首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A direct correlation between the absorbance of a thermophilic bacillus and specific amidase activity was observed, which was found to depend on the cell density of the culture rather than on the time of contact of the culture with the inducer. Dilution of high density cultures caused the specific amidase activity to decrease. Environmental factors such as pH, concentration of inducer or degree of aeration, and level of NH4+ and glutamate had no effect on amidase synthesis.The decrease in amidase activity upon dilution could not be ascribed to destruction by oxygen or by inactivation or decay. Several lines or evidence suggest that catabolite repression for the phenomenon described. Succinate-grown cultures gave a stronger dillution effect than glutamate-grown cells. The mutant strain E-21, relatively resistant to catabolite repression, did not show the characteristic dilution effect nor the direct correlation between absorbance and specific amidase activity.  相似文献   

2.
The formation of amidase was studied in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity. It appeared that catabolite repression of amidase synthesis by succinate was partially relieved when cellular growth was limited by glutamine. Under these conditions, a correlation between amidase and urease formation was observed. The results suggest that amidase formation in strain PAO is subject to nitrogen control and that glutamine or some compound derived from it mediates the nitrogen repression of amidase.  相似文献   

3.
Bacteroides ruminicola B(1)4, a predominant ruminal and cecal bacterium, was grown in batch and continuous cultures, and beta-glucosidase activity was measured by following the hydrolysis of p-nitrophenyl-beta-glucopyranoside. Specific activity was high when the bacterium was grown in batch cultures containing cellobiose, mannose, or lactose (greater than 286 U/g of protein). Activity was reduced approximately 90% when the organism was grown on glucose, sucrose, fructose, maltose, or arabinose. The specific activity of cells fermenting glucose was initially low but increased as glucose was depleted. When glucose was added to cultures growing on cellobiose, beta-glucosidase synthesis ceased immediately. Catabolite repression by glucose was not accompanied by diauxic growth and was not relieved by cyclic AMP. Since glucose-grown cultures eventually exhibited high beta-glucosidase activity, cellobiose was not needed as an inducer. Catabolite repression explained beta-glucosidase activity of batch cultures and high-dilution-rate chemostats where glucose accumulated, but it could not account for activity at slow dilution rates. Maximal beta-glucosidase activity was observed at a dilution rate of approximately 0.35 h-1, and cellobiose-limited chemostats showed a 15-fold decrease in activity as the dilution rate declined. An eightfold decline was observed in glucose-limited chemostats. Since inducer availability was not a confounding factor in glucose-limited chemostats, the growth rate-dependent derepression could not be explained by other mechanisms.  相似文献   

4.
Bacteroides ruminicola B(1)4, a predominant ruminal and cecal bacterium, was grown in batch and continuous cultures, and beta-glucosidase activity was measured by following the hydrolysis of p-nitrophenyl-beta-glucopyranoside. Specific activity was high when the bacterium was grown in batch cultures containing cellobiose, mannose, or lactose (greater than 286 U/g of protein). Activity was reduced approximately 90% when the organism was grown on glucose, sucrose, fructose, maltose, or arabinose. The specific activity of cells fermenting glucose was initially low but increased as glucose was depleted. When glucose was added to cultures growing on cellobiose, beta-glucosidase synthesis ceased immediately. Catabolite repression by glucose was not accompanied by diauxic growth and was not relieved by cyclic AMP. Since glucose-grown cultures eventually exhibited high beta-glucosidase activity, cellobiose was not needed as an inducer. Catabolite repression explained beta-glucosidase activity of batch cultures and high-dilution-rate chemostats where glucose accumulated, but it could not account for activity at slow dilution rates. Maximal beta-glucosidase activity was observed at a dilution rate of approximately 0.35 h-1, and cellobiose-limited chemostats showed a 15-fold decrease in activity as the dilution rate declined. An eightfold decline was observed in glucose-limited chemostats. Since inducer availability was not a confounding factor in glucose-limited chemostats, the growth rate-dependent derepression could not be explained by other mechanisms.  相似文献   

