与类囊体膜进行比较。室温吸收光谱结果表明,PSⅡ颗粒在蓝区的叶绿素(chlorophyll,ChOb和胡萝卜素类吸收峰为485nm,在红区的Ch1b吸收峰为655nm,这两个峰值均低于类囊体膜中的。77K荧光发射光谱结果表明,提取的PSⅡ颗粒基本不含光系统Ⅰ(photosystemⅠ,PSI)的低温荧光反射峰737nm。77K荧光激发光谱结果显示,海蓬子PSⅡ颗粒在470-485am之间的Ch1b 和胡萝卜素类的荧光发射峰明显低于类囊体膜的。这说明在PSⅡ中大部分的PSI已被除去。电泳结果显示,海蓬子PSⅡ颗粒缺少PSI反应中心蛋白质亚基PsaA和PsaB,这说明提取到的PSⅡ纯度较高,这为进一步研究毕氏海蓬子PSⅡ的结构与功能奠定基础。  相似文献   

3.
以绿原酸为对照品,利用紫外分光光度法和高效液相色谱法分别建立了测定海芦笋中多酚酸和绿原酸含量的方法.紫外分光光度法检测波长为338 nm;高效液相色谱法采用Zorbax Eclipse XDB-C187(4.6 mm×150mm,5um),以甲醇和0.5%冰醋酸水溶液梯度洗脱.结果发现海芦笋及其生物盐中含有大量的多酚酸和绿原酸,其中多酚酸含量分别为6.49 g/kg,3.37 g/kg,绿原酸含量分别为0.234 9/kg,0.180 g/kg.同时也表明高效液相色谱法可用于海芦笋中多酚酸含量的确定.这两种简单快捷的定量分析多酚酸和绿原酸的方法,不仅可用于海芦笋及其生物盐产品的质量控制,而且也为海芦笋的进一步研究和开发提供了一定的依据.  相似文献   

4.
研究了厦门海区盐度和温度对北美海蓬子(Salicornia bigelovii)种子萌发和幼苗生长的影响。结果显示,海蓬子种子对温度变化反应非常敏感,在15°C时发芽率最高(94%),但萌发指数最低,而在20°C时萌发指数最大;在盐度5g·L^-1时种子具有最高的发芽率和萌发指数,在盐度50g·L^-1时仍有13.3%的发芽率,并且各种盐度处理下逐日萌发指数均能在2天内达到最大。盐度10-20g·L^-1最适宜幼苗生长,高盐(〉30g·L^-1)具有一定的抑制作用,主要表现为生长缓慢,含水量和根系活力下降,并且根的盐敏感程度大于茎。在不同盐度处理下,北美海蓬子适应一种新的耐盐机制,在无盐(0g·L^-1)和高盐(40g·L^-1)胁迫下,过氧化氢酶(catalase,CAT)和过氧化物酶(peroxide,POD)这2种酶蛋白对盐离子效应敏感,起主要的抗氧化作用;相反,生长在适宜盐度范围(10-30g·L^-1)内,超氧化物歧化酶(superoxide dismutase,SOD)维持较高活性。研究结果表明,北美海蓬子适宜在沿海滩涂环境条件下生长,有望作为一种抗盐耐海水蔬菜加以开发和利用,并进一步在污染海水净化修复中发挥可能的生态功能。  相似文献   

5.
研究了盐酸胍(GuHCl)处理对毕氏海蓬子类囊体膜蛋白亚基和光谱特征的影响。结果显示,随着GuHCl处理浓度的增高,类囊体膜蛋白的吸收光谱和荧光发射光谱明显下降,峰位发生蓝移。这表明GuHCl处理下,类囊体膜蛋白色素微环境发生明显变化,色素蛋白结构遭到破坏;较低浓度2mmol.L-1GuHCl处理下,随着GuHCl处理时间的延长,类囊体膜蛋白的吸收光谱和荧光发射光谱也呈下降趋势,但与GuHCl浓度梯度处理比,下降程度略缓,峰位也基本没有变化。这说明类囊体膜在2mmol.L-1GuHCl不同处理时间下表现出的耐受性比在GuHCl浓度梯度处理条件强。  相似文献   

