首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The objective of the present investigation was to determine if melatonin at physiological concentrations might have part of its mechanism of action through enhancement of guanylate cyclase (E.C.4.6.1.2) activity. Melatonin enhanced guanylate cyclase activity two-three fold in rat anterior pituitary, thyroid, testis, ovary, liver and small intestine at the 1 nanomolar concentration. Some stimulation of hepatic guanylate cyclase activity by melatonin was seen at concentrations as low as 1 picomolar. There was no stimulation of guanylate cyclase activity at concentrations below 1 picomolar. Maximal enhancement of guanylate cyclase activity was seen at the 1 nanomolar concentration of melatonin with no further enhancement being observed with increasing the concentration to the micromolar range. Thus, the data in the present investigation indicates that at concentrations at which melatonin is known to cause physiological effects, melatonin does cause an enhancement of the activity of the guanylate cyclase-cyclic GMP system.  相似文献   

2.
Summary The sulfur atom in the vitamin biotin has previously been suggested to be essential in biotin's mechanism of action. In a series of investigations on structure-function relationships with biotin analogs not containing the sulfur atom, the biotin analogs, azabiotin, bisnorazabiotin, carbobiotin and isoazabiotin enhanced guanylate cyclase, an enzyme that has recently been demonstrated to be activated by biotin. These analogs increased guanylate cyclase activity two-fold in liver, cerebellum, heart, kidney and colon at 1 M concentrations. The ED50 for stimulation of guanulate cyclase activity occurred at 0.1 M for each of the biotin analogs. These data indicate that the sulfur atom is not essential in biotin's activation of guanylate cyclase since these analogs do not contain the sulfur atom. Studies on the ring structure of biotin revealed that even compounds with a single 5-membered ring (2-imidazolidone) could augment guanylate cyclase activity. The guanylate cyclase co-factor manganese was not essential for the enhancement of guanylate cyclase by these agents but a maximal activation of this enzyme by these analogs could not be obtained without manganese present.  相似文献   

3.
Summary Gonadotropin releasing hormone enhanced guanylate cyclase [E.C.4.6.1.2] two- to threefold in pituitary, testis, liver and kidney. Dose response relationships revealed that at a concentration of 1 nanomolar, gonadotropin releasing hormone caused a maximal augmentation of guanylate cyclase activity and that increasing its concentration to the millimolar range caused no further enhancement of this enzyme. There was an absolute cation requirement for gonadotropin releasing hormone's enhancement of guanylate cyclase activity as there was no increase without any cation present. Gonadotropin releasing hormone could increase guanylate cyclase activity with either calcium or manganese in the incubation medium but more augmentation was observed with manganese. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of gonadotropin releasing hormone.  相似文献   

4.
The present investigation was designed to determine if atrial natriuretic factor relaxes non-vascular smooth muscle. Rather than cause a relaxation, atrial natriuretic factor induced a two-to-four fold enhancement in the amplitude of the spontaneous phasic contractions of duodenal longitudinal muscle. Dose-response curves revealed that ANF enhanced these contractions over a concentration range of 10 picomoles to 100 nanomoles with the ED50 at 1 nanomolar. The increased amplitude of contraction began within 30 seconds and was calcium-dependent. The increased force of contraction was associated with a three-fold increase in cyclic GMP levels and activation of particulate guanylate cyclase [E.C.4.5.1.2.]. Atrial natriuretic factor had its half-maximal [ED50] activation of guanylate cyclase at its 1 nM concentration while maximal enhancement was at its 100 nM concentration in duodenum, jejunum, and ileum. Atrial natriuretic factor did not stimulate adenylate cyclase [E.C.4.6.1.1.]. Thus, atrial natriuretic factor increases the force of the spontaneous phasic contractions of the small intestine which are calcium-dependent and associated with activation of the guanylate cyclase-cyclic GMP system.  相似文献   

5.
Prolactin enhanced guanylate cyclase [E.C.4.6.1.2] two- to threefold in ovary, testis, mammary gland, liver and kidney. Dose response relationships revealed that maximal activation of this enzyme was at a concentration of one nanomolar and that increasing prolactin's concentration to the millimolar range caused no further increase in activity. There was an absolute cation requirement for prolactin's enhancement of guanylate cyclase. Calcium or manganese allowed prolactin to increase guanylate cyclase activity. Greater enhancement of this enzyme's activity by prolactin was observed when manganese was the co-factor. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of prolactin.  相似文献   