5.
Among mutants of Pseudomonas aeruginosa isolated from fluoroacetamide medium were some which synthesized amidase at about 5% of the rate of the parent constitutive strain, PAC101. Seven fluoroacetamide-resistant mutants with low amidase activity gave rise to secondary mutant strains on succinate+butyramide plates. One appeared to be an 'up-promotor' mutant and synthesized amidase at a high rate. This mutant, PAC433, was not stimulated by cyclic-AMP and was much less sensitive to catabolite repression by succinate. The mutation conferring resistance to catabolite repression was cotransduced at a frequency of 96% (26/27) with the amidase genes amiR, amiE. Five other revertants had catabolite repression-resistance mutations which were linked to the amidase genes and these also were probably promotor mutants. One strain had a mutation conferring resistance to catabolite repression which was unlinked to the amidase genes.  相似文献   

6.
During growth ofVibrio SA1 in a lactate-limited chemostat in the presence of 2mm phenylalanine as an inducer, the rate of production of two proteolytic enzymes, namely an endopeptidase and an aminopeptidase, was dependent upon the dilution rate. An optimum in the rate of synthesis of both proteases was observed at a dilution rate of 0.23 h-1 and enzyme production only occurred between dilution rates of 0.06 and 0.45 h-1. Without inducer a low rate of aminopeptidase production was found with an optimum at 0.19 h-1, but only trace amounts of endopeptidase were detectable in the culture. In the presence of inducer the rate of enzyme production increased with increasing dilution rates over the range 0.06 to 0.23 h-1 which was explained by an increase in saturation of inducer sites. The progressive decrease in the rate of protease production at higher dilution rates was ascribed to an increasing effect of catabolite repression by the increasing concentration of the growth substrate. It was shown that 5mm cyclic AMP could not relieve catabolite repression caused by glucose or lactate. Repression of protease production also occurred in the presence of higher concentrations (5mm) phenylalanine and other amino acids and by ammonium ions. It is suggested that the energy-status of the cell may play an important role in the regulation of protease synthesis inVibrio SA1.This study was supported by the Foundation for Fundamental Biological Research (BION), which is subsidized by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).  相似文献   

7.
Vibrio alginolyticus synthesized an inducible extracellular collagenase in a peptone medium during the stationary growth phase. These cultures also possessed extracellular alkaline serine protease activity. The alkaline protease activity did not require a specific inducer and it was produced in tryptone or minimal media. The collagenase was not produced in either the tryptone or minimal media. The alkaline protease activity was sensitive to catabolite repression by a number of carbon sources, including glucose, and by amino acids and ammonium ions. Cyclic AMP, dibutyryl cyclic AMP and cyclic GMP did not relieve catabolite repression. Histidine and urocanic acid stimulated the production of alkaline protease activity in tryptone and minimal media. Other compounds associated with the histidine utilization (hut) pathway did not increase alkaline protease activity. Histidine reversed the repression of alkaline protease activity by glucose of (NH4)2SO4 in minimal medium. Histidine and the compounds associated with the hut pathway inhibited collagenase production.  相似文献   

8.
In the work, a study of cell growth and the regulation of heterologous glucoamylase synthesis under the control of the positively regulated alcA promoter in a recombinant Aspergillus nidulans is presented. We found that similar growth rates were obtained for both the host and recombinant cells when either glucose or fructose was employed as sole carbon and energy source. Use of the potent inducer cyclopentanone in concentrations greater than 3 mM resulted n maximum glucoamylase concentration and maximum overall specific glucoamylase concentration over 80 h of batch cultivation. However, cyclopentanone concentrations in excess of 3 mM also showed an inhibitory effect on spore germination as well as fungal growth. In contrast, another inducer, threonine, had no negative effect on spore germination even when concentrations of up to 100 mM were used with either glucose or fructose as carbon source. Glucoamylase synthesis in the presence of glucose plus either inducer did not begin until glucose was totally depleted, suggesting strong catabolite repression. Similar results were obtained when fructose was employed, although low levels of glucoamylase were detected before fructose depletion, suggesting partial catabolite repression. The highest enzyme concentration (570 mg/L) and overall specific enzyme concentration (81 mg/g cell) were observed in batch culture when cyclopentanone was the inducer and fructose the primary carbon source. A maximum glucoamylase concentration of 1.1 g/L and an overall specific glucoamylase concentration of 167 mg/g cell were obtained in a bioreactor using cyclopentanone as the inducer and limited-fructose feeding strategy, which nearly doubles the glucoamylase productivity from batch cultures. (c) 1993 John Wiley & Sons, Inc.  相似文献   