6.
The halophyte Salicornia bigelovii Torr. shows optimal growthand Na+ accumulation in 200 mM NaCl and reduced growth underlower salinity conditions. The ability to accumulate and compartmentalizeNa+ may result, in part, from stimulation of the H+ -ATPaseson the plasma membrane (PM-ATPase) and vacuolar membranes (V-ATPase).To determine if these two primary transport systems are involvedin salt tolerance, shoot fresh weight (FW) and activity of thePM- and V-ATPases from shoots in Salicornia grown in 5 and 200mM NaCI were compared. Higher PM-ATPase activity (60%) and FW(60%) were observed in plants grown in 200 mM NaCI and thesestimulations in growth and enzyme activity were specific forNa+ and not observed with Na+ added in vitro. V-ATPase activitywas significantly stimulated in vivo and in vitro (26% and 46%,respectively) after exposure to 200 mM NaCl, and stimulationwas Na+ -specific. Immunoblots indicated that the increasesin activity of the H+ -ATPases from plants grown in 200 mM NaCIwas not due to increases in protein expression. These studiessuggest that the H+-ATPases in Salicornia are important in salttolerance and provide a biochemical framework for understandingmechanisms of salt tolerance in plants. Key words: Salicornia, H+-ATPases, salt tolerance  相似文献   

7.
50-200 mmol·L-1NaCl显著促进海蓬子生长和抗氧化酶[超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)]活性,与NaCl浓度相同的KCl明显抑制海蓬子生长和此3种酶的活性,但KCl下的超氧阴离子(O2-)和丙二醛(MDA)含量增加程度则明显高于同浓度的NaCI处理.据此认为,KCl伤害海蓬子的原因之一是抗氧化酶活性下降,不能及时清除活性氧,以致活性氧和MDA积累,引起质膜伤害,海蓬子生长受抑和生长量下降.  相似文献   

8.
Seeds of Salicornia bigelovii were germinated at 4.4°C, 15.5°C, and 26.6°C in saline solution containing from 0% to 8.08% sea salt. At 4.4°C, germination was delayed until the 26th day, but the final germination per cent was high in all salinities. At 15.5°C, germination was delayed until the 19th day, and the germination per cent was higher in the higher salinities. At 26.6°C, the germination began within one day and the germination per cent was higher at the lower salinities. With the exception of 26.6°C data, the maximum germination occurred at a sea salt concentration at 4.04 % which is very close to the salinity of the sea.  相似文献   

9.
Shoots of the halophyte Salicornia bigelovii are larger and more succulent when grown in highly saline environments. This increased growth and water uptake has been correlated with a large and specific cellular accumulation of sodium. In glycophytes, sensitivity to salt has been associated with an inability to remove sodium ions effectively from the cytoplasm in order to protect salt-sensitive metabolic processes. Therefore, in Salicornia bigelovii efficient vacuolar sequestration of sodium may be part of the mechanism underlying salt tolerance. The ability to compartmentalize sodium may result from a stimulation of the proton pumps that provide the driving force for increased sodium transport into the vacuole via a Na(+)/H(+) exchanger. In current studies, increased vacuolar pyrophosphatase activity (hydrolysis of inorganic pyrophosphate and proton translocation) and protein accumulation were observed in Salicornia bigelovii grown in high concentrations of NaCl. Based on sodium-induced dissipation of a pyrophosphate-dependent pH gradient in vacuolar membrane vesicles, a Na(+)/H(+) exchange activity was identified and characterized. This activity is sodium concentration-dependent, specific for sodium and lithium, sensitive to methyl-isobutyl amiloride, and independent of an electrical potential. Vacuolar Na(+)/H(+) exchange activity varied as a function of plant growth in salt. The affinity of the transporter for Na(+) is almost three times higher in plants grown in high levels of salt (K(m)=3.8 and 11.5 mM for plants grown in high and low salt, respectively) suggesting a role for exchange activity in the salt adaptation of Salicornia bigelovii.  相似文献   

10.
Stems of young actively growing Salicornia bigelovii were dissectedinto the three major tissue layers: vascular, spongy mesophylland palisade. Each layer was analysed for chlorophyll, ash (salt),protein and glycinebetaine content. When glycinebetaine contentwas based on protein content, the vascular and spongy mesophylllayers had nearly identical values. Correction for probableRuBP carboxylase content in the palisade layer gave a glycinebetaine/proteinratio similar to that of the other tissues. All three tissuelayers were found to contain significant amounts of salt. Key words: Salicornia bigelovii, Salt distribution  相似文献   