6.
Substance P enhanced guanylate cyclase (E.C.4.6.1.2) two- to fourfold in pancreas, small intestine, cerebellum, liver, kidney, and lung. Dose response relationship revealed that substance P caused a maximal augmentation of guanylate cyclase activity at concentration of 1 micromolar. Increasing substance P's concentration to the millimolar range caused no further increase in activity. There was an absolute cation requirement for substance P's enhancement of guanylate cyclase activity. Substance P could increase guanylate cyclase activity with either calcium or manganese in the incubation medium but more augmentation was observed with manganese. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of substance P.  相似文献   

7.
Purification of soluble guanylate cyclase activity from rat liver resulted in loss of enzyme responsiveness to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), nitroprusside, nitrite, and NO. Responses were restored by addition of heat-treated hepatic supernatant fraction, implying a requirement for heat-stable soluble factor(s) in the optimal expression of the actions of the activators. Addition of free hematin, hemoglobin, methemoglobin, active or heat-inactivated catalase partially restores responsiveness of purified guanylate cyclase to MNNG, NO, nitrite, and nitroprusside. These responses were markedly potentiated by the presence of an appropriate concentration of reducing agent (dithiothreitol, ascorbate, cysteine, or glutathione), which maintains heme iron in the ferro form and favors formation of paramagnetic nitrosyl . heme complexes from the activators. High concentrations of heme or reducing agents were inhibitory, and heme was not required for the expression of the stimulatory effects of Mn2+ or Mg2+ on purified guanylate cyclase. Preformed nitrosyl hemoglobin (10 micron) increased activity of the purified enzyme 10- to 20-fold over basal with Mn2+ as the metal cofactor and 90- to 100-fold with Mg2+. Purified guanylate cyclase was more sensitive to preformed NO-hemoglobin (minimally effective concentration, 0.1 micron) than to MNNG (1 micron), nitroprusside (50 micron), or nitrite (1 mM). A reducing agent was not required for optimal stimulation of guanylate cyclase by NO-hemoglobin. Maximal NO-hemoglobin-responsive guanylate cyclase was not further increased by subsequent addition of NO, MNNG, nitrite, or nitroprusside. Activation by each agent resulted in analogous alterations in the Mn2+ and Mg2+ requirements of enzyme activity, and responses were inhibited by the thiol-blocking agents N-ethylmaleimide, arsenite, or iodoacetamide. The results suggest that NO-hemoglobin, MNNG, NO, nitrite, and nitroprusside activate guanylate cyclase through similar mechanisms. The stimulatory effects of preformed NO-hemoglobin combined with the clear requirements for heme plus a reducing agent in the optimal expression of the actions of MNNG, NO, and related agents are consistent with a role for the paramagnetic nitrosyl . heme complex in the activation of guanylate cyclase.  相似文献   

8.
Sodium nitroprusside, nitroglycerin, sodium azide and hydroxylamine increased guanylate cyclase activity in particulate and/or soluble preparations from various tissues. While sodium nitroprusside increased guanylate cyclase activity in most of the preparations examined, the effects of sodium azide, hydroxylamine and nitroglycerin were tissue specific. Nitroglycerin and hydroxylamine were also less potent. Neither the protein activator factor nor catalase which is required for sodium azide effects altered the stimulatory effect of sodium nitroprusside. In the presence of sodium azide, sodium nitroprusside or hydroxylamine, magnesium ion was as effective as manganese ion as a sole cation cofactor for guanylate cyclase. With soluble guanylate cyclase from rat liver and bovine tracheal smooth muscle the concentrations of sodium nitroprusside that gave half-maximal stimulation with Mn2+ were 0.1 mM and 0.01 mM, respectively. Effective concentrations were slightly less with Mg2+ as a sole cation cofactor. The ability of these agents to increase cyclic GMP levels in intact tissues is probably due to their effects on guanylate cyclase activity. While the precise mechanism of guanylate cyclase activation by these agents is not known, activation may be due to the formation of nitric oxide or another reactive material since nitric oxide also increased guanylate cyclase activity.  相似文献   