9.
Summary In strain IGC 4052 of the amylolytic yeast Lipomyces kononenkoae growing in starch-limited chemostat cultures the critical dilution rate was reduced to about half of its theoretical value due to severe catabolite repression of amylase formation while its value in a repression-resistant mutant was near its theoretical value. The enzyme yield coefficients and the specific production rates of α-amylase and glucoamylase passed through maxima at intermediate dilution rates. The shapes of the respective curves were partly determined by catabolite repression (parent strain) or its absence (mutant strain) while induction did not seem to play to role. An additional growth-linked regulatory mechanism seemed to be involved. The use of continuous culture as compared with batch culture, increased the maximum biomass productivity by a factor of 2.2 in the mutant strain and by a factor of 1.4 in the parent strain.  相似文献   

10.
Regulation of cell-specific cellulase synthesis (expressed in milligrams of cellulase per gram [dry weight] of cells) by Clostridium thermocellum was investigated using an enzyme-linked immunosorbent assay protocol based on antibody raised against a peptide sequence from the scaffoldin protein of the cellulosome (Zhang and Lynd, Anal. Chem. 75:219-227, 2003). The cellulase synthesis in Avicel-grown batch cultures was ninefold greater than that in cellobiose-grown batch cultures. In substrate-limited continuous cultures, however, the cellulase synthesis with Avicel-grown cultures was 1.3- to 2.4-fold greater than that in cellobiose-grown cultures, depending on the dilution rate. The differences between the cellulase yields observed during carbon-limited growth on cellulose and the cellulase yields observed during carbon-limited growth on cellobiose at the same dilution rate suggest that hydrolysis products other than cellobiose affect cellulase synthesis during growth on cellulose and/or that the presence of insoluble cellulose triggers an increase in cellulase synthesis. Continuous cellobiose-grown cultures maintained either at high dilution rates or with a high feed substrate concentration exhibited decreased cellulase synthesis; there was a large (sevenfold) decrease between 0 and 0.2 g of cellobiose per liter, and there was a much more gradual further decrease for cellobiose concentrations >0.2 g/liter. Several factors suggest that cellulase synthesis in C. thermocellum is regulated by catabolite repression. These factors include: (i) substantially higher cellulase yields observed during batch growth on Avicel than during batch growth on cellobiose, (ii) a strong negative correlation between the cellobiose concentration and the cellulase yield in continuous cultures with varied dilution rates at a constant feed substrate concentration and also with varied feed substrate concentrations at a constant dilution rate, and (iii) the presence of sequences corresponding to key elements of catabolite repression systems in the C. thermocellum genome.  相似文献   

11.
12.
Independently controlled, inducible, catabolic genes in Pseudomonas aeruginosa are subject to strong catabolite repression control by intermediates of the tricarboxylic acid cycle. Mutants which exhibited a pleiotropic loss of catabolite repression control of multiple pathways were isolated. The mutations mapped in the 11-min region of the P. aeruginosa chromosome near argB and pyrE and were designated crc. Crc- mutants no longer showed repression of mannitol and glucose transport, glucose-6-phosphate dehydrogenase, glucokinase, Entner-Doudoroff dehydratase and aldolase, and amidase when grown in the presence of succinate plus an inducer. These activities were not expressed constitutively in Crc- mutants but exhibited wild-type inducible expression.  相似文献   

