首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preferential assembly of specialized nucleosomes on budding yeast centromeres can be due either to the higher stability of specialized centromeric nucleosomes and/or to the lower stability of canonical centromeric nucleosomes with respect to bulk nucleosomes. We have evaluated the thermodynamic stability of canonical nucleosomes, assembled on Kluyveromyces lactis centromeric DNAs, with a competitive reconstitution assay and a theoretical method recently developed by us. The results, obtained by both methods, show that all five known centromeric DNAs from K. lactis are able to organize canonical nucleosomes, characterized by higher stability with respect those of bulk DNA. With 'footprinting' and theoretical prediction, based on sequence-dependent DNA elasticity, we have found that centromeric canonical nucleosomes are characterized by nucleosome dyad axis multiple positioning, rotationally phased. The isoenergetic nucleosome multiple positions are relevant in understanding the transition from canonical to specialized nucleosomes in interacting with centromere protein complexes. The satisfactory agreement between the results obtained from theoretical and experimental methods shows that sequence-dependent centromeric DNA elasticity has a main role in nucleosome thermodynamic stability and positioning.  相似文献   

2.
The role of histone N-terminal domains on the thermodynamic stability of nucleosomes assembled on several different telomeric DNAs as well as on 'average' sequence DNA and on strong nucleosome positioning sequences, has been studied by competitive reconstitution. We find that histone tails hyperacetylation favors nucleosome formation, in a similar extent for all the examined sequences. On the contrary, removal of histone terminal domains by selective trypsinization causes a decrease of nucleosome stability which is smaller for telomeres compared to the other sequences examined, suggesting that telomeric sequences have only minor interactions with histone tails. Micrococcal nuclease kinetics shows enhanced accessibility of acetylated nucleosomes formed both on telomeric and 'average' sequence DNAs. These results suggest a more complex role for histone acetylation than the decrease of electrostatic interactions between DNA and histones.  相似文献   

3.
A theoretical model for predicting nucleosome thermodynamic stability in terms of DNA sequence is advanced. The model is based on a statistical mechanical approach, which allows the calculation of the canonical ensemble free energy involved in the competitive nucleosome reconstitution. It is based on the hypothesis that nucleosome stability mainly depends on the bending and twisting elastic energy to transform the DNA intrinsic superstructure into the nucleosomal structure. The ensemble average free energy is calculated starting from the intrinsic curvature, obtained by integrating the dinucleotide step deviations from the canonical B-DNA and expressed in terms of a Fourier series, in the framework of first-order elasticity. The sequence-dependent DNA flexibility is evaluated from the differential double helix thermodynamic stability. A large number of free-energy experimental data, obtained in different laboratories by competitive nucleosome reconstitution assays, are successfully compared to the theoretical results. They support the hypothesis that the stacking energies are the major factor in DNA rigidity and could be a measure of DNA stiffness. A dual role of DNA intrinsic curvature and flexibility emerges in the determination of nucleosome stability. The difference between the experimental and theoretical (elastic) nucleosome-reconstitution free energy for the whole pool of investigated DNAs suggests a significant role for the curvature-dependent DNA hydration and counterion interactions, which appear to destabilize nucleosomes in highly curved DNAs. This model represents an attempt to clarify the main features of the nucleosome thermodynamic stability in terms of physical-chemical parameters and suggests that in molecular systems with a large degree of complexity, the average molecular properties dominate over the local features, as in a statistical ensemble.  相似文献   

4.
Effects of DNA sequence and conformation on nucleosome formation   总被引:1,自引:0,他引:1  
A simple theoretical analysis of the free energy balance controlling nucleosome formation shows that the specific effects of different DNA sequences and/or conformations observed in vitro are mainly due to their different elastic properties. A calculation of the elastic free energy required to fold DNA on histone octamers yields quantitative results rationalizing the experimental findings provided that: (i) the average helical repeat of DNA on nucleosomes is greater than 10.2 bp per turn, and (ii) poly[dG.dC] adopts an A-type conformation.  相似文献   