9.
We used cultured rat lung fibroblasts to evaluate the role of particulate and soluble guanylate cyclase in the atrial natriuretic factor (ANF)-induced stimulation of cyclic GMP. ANF receptors were identified by binding of 125I-ANF to confluent cells at 37 degrees C. Specific ANF binding was rapid and saturable with increasing concentrations of ANF. The equilibrium dissociation constant (KD) was 0.66 +/- 0.077 nM and the Bmax. was 216 +/- 33 fmol bound/10(6) cells, which corresponds to 130,000 +/- 20,000 sites/cell. The molecular characteristics of ANF binding sites were examined by affinity cross-linking of 125I-ANF to intact cells with disuccinimidyl suberate. ANF specifically labelled two sites with molecular sizes of 66 and 130 kDa, which we have identified in other cultured cells. ANF and sodium nitroprusside produced a time- and concentration-dependent increase in intracellular cyclic GMP. An increase in cyclic GMP by ANF was detected at 1 nM, and at 100 nM an approx. 100-fold increase in cyclic GMP was observed. Nitroprusside stimulated cyclic GMP at 10 nM and at 1 mM a 500-600-fold increase in cyclic GMP occurred. The simultaneous addition of 100 nM-ANF and 10 microM-nitroprusside to cells resulted in cyclic GMP levels that were additive. ANF increased the activity of particulate guanylate cyclase by about 10-fold, but had no effect on soluble guanylate cyclase. In contrast, nitroprusside did not alter the activity of particulate guanylate cyclase, but increased the activity of soluble guanylate cyclase by 17-fold. These results demonstrate that rat lung fibroblasts contain ANF receptors and suggest that the ANF-induced stimulation of cyclic GMP is mediated entirely by particulate guanylate cyclase.  相似文献   

10.
Particulate guanylate cyclase from bovine adrenal cortex can be stimulated by ANF. A 2-fold stimulation of the enzyme was obtained with 100 nM ANF and a half-maximal stimulation, with a 5 nM dose. The stimulation by ANF persisted for at least 30 min. Various detergents, such as Triton X-100, Lubrol PX, cholate, CHAPS, digitonin and zwittergent, stimulated several-fold the activity of particulate guanylate cyclase. However, only Triton X-100 dispersed particulate guanylate cyclase without affecting its response to ANF. The dose-response curve of ANF stimulation of the particulate and the Triton X-100 dispersed enzyme was similar. The dispersion of a fully responsive guanylate cyclase to ANF will help us to uncover the type of interactions between guanylate cyclase and ANF. It will also be used as a first step for the purification of an ANF-sensitive particulate guanylate cyclase.  相似文献   

11.
We have recently found the calcium dependent glycogenolytic effect of pancreastatin on rat hepatocytes and the mobilization of intracellular calcium. To further investigate the mechanism of action of pancreastatin on liver we have studied its effect on guanylate cyclase, adenylate cyclase, and phospholipase C, and we have explored the possible involvement of GTP binding proteins by measuring GTPase activity as well as the effect of pertussis toxin treatment of plasma liver membranes on the pancreastatin stimulated GTPase activity and the production of cyclic GMP and myo-inositol 1,4,5-triphosphate. Pancreastatin stimulated GTPase activity of rat liver membranes about 25% over basal. The concentration dependency curve showed that maximal stimulation was achieved at 10?7 M pancreastatin (EC50 = 3 nM). This stimulation was partially inhibited by treatment of the membranes with pertussis toxin. The effect of pancreastatin on guanylate cyclase and phospholipase C were examined by measuring the production of cyclic GMP and myo-inositol 1,4,5-triphosphate respectively. Pancreastatin increased the basal activity of guanylate cyclase to a maximum of 2.5-fold the unstimulated activity at 30°C, in a time- and dose-dependent manner, reaching the maximal stimulation above control with 10?7 M pancreastatin at 10 min (EC50 = 0.6 nM). This effect was completely abolished when rat liver membranes had been ADP-ribosylated with pertussis toxin. On the other hand, adenylate cyclase activity was not affected by pancreastatin. Phospholipase C activity of rat liver membranes was rapidly stimulated (within 2–5 min) at 30°C by 10?7 M pancreastatin, reaching a maximum at 15 min. The dose response curve showed that with 10?7 M pancreastatin, maximal stimulation was obtained (EC50 = 3 nM). GTP (10?5 M) stimulated the membrane-bound phospholipase C as expected. However, the incubation of rat liver membranes with GTP partially inhibited the stimulation of phospholipase C activity produced by pancreastatin, whereas GTP enhanced the activation of phospholipase C by vasopressin. This inhibition by GTP was dose dependent and 10?5 M GTP obtained the maximal inhibition (about 40%). the inhibitory effect of GTP on the stimulatory effect of pancreastatin on phospholipase C activity was completely abolished when rat liver membranes had previously been ADP-ribosylated with pertussis toxin. The presence of 8-Br-cGMP mimics the effect of GTP, whereas GMP-PNP increased both basal and pancreastatin-stimulated phospholipase C, suggesting a role of the cyclic GMP as a feed-back regulator of the synthesis of myo-inositol 1,4,5-triphosphate. However, the pretreatment of membranes with pertussis toxin did not modify the production of myo-Inositol 1,4,5-triphosphate stimulated by pancreastatin. In conclusion, pancreastatin activates guanylate cyclase activity and phospholipase C involving different pathways, pertussis toxin-sensitive, and -insensitive, respectively. © 1994 Wiley-Liss, Inc.  相似文献   