11.
用含有0、100、300、600mmol/L的NaCl的Hoagland培养液处理海蓬子幼苗,处理一定时间后测定其鲜重、干重、离子含量、Na /K 比值、Na 在细胞中的分布、光合速率、叶绿体超微结构等的变化.结果表明一定浓度NaCl处理促进了海蓬子的生长,300mmol/L左右的NaCl是海蓬子生长的最适盐度.盐处理条件下海蓬子主要将Na 、Cl-积累在地上部,且主要储存在液泡中.随盐处理浓度的增加海蓬子地上部的Na /K 比增大;光合速率在低盐度下随盐浓度的升高而增大,高盐度下受到抑制;叶绿体超微结构在高盐度下受到部分破坏.  相似文献   

12.
Goodfriend  W. L.  Olsen  M. W.  Frye  R. J. 《Plant and Soil》2000,223(1-2):23-32
Seawater-irrigated halophyte systems have been proposed as sites for carbon storage, and therefore the fate of halophyte-derived carbon in the soil needs to be determined. To evaluate the role of the microfloral and microfaunal communities in soil carbon cycling of a halophyte agroecosystem, the response to various agronomic practices was investigated. Biomass and activity of the soil microflora and the abundance and trophic composition of the soil microfauna were determined under three planting densities of the halophyte Salicornia bigelovii (Chenopodiaceae) in plots with and without incorporated post-harvest halophyte residues. Microbial biomass and activity, as well as the abundance of nematode grazers, increased in response to the amendment of soil with halophyte residues. The microbial response to the density and presence of halophyte plants was, however, limited. Microbial activity increased in response to the presence of plants only after Salicornia had entered senescence, a result suggesting that in the mineral soil where halophytes were cropped, only dead root material provided a significant amount of microbially available organic matter. Success of halophyte agroecosystems in storing plant-derived carbon will depend primarily on the management of post-harvest residues and secondarily on the growing practices used prior to plant senescence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
A. Lee  Z.-Q. Lin  I. Pickering  N. Terry 《Planta》2001,213(6):977-980
In many plant species, selenium (Se) volatilization is limited by the reduction of selenate and its chemical conversion to organic Se compounds, a process that may be facilitated by rhizosphere microbes. This study was conducted to determine if pickleweed (Salicornia bigelovii Torr.), which is characterized by having high rates of Se volatilization from selenate, is able to reduce selenate into organic forms of Se axenically, or whether it requires the presence of microbes. X-ray absorption spectroscopy analysis showed that shoots and roots of pickleweed plants supplied with 50 microM selenate accumulated Se predominantly in organic Se forms (about 65-75% of the total accumulated Se), regardless of whether the plants were grown axenically or in the presence of microbes. The results suggest that, unlike other species for which selenate reduction appears to be rate limiting. e.g. Indian mustard (Brassica juncea L.) and broccoli (Brassica oleracea L.), pickleweed is unusual in that it has an enhanced capacity to reduce selenate to organic forms that is independent of the presence of rhizosphere microbes.  相似文献   

14.
在0、100、300、500和700 mmol·L-1NaCl胁迫条件下比较了喷施0.1mmol·L-1亚精胺(Spd)对毕氏海蓬子(Salicomia bigelovii Torr.)幼苗叶绿素含量、净光合速率、气孔导度、胞间CO2浓度和叶绿体超微结构的影响.结果表明:毕氏海蓬子的叶绿素含量、净光合速率和气孔导度均呈低浓度条件下(0、100和300 mmol·L-1NaCl)升高、高浓度条件下(500和700 mmol·L-1NaCl)降低的趋势,在300 mmol·L-1 NaCl胁迫条件下达到最高值:胞间CO2浓度则呈低浓度NaCl胁迫条件下降低、500 mmol·L-1NaCl条件下升高、700 mmol·L-1NaCl条件下略降低的趋势;在0~500 mmol·L-1NaCl胁迫条件下叶绿素a/b值变化不明显,但在700 mmol·L-1NaCl条件下急剧降低.在低浓度NaCl胁迫条件下,叶绿体整体膨胀,类囊体片层结构松散,但叶绿体和类囊体结构仍保持完整;而经500和700mmol·L-1NaCl处理后,叶绿体超微结构被严重破坏,叶绿体膜结构破裂、类囊体结构松散呈放射状、有些叶绿体完全解体.而在相应的NaCl胁迫条件下喷施0.1 mmol·L-1Spd,毕氏海蓬子的叶绿素含量、净光合速率、气孔导度和胞间CO2浓度虽然也呈现出相同的变化趋势,但其数值均显著高于对照(未喷施Spd);且叶绿体超微结构的损伤程度也轻于对照.研究结果说明:喷施外源Spd能够减缓NaCl胁迫对毕氏海蓬子的伤害作用.  相似文献   