5.
Imaging of nucleosomal arrays by atomic force microscopy allows a determination of the exact statistical distributions for the numbers of nucleosomes per array and the locations of nucleosomes on the arrays. This precision makes such data an excellent reference for testing models of nucleosome occupation on multisite DNA templates. The approach presented here uses a simple statistical thermodynamic model to calculate theoretical population and positional distributions and compares them to experimental distributions previously determined for 5S rDNA nucleosomal arrays (208-12,172-12). The model considers the possible locations of nucleosomes on the template, and takes as principal parameters an average free energy of interaction between histone octamers and DNA, and an average wrapping length of DNA around the octamers. Analysis of positional statistics shows that it is possible to consider interactions between nucleosomes and positioning effects as perturbations on a random positioning noninteracting model. Analysis of the population statistics is used to determine histone-DNA association constants and to test for differences in the free energies of nucleosome formation with different types of histone octamers, namely acetylated or unacetylated, and different DNA templates, namely 172-12 or 208-12 5S rDNA multisite templates. The results show that the two template DNAs bind histones with similar affinities but histone acetylation weakens the association of histones with both templates. Analysis of locational statistics is used to determine the strength of specific nucleosome positioning tendencies by the DNA templates, and the strength of the interactions between neighboring nucleosomes. The results show only weak positioning tendencies and that unacetylated nucleosomes interact much more strongly with one another than acetylated nucleosomes; in fact acetylation appears to induce a small anticooperative occupation effect between neighboring nucleosomes.  相似文献   

6.
7.
Nucleosomes are no longer considered only static basic units that package eukaryotic DNA but they emerge as dynamic players in all chromosomal processes. Regulatory proteins can gain access to recognition sequences hidden by the histone octamer through the action of ATP-dependent chromatin remodeling complexes that cause nucleosome sliding. In addition, it is known that nucleosomes are able to spontaneously reposition along the DNA due to intrinsic dynamic properties, but it is not clear yet to what extent sequence-dependent dynamic properties contribute to nucleosome repositioning. Here, we study mobility of nucleosomes formed on telomeric sequences as a function of temperature and ionic strength. We find that telomeric nucleosomes are highly intrinsically mobile under physiological conditions, whereas nucleosomes formed on an average DNA sequence mostly remain in the initial position. This indicates that DNA sequence affects not only the thermodynamic stability and the positioning of nucleosomes but also their dynamic properties. Moreover, our findings suggest that the high mobility of telomeric nucleosomes may be relevant to the dynamics of telomeric chromatin.  相似文献   

8.
Telomeres are dynamic nucleoprotein structures that cap the ends of eukaryotic chromosomes. In humans, the long (TTAGGG)(n) double-stranded telomeric DNA repeats are bound specifically by the two related proteins TRF1 and TRF2, and are organized in nucleosomes. Whereas the role of TRF1 and TRF2 in telomeric function has been studied extensively, little is known about the involvement of telomeric nucleosomes in telomere structures or how chromatin formation may affect binding of the TRFs. Here, we address the question of whether TRF1 is able to bind to telomeric binding sites in a nucleosomal context. We show that TRF1 is able to specifically recognize telomeric binding sites located within nucleosomes, forming a ternary complex. The formation of this complex is strongly dependent on the orientation of binding sites on the nucleosome surface, rather than on the location of the binding sites with respect to the nucleosome dyad. Strikingly, TRF1 binding causes alterations in nucleosome structure without dissociation of histone subunits. These results indicate that nucleosomes contribute to the establishment of a telomeric capping complex, whose structure and dynamics can be modulated by the binding of telomeric factors.  相似文献   