12.
C K Mittal 《Life sciences》1985,37(23):2143-2149
Characteristics of phospholipase A2 (PLA2) modulation of guanylate cyclase were evaluated. Addition of phospholipase A2 from Vipera russelli venom led to a significant increase in the activity of guanylate cyclase in various rat organs. The activation of the enzyme was selective and was only observed in the particulate fractions of tissue homogenate. The soluble guanylate cyclase from all the tissue tested exhibited lack of stimulation. The treatment of membranes with PLA2 resulted in solubilization of cyclase activity. The increase in enzyme by PLA2 was not altered by antioxidants or reducing agents. Addition of calcium ions led to further enhancement in PLA2-dependent increases in cyclic GMP formation. Peak calcium responses were observed in micromolar concentration ranges. These observations suggest a potential role for PLA2 and calcium ions in the hormonal regulation of cyclic GMP metabolism.  相似文献   

13.
Summary The cytochemical localization of particulate guanylate cyclase and adenylate cyclase activities in rabbit platelets were studied after stimulation with various agents, at the electron microscope level. In the presence of platelet aggregating agents such as thrombin and ADP, the particulate reaction product of guanylate cyclase activity was detectable on plasma membrane and on membranes of the open canalicular system. In contrast, samples incubated with platelet-activating factor showed no activation of the cyclase activity. Atrial natriuretic factor stimulated the particulate guanylate cyclase. The ultracytochemical localization of this activated cyclase was the same as that of thrombin-or ADP-stimulated guanylate cyclase. Adenylate cyclase activity was studied in platelets incubated with prostaglandin E1 plus or minus insulin. The enzyme reaction product was found at the same sites where guanylate cyclase was detected. Therefore guanylate and adenylate cyclase activities do not seem to be preferentially localised in platelet membranes.  相似文献   

14.
The particulate fraction from murine plasmocytoma cells contained 90 per cent of the total guanylate cyclase activity. Triton X-100 produced a 6 fold stimulation of guanylate cyclase activity in plasma membrane enriched fractions obtained by zonal centrifugation. Isolated inside out (10) vesicles contained 9 times more activity than rightside out (RSO) vesicles. This difference was abolished by Triton X-100 treatment of the vesicles indicating that the catalytic site of guanylate cyclase is located on the inner face of the plasma membrane. Kinetic studies of membranous guanylate cyclase showed that optimal activity was found with manganese. Only 20 per cent of this activity was obtained with magnesium. The Km for GTP with magnesium (1.4 mM) was about 7 fold greater than with manganese (0.2 mM). Positive cooperativity was obtained in both cases and the Hill coefficients were 1.8 for manganese and 1.6 for magnesium. Physiological concentrations of ATP were found to inhibit both manganese and magnesium supported activities indicating a possible regulatory mechanism for this nucleotide in vivo.  相似文献   