15.
Bowman, W. D. 1988. Ionic and water relations responses of twopopulations of a non-halophyte to salinity.–J. exp. Bot39: 97–105 Salinity-induced changes in the ionic and water relations inplants from two naturally-occurring populations of the C4 non-halophyteAndropogon glomeratus were measured to detect differences inthe capacity to adjust osmotic potentials and in ion contentpotentially responsible for the osmotic adjustment Pressure-volumecurves and leaf ion content were measured in plants from twopopulations, salt marsh and inland, after long-term exposureto three salinity levels. Osmotic adjustment and decreases inthe bulk tissue elasticity occurred to a similar extent in bothpopulations with increasing salinity. Cl concentrationsincreased with increasing salinity in both populations, whereasleaf Na+ concentrations increased only in the inland population,but were higher at all salinities in the marsh population. K+concentrations changed little with increasing salinity. Prolineconcentrations increased only at the highest salinity level,and did not difler significantly between populations. Theseresults suggest a role for Na+ uptake and regulation in osmoticadjustment in the marsh population, contrasting with studiesof salt tolerance in other nonhalophytic grasses  相似文献   

16.
Cactodera salina n. sp. (Heteroderinae) is described from roots of the estuary plant Salicornia bigelovii (Chenopodiaceae), in Puerto Pefiasco, Sonora, Mexico, at the northern tip of the Sea of Cortez. The halophyte host is grown experimentally for oilseed in plots flooded daily with seawater. Infected plants appear to be adversely affected by C. salina relative to plants in noninfested plots. Cactodera salina extends the morphological limits of the genus. Females and cysts have a very small or absent terminal cone and deep cuticular folds in a zigzag pattern more typical of Heterodera and Globodera than of Cactodera spp. Many Cactodera spp. have a tuberculate egg surface, whereas C. salina shares the character of a smooth egg with C. amaranthi, C. weissi, and C. acnidae. Only C. milleri and C. acnidae have larger cysts than C. salina. Face patterns of males and second-stage juveniles, as viewed with scanning electron microscopy, reveal the full complement of six lip sectors as in other Cactodera spp. Circumfenestrae of C. salina are typical for the genus.  相似文献   

17.
Young plants of Lotus creticus creticus growing in a hydroponic culture were submitted to 0, 70 and 140 mM NaCl treatments for 28 d and the growth and ecophysiological characteristics of these plants have been studied. The growth of Lotus plants was not affected by salinity when applied for a short period (about 15 d); however, 140 mM NaCl induced a decrease in shoot RGR at the end of the treatment. The root growth was not decreased, even it was stimulated by 140 mM NaCl. The osmotic adjustment of Lotus plants at 70 and 140 mM NaCl maintained constant pressure potential, avoiding the visual wilting. For a similar leaf water potential, cuticular transpiration of salinized plants was lower than in control plants due to the salinity effect on the cuticle. Moreover, the presence of hairy leaves (60 and 160 trichomes per mm2 in young and adult leaves, respectively) allows keeping almost 81 % of sprayed water and absorbing the 9 % of the water retained, decreased the epidermal conductance to water vapour diffusion.  相似文献   