9.
Rat liver telomeric DNA is organised into nucleosomes characterised by a shorter and more homogeneous average nucleosomal repeat than bulk chromatin as shown by Makarov et al. (1). The latter authors were unable to detect the association of any linker histone with the telomeric DNA. We have confirmed these observations but show that in sharp contrast chicken erythrocyte telomeric DNA is organised into nucleosomes whose spacing length and heterogeneity are indistinguishable from those of bulk chromatin. We further show that chicken erythrocyte telomeric chromatin contains chromatosomes which are preferentially associated with histone H1 relative to histone H5. This contrasts with bulk chromatin where histone H5 is the more abundant species. This observation strongly suggests that telomeric DNA condensed into nucleosome core particles has a higher affinity for H1 than H5. We discuss the origin of the discrimination of the lysine rich histones in terms of DNA sequence preferences, telomere nucleosome preferences and particular constraints of the higher order chromatin structure of telomeres.  相似文献   

10.
A statistical mechanistic approach to evaluate the sequence-dependent thermodynamic stability of nucleosomes is proposed. The model is based on the calculation of the DNA intrinsic curvature, obtained by integrating the nucleotide step deviations from the canonical B-DNA structure, and on the evaluation of the first order elastic distortion energy to reach the nucleosomal superstructure. Literature data on the free energy of nucleosome formation as obtained by competitive nucleosome reconstitution of a significant pool of different DNA sequences were compared with the theoretical results, and a satisfactorily good correlation was found. A striking result of the comparison is the emergence of two opposite roles of the DNA intrinsic curvature and flexibility in determining nucleosome stability. Finally, the obtained results suggest that the curvature-dependent DNA hydration should play a relevant role in the sequence-dependent nucleosome stability.  相似文献   

11.
We propose a combined experimental (atomic force microscopy) and theoretical study of the structural and dynamical properties of nucleosomes. In contrast to biochemical approaches, this method allows us to determine simultaneously the DNA-complexed length distribution and nucleosome position in various contexts. First, we show that differences in the nucleoproteic structure observed between conventional H2A and H2A.Bbd variant nucleosomes induce quantitative changes in the length distribution of DNA-complexed with histones. Then, the sliding action of remodeling complex SWI/SNF is characterized through the evolution of the nucleosome position and wrapped DNA length mapping. Using a linear energetic model for the distribution of DNA-complexed length, we extract the net-wrapping energy of DNA onto the histone octamer and compare it to previous studies.  相似文献   

12.
13.
Widlund HR  Vitolo JM  Thiriet C  Hayes JJ 《Biochemistry》2000,39(13):3835-3841
Modulation of nucleosome stability in chromatin plays an important role in eukaryotic gene expression. The core histone N-terminal tail domains are believed to modulate the stability of wrapping nucleosomal DNA and the stability of the chromatin filament. We analyzed the contribution of the tail domains to the stability of nucleosomes containing selected DNA sequences that are intrinsically straight, curved, flexible, or inflexible. We find that the presence of the histone tail domains stabilizes nucleosomes containing DNA sequences that are intrinsically straight or curved. However, the tails do not significantly contribute to the free energy of nucleosome formation with flexible DNA. Interestingly, hyperacetylation of the core histone tail domains does not recapitulate the effect of tail removal by limited proteolysis with regard to nucleosome stability. We find that acetylation of the tails has the same minor effect on nucleosome stability for all the selected DNA sequences. A comparison of histone partitioning between long donor chromatin, acceptor DNA, and free histones in solution shows that the core histone tails mediate internucleosomal interactions within an H1-depleted chromatin fiber amounting to an average free energy of about 1 kcal/mol. Thus, such interactions would be significant with regard to the free energies of sequence-dependent nucleosome positioning. Last, we analyzed the contribution of the H2A/H2B dimers to nucleosome stability. We find that the intact nucleosome is stabilized by 900 cal/mol by the presence of the dimers regardless of sequence. The biological implications of these observations are discussed.  相似文献   