13.
Synthesis of the Pseudomonas aeruginosa aliphatic amidase was repressed severely by succinate and malate and less severely by glucose, acetate or lactate. Amidase synthesis in inducible and constitutive strains was stimulated by cyclic AMP, which also gave partial relief to catabolite repression produced by the addition of lactate to cultures growing in pyruvate medium. Mutants which were resistant to catabolite repression were isolated from succinate+lactamide medium.  相似文献   

14.
Effect of catabolite repression on the mer operon   总被引:4,自引:2,他引:2       下载免费PDF全文
The plasmid-determined mer operon, which provides resistance to inorganic mercury compounds, was subject to a 2.5-fold decrease in expression when glucose was administered at the same time as the inducer HgCl2. This glucose-mediated transient repression of the operon was overcome by the addition of cyclic AMP. Permanent catabolite repression of the operon was observed in the 1.6- to 1.9-fold decrease in expression in mutants lacking either adenyl cyclase (cya) or the catabolite activator protein (crp). The effect of the cya mutation on mer expression could be overcome by the addition of cyclic AMP at the time of induction, In addition to these effects on the whole cells of a wild-type strains, we examined the effect of catabolite repression on the expression of the mercuric ion [Hg(II)] reductase enzyme, assayable in cell extracts, and on the Hg(II) uptake system, assayable in a mutant strain which lacked reductase activity. There was a two- to threefold effect of repression on the Hg(II) reductase enzyme assayable in vitro after induction under catabolite repressing conditions (either with glucose or in the crp and cya mutants). We did not find a similar repressing effect on the induction of the Hg(II) uptake system, which is also determined by the mer operon.  相似文献   

15.
Acetylated amino sugars, normally used in the biosynthesis of cell walls and cell membranes, were found to play a role as corepressors for catabolite repression of the lac operon in Escherichia coli. This conclusion was derived from studies conducted on mutants of E. coli that were able to assimilate an exogenous source of N-acetylglucosamine (AcGN) but were unable to dissimilate or grow on this compound. At concentrations less than 10(-4)m, AcGN caused severe catabolite repression of beta-galactosidase synthesis in cultures grown under either nonrepressed or partially repressed conditions. This repression occurred in the absence of any effect of AcGN on either the carbon and energy metabolism or the growth of the organism. In addition, this repression by AcGN occurred in a mutant strain that is constitutive for beta-galactosidase production, demonstrating that the AcGN effect does not involve the uptake of inducer. This model for the corepressor system of catabolite repression is discussed in relation to the existing theories on repression of the lac operon.  相似文献   

16.
A modified Gilman assay was used to determine the concentrations of cyclic adenosine 3',5'-monophosphate (cAMP) in rapidly filtered cells and in the culture filtrates of Pseudomonas aeruginosa, Escherichia coli K-12, and Bacteroides fragilis. In P. aeruginosa cultures, levels of cAMP in the filtrate increased with the culture absorbance (3.5 to 19.8 X 10(-9) M) but did not vary significantly with the carbon source used to support growth. Intracellular concentrations (0.8 to 3.2 X 10(-5) M) were substantially higher and did not vary appreciably during growth or with carbon source. Sodium cAMP (5 mM) failed to reverse the catabolite repression of inducible glucose-6-phosphate dehydrogenase (EC 1.1.1.49) synthesis caused by the addition of 10 mM succinate. Exogenous cAMP also had no discernible effect on the catabolite repression control of inducible mannitol dehydrogenase (EC 1.1.1.67). P. aeruginosa was found to contain both soluble cAMP phosphodiesterase (EC 3.1.4.17) and membrane-associated adenylate cyclase (EC 4.6.1.1) activity, and these were compared to the activities detected in crude extracts of E. coli. B. fragilis crude cell extracts contain neither of these enzyme activities, and little or no cAMP was detected in cells or culture filtrates of this anaerobic bacterium.  相似文献   