15.
The influence of ambroxol (a mucolytic agent) on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside (SNP) and Sin-1) were investigated. Ambroxol in the range of concentrations from 0.1 to 10 ??M had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the SNP-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values of 3.9 and 2.1 ??M, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin (an antimalarial agent) on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1?100 ??M) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the SNP-induced activation of human platelet guanylate cyclase with the IC50 value of 5.6 ??M. Artemisinin (10 ??M) also inhibited (by 71 ± 4.0%) the activation of the enzyme by a thiol-dependent NO-donor, the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 ??M), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the signaling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin.  相似文献   

16.
Rat liver regeneration is regulated by a humoral signal that includes insulin and a sustained elevation in glucagon. The intracellular response is characterized by a rise in cAMP as well as altered cGMP metabolism, i.e. increased particulate guanylate cyclase activity. To evaluate the role of hormones in the regulation of guanylate cyclase during liver regeneration, the enzyme activity of primary cultures of rat hepatocytes was examined. Hepatocytes were maintained for 22 h in medium containing various combinations of insulin, glucagon, and cAMP. The cells were then harvested and homogenized and the guanylate cyclase activity was assessed in vitro. Hepatocytes maintained in 100 nM insulin exhibited a 42% (p < 0.001) increase in guanylate cyclase activity when compared to cells cultured in medium alone. Incubation with glucagon (100 nM) produced a 52% (p < 0.01) rise. In the presence of insulin (100 nM), culturing with as little as 5 nM glucagon resulted in increased activity, and 100 nM glucagon produced a 161% (p < 0.001) rise above cultures maintained in insulin alone. Thus, the combination of the two hormones produced an effect that was significantly (p < 0.01) greater than additive. Dibutyryl cAMP and 8-bromoadenosine 3':5'-monophosphoric acid were at least as effective as glucagon; the enzyme activity of cells maintained in 5 microM N6,02'-dibutyryl adenosine 3':5'-monophosphoric acid and 100 nM insulin was 243% (p < 0.001) above those in insulin alone. The findings suggest that the activity of hepatocyte guanylate cyclase is regulated by a synergistic action of insulin and glucagon and that positive interactions between the two cyclic nucleotide second messenger systems exist.  相似文献   

17.
Cyclic GMP is the second messenger in phototransduction and regulates the photoreceptor current. In the present work, we tried to understand the regulation mechanism of cytoplasmic cGMP levels in frog photoreceptors by measuring the photoreceptor current using a truncated rod outer segment (tROS) preparation. Since exogenously applied substance diffuses into tROS from the truncated end, we could examine the biochemical reactions relating to the cGMP metabolism by manipulating the cytoplasmic chemical condition. In tROS, exogenously applied GTP produced a dark current whose amplitude was half-maximal at approximately 0.4 mM GTP. The conductance for this current was suppressed by light in a fashion similar to when it is activated by cGMP. In addition, no current was produced in the absence of Mg2+, which is known to be necessary for the guanylate cyclase activity. These results indicate that guanylate cyclase was present in tROS and synthesized cGMP from exogenously applied GTP. The enzyme activity was distributed throughout the rod outer segment. The amount of synthesized cGMP increased as the cytoplasmic Ca2+ concentration of tROS decreased, which indicated the activation of guanylate cyclase at low Ca2+ concentrations. Half-maximal effect of Ca2+ was observed at approximately 100 nM. tROS contained the proteins involved in the phototransduction mechanism and therefore, we could examine the regulation of the light response waveform by Ca2+. At low Ca2+ concentrations, the time course of the light response was speeded up probably because cGMP recovery was facilitated by activation of the cyclase. Then, if the cytoplasmic Ca2+ concentration of a photoreceptor decreases during light stimulation, the Ca2+ decrease may explain the acceleration of the light response during light adaptation. In tROS, however, we did observe an acceleration during repetitive light flashes when the cytoplasmic Ca2+ concentration increased during the stimulation. This result suggests the presence of an additional light-dependent mechanism that is responsible for the acceleration of the light response during light adaptation.  相似文献   