18.
本研究利用RACE技术从真盐生植物海蓬子中获得了高亲和钾离子转运体SbHKT1基因1647bp完整的ORF框。序列分析结果表明,该基因编码548个氨基酸,分子量为62.10kD,理论等电点为9.33;氨基酸序列中第1个~第35个属信号肽序列,第197个~第537个属离子转运体(TrkH)家族特征序列;该基因编码的蛋白具有10个跨膜结构,N端跨膜区及中部膜上呈现明显的疏水性,C端及中部多个跨膜区呈现强疏水性,符合载体类运输蛋白的特点,因此推测SbHKT1蛋白为跨膜运输蛋白。Blast分析显示该蛋白与碱蓬SsHKT1氨基酸同源性高达77%,与冰叶日中花、赤桉和小麦HKT类蛋白的同源性分别为63%、52%和46%。SbHkt1基因表达存在组织特异性:正常生长条件在根、茎中表达较低,在叶片中几乎看不到表达;在高盐低钾的环境下,各组织表达明显升高,高盐低钾胁迫处理8h,其根部表达处于高峰期;经100μmol/L脱落酸处理4h,根部表达达到最高;干旱胁迫(20%PEG6000)处理2h,根部表达量明显上升。由此推断,该基因参与了植物在高盐低钾、渗透、干旱等非生物胁迫下的生理调控。由于目前已克隆的HKT类蛋白基因多来自非盐生植物,对盐生植物内源HKT基因的研究相对较少,因此,海蓬子内源HKT1基因的全长的获得有助于我们进一步研究该基因在高盐钾饥饿环境下运输钾离子,调节植物体内Na+/K+平衡的功能,对于揭示真盐生植物的耐盐机制,将其运用于非盐生植物,培育新的耐盐品种具有一定的意义。  相似文献   

19.
Switchgrass (Panicum virgatum L.) is a warm perennial grass with valuable characteristics as a biofuel crop. To avoid competition with food crops, biofuel crops will be likely relegated to less productive soils such as marginal lands. Consequently, the salinity and water scarcity problems that commonly affect marginal lands compromise biofuel crop germination, emergence, and seedling establishment. The aims of this study were to study the germination and seedling growth of switchgrass under salinity and water stress and to describe the morpho-anatomical responses of the roots and leaves in the seedlings to these stress conditions. The effect of salt and water stress was assessed using sodium chloride (NaCl) and polyethylene glycol (PEG) 8000 at the same water potentials of ??0.8, ??1.0, and ??1.2 MPa. Seeds were moist prechilled for 7 days at 5 °C and germinated at 30/15 °C (8 h light/16 h dark). NaCl treatments (??0.8 and ??1.0 MPa) delayed germination rates but did not reduce the final germination percentage, whereas at a lower potential (??1.2 MPa), the final germination percentage was diminished. The effects of PEG (??1.0 and ??1.2 MPa) on the germination rate and final percentage were more detrimental than those induced by isosmotic concentrations of NaCl. PEG and NaCl reduced significantly the vigor index of ??0.8 to ??1.2 MPa. The morpho-anatomical changes such as the reduction in the root cross-sectional area and the thickening of the endodermis walls for both stress conditions and aerenchyma formation in the cortex under salinity could significantly contribute in the survival and tolerance during the early seedling stages.  相似文献   

20.
The effects of salinity on growth, water relations, glycinebetainecontent, and ion accumulation in the perennial halophyte Atriplexgriffithii var. stocksii were determined. The following questionswere addressed: (1) What effect does salinity have on growthresponses at different ages? (2) Is A. griffithii an ion accumulator?(3) Does A. griffithii accumulate glycinebetaine in responseto salinity? Atriplex griffithii plants were grown in pots at0, 90, 180 and 360  m M NaCl in sand culture in a plantgrowth chamber and plants were harvested after 30, 60 and 90d. Plant total dry weight was significantly inhibited at 360m M NaCl. Root growth showed a substantial promotion at 90 mM NaCl. The water potential and osmotic potential of shootsbecame more negative with increasing salinity and time of growth.The Na+and Cl-content in both shoots and roots increased withincreases in salinity. Increased treatment levels of NaCl induceddecreases in Ca+, K+and Mg2+in plants. Atriplex griffithii accumulateda large quantity of ions, with the ash content reaching 39%of the dry weight in leaves. Inorganic ion accumulation is significantin osmotic adjustment and facilitates water uptake along a soil-plantgradient. Glycinebetaine concentration was low in roots, andin stems it increased with increases in salinity. Total amountsof glycinebetaine in leaves increased with increases in salinity,and its concentration increased substantially at 360 m M NaCl.Copyright 2000 Annals of Botany Company Atriplex griffithii, glycinebetaine, growth, ions, water relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号