17.
Simultaneous induction of two enzymes sensitive to catabolite repression does not lead to an additive decrease of the specific activity of the two. Exogenously added cAMP increases the specific activity of catabolically repressed enzymes, irrespective of whether the enzyme is induced separately or simultaneously with another enzyme. In the presence of 12 different substrates metabolized by inducible enzymes glucose does not bring about catabolite repression. Synthesis of cAMP is identical with that occurring under conditions when glucose brings about catabolite repression.  相似文献   

18.
The chemostat culture technique was used to study the control mechanisms which operate during utilization of mixtures of glucose and lactose and glucose and l-aspartic acid by populations of Escherichia coli B6. Constitutive mutants were rapidly selected during continuous culture on a mixture of glucose and lactose, and the beta-galactosidase level of the culture increased greatly. After mutant selection, the specific beta-galactosidase level of the culture was a decreasing function of growth rate. In cultures of both the inducible wild type and the constitutive mutant, glucose and lactose were simultaneously utilized at moderate growth rates, whereas only glucose was used in the inducible cultures at high growth rates. Catabolite repression was shown to be the primary mechanism of control of beta-galactosidase level and lactose utilization in continuous culture on mixed substrates. In batch culture, as in the chemostat, catabolite repression acting by itself on the lac enzymes was insufficient to prevent lactose utilization or cause diauxie. Interference with induction of the lac operon, as well as catabolite repression, was necessary to produce diauxic growth. Continuous cultures fed mixtures of glucose and l-aspartic acid utilized both substrates at moderate growth rates, even though the catabolic enzyme aspartase was linearly repressed with increasing growth rate. Although the repression of aspartase paralleled the catabolite repression of beta-galactosidase, l-aspartic acid could be utilized even at very low levels of the catabolic enzyme because of direct anabolic incorporation into protein.  相似文献   

19.
Galactose appears to be the physiological inducer of the chromosomal lac operon in Klebsiella aerogenes. Both lactose and galactose are poor inducers in strains having a functional galactose catabolism (gal) operon, but both are excellent inducers in gal mutants. Thus the slow growth of K. aerogenes on lactose reflects the rapid degradation of the inducer. Several pts mutations were characterized and shown to affect both inducer exclusion and permanent catabolite repression. The beta-galactosidase of pts mutants cannot be induced at all by lactose, and pts mutants appear to have a permanent and constitutive inducer exclusion phenotype. In addition, pts mutants show a reduced rate of glucose metabolism, leading to slower growth on glucose and a reduced degree of glucose-mediated permanent catabolite repression. The crr-type pseudorevertants of pts mutations relieve the constitutive inducer exclusion for lac but do not restore the full level of glucose-mediated permanent catabolite repression and only slightly weaken the glucose-mediated inducer exclusion. Except for weakening the glucose-mediated permanent catabolite repression, pts and crr mutations have no effect on expression of the histidine utilization (hut) operons.  相似文献   

20.
The d-gluconate transport system of Bacillus subtilis is optimally induced by exposure of cells for 2 h to 5 mM d-gluconate in the growth medium. d-gluconate transport is subject to catabolite repression, as distinct from inducer exclusion or catabolite inhibition, in a manner parallel to the repression of inducible histidase synthesis, suggesting that the repression is not specific to this transport system. Maximum repression with the repressing carbon source (10 mM) added to cells grown in either casein hydrolysate or amino acid medium is achieved within two doubling times. Urea, the only non-carbon source tested for a repressing effect, was found to act solely by inducer exclusion. The ability of a sugar carbon source to evoke catabolite repression appears to be unrelated to its suitability as a substrate for the sugar: phosphoenolpyruvate phosphotransferase system but nonetheless the conversion to a phosphorylated derivative of the sugar seems essential. Repressed cells fail to synthesize, or do so to a more limited extent, an as yet unidentified phosphorylated compound (probably a highly phosphorylated nucleotide) which is accumulated in the medium of non-repressed cells. Mutant studies imply that inosinic acid synthesis is necessary for catabolite repression whereas the adenosine highly phosphorylated nucleotides required for spurulation are not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号