18.
We investigated the effects of adrenomedullin (ADM) on cGMP production in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. ADM increased cGMP accumulation in a time- and concentration- dependent manner. The peptide increased cGMP formation in the transformed cells by 405-fold as compared to 1. 6-fold in primary cultured CISM cells. The basal cGMP concentrations in both cell types were comparable. In addition, ADM increased cAMP accumulation in SV-CISM-2 cells and in primary cultured cells by 18. 9- and 5.8-fold, respectively. The ADM receptor antagonist, ADM(26-52), but not the atrial natriuretic peptide (ANP) receptor antagonist, anantin, inhibited ADM-induced cGMP formation. The phorbol ester, phorbol 12, 13-dibutyrate (PDBu), which inhibits particulate guanylate cyclases in smooth muscle, blocked ADM-stimulated cGMP accumulation. In contrast, inhibitors of the soluble guanylate cyclases, such as LY83583 and ODQ, and inhibitors of the nitric oxide cascade had little effect on ADM-stimulated cGMP production. The stimulatory effect of ADM on cGMP formation is due to activation of the guanylate cyclase system and not to a much reduced phosphodiesterase activity. ADM stimulated guanylate cyclase activity in membrane fractions isolated from SV-CISM-2 cells in a concentration-dependent manner with EC(50) value of 72 nM. Pertussis toxin, an activator of the G-protein, Gi, inhibited ADM-stimulated cGMP accumulation, whereas cholera toxin, a stimulator of the Gs G-protein and subsequently cAMP accumulation, had little effect. Pretreatment of the plasma membrane fraction with Gialpha antibody attenuated ADM-stimulated guanylate cyclase activity by 75%. We conclude that ADM increases intracellular cGMP levels in SV-CISM-2 cells through activation of the ADM receptor and subsequent stimulation of a Gi-mediated membrane-bound guanylate cyclase.  相似文献   

19.
Several thiol blocking agents inhibit basal guanylate cyclase activity of 100 000 X g hepatic supernatant fractions and the stimulation of enzyme activity by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), NaN3, NaNO2 and nitroprusside. The relative potency of the thiol blockers as inhibitors was CdCl2 greater than p-hydroxymercuribenzoate greater than N-ethylmaleimide greater than arsenite greater than iodoacetamide. Inhibition of basal and MNNG-responsive soluble guanylate cyclase activities by arsenite was markedly potentiated by an equimolar concentration of 2,3-dimercaprol, but not by mercaptoethanol. Inhibition of soluble guanylate cyclase by either arsenite or CdCl2 was completely reversed by excess 2,3-dimercaprol. Qualitatively similar effects were observed with DE-52 cellulose purified soluble hepatic guanylate cyclase, and suggested an involvement of closely juxtaposed thiol groups in the regulation of enzyme activity. For several reasons inhibition by thiol blockers appeared to be mediated through multiple mechanisms and/or sites of interaction: (1) Concentrations of the thiol inhibitors which had no effect on basal activity strikingly inhibited the responsiveness of the enzyme to a submaximal concentration of MNNG. (2) CdCl2 abolished the action of excess MnCl2 to stimulate purified guanylate cyclase, but was a relatively ineffective inhibitor when MnCl2 and GTP were present in equimolar concentrations. By contrast, arsenite-2,3-dimercaprol was uniformly effective in inhibiting guanylate cyclase activity in the presence or absence of excess MnCl2. (3) Arsenite-2,3-dimercaprol increased the Km for MnGTP (control, 0.13 +/- 0.02 mM; 0.2 mM arsenite-2,3-dimercaprol, 0.31 +/- 0.03 mM), whereas CdCl2 had no effect on this parameter. (4) Hepatic particulate guanylate cyclase activity was significantly inhibited by arsenite 2,3-dimercaprol but not by CdCl2. Thus, the data not only indicate that vicinal dithiol groups are required for expression of basal guanylate cyclase activity and enzyme responses to agonists, but strongly suggest the involvement of more than one interacting site containing free thiol residues.  相似文献   

20.
A potent vasodilator, sodium nitroprusside, activated rat lung soluble guanylate cyclase about 2.0-fold; this activation was potentiated by reducing agents such as ascorbic acid and thiols, 4.5 to 9-fold. In the presence of 2-mercaptoethanol and sodium nitroprusside maximal enzymatic activity in crude enzyme preparation was evident after a lag of several minutes, after which the activity declined. Hemoglobin blocked sodium nitroprusside activation of a partially purified enzyme by causing a lag in the activation, and this inhibition was reversed by 2-mercaptoethanol. Therefore, the extent of sodium nitroprusside activation measured is affected by the concentration of hemoglobin and reducing agent present, and the activation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号