14.
We applied fluorescence detection methods on the single-molecule level to study structural variations and dynamic processes occurring within nucleosomes. Four fluorescent nucleosome constructs were made by attaching donor and acceptor fluorophores to different positions of two nucleosome positioning sequences and reconstituting nucleosomes by salt dialysis. The photochemical and biochemical stability of nucleosomes under single-molecule conditions was optimized by adding inert protein and free radical capturing additives, allowing us to define the best experimental conditions for single-molecule spectroscopy on highly diluted solutions of nucleosome complexes. We could demonstrate for the first time the resolution of conformational subpopulations of nucleosomes by single-pair fluorescence resonance energy transfer in a freely diffusing system and could show the effect of thermally induced nucleosome repositioning.  相似文献   

15.
Telomeric DNAs consist of tandem repeats of G-clusters such as TTAGGG and TG1-3, which are the human and yeast repeat sequences, respectively. In the yeast Saccharomyces cerevisiae, the telomeric repeats are non-nucleosomal, whereas in humans, they are organized in tightly packaged nucleosomes. However, previous in vitro studies revealed that the binding affinities of human and yeast telomeric repeat sequences to histone octamers in vitro were similar, which is apparently inconsistent with the differences in the human and yeast telomeric chromatin structures. To further investigate the relationship between telomeric sequences and chromatin structure, we examined the effect of telomeric repeats on the formation of positioned nucleosomes in vivo by indirect end-label mapping, primer extension mapping and nucleosome repeat analyses, using a defined minichromosome in yeast cells. We found that the human and yeast telomeric repeat sequences both disfavour nucleosome assembly and alter nucleosome positioning in the yeast minichromosome. We further demonstrated that the G-clusters in the telomeric repeats are required for the nucleosome-disfavouring properties. Thus, our results suggest that this inherent structural feature of the telomeric repeat sequences is involved in the functional dynamics of the telomeric chromatin structure.  相似文献   

16.
The possible role of border factors in determining the nucleosome positioning on a DNA sequence was investigated. To this end a family of recombinant plasmids based on Gal10Cyc1 promoter and neomycin phosphotransferase gene NPTII were created. A DNA sequence adjoining the GalCyc promoter was varied in these plasmids. Three nearly equally represented nucleosome positions on the GalCyc promoter were found. In the basal plasmid an FRT sequence adjoins the GalCyc promoter at the right. It contains an internal signal of multiple positioning. Its replacement with different DNA sequences does not affect nucleosome positioning on the GalCyc promoter. The nucleosome positioning on the GalCyc promoter does not depend on nucleosome positioning (or its absence) on adjoining sequences. The same is true for nucleosome positioning on FRT sequence. It was found also that nucleosomes' positioning on the NPTII gene and their mutual disposition, namely the spacing between neighboring nucleosomes (linker length) are determined by the location of positioning signals only. Generally the nucleosome positioning in our experimental model is determined solely by internal DNA sequence occupied by nucleosome. On the other hand, the action of this internal positioning signal does not extend to neighboring DNA sequences.  相似文献   

17.
18.
Chd1- and ISWI-type chromatin remodelers can sense extranucleosomal DNA and preferentially shift nucleosomes toward longer stretches of available DNA. The DNA-binding domains of these chromatin remodelers are believed to be responsible for sensing extranucleosomal DNA and are needed for robust sliding, but it is unclear how these domains contribute to directional movement of nucleosomes. Here, we show that the DNA-binding domain of Chd1 is not essential for nucleosome sliding but is critical for centering mononucleosomes on short DNA fragments. Remarkably, nucleosome centering was achieved by replacing the native DNA-binding domain of Chd1 with foreign DNA-binding domains of Escherichia coli AraC or Drosophila melanogaster engrailed. Introducing target DNA sequences recognized by the foreign domains enabled the remodelers to rapidly shift nucleosomes toward these binding sites, demonstrating that these foreign DNA-binding domains dictated the direction of sliding. Sequence-directed sliding occluded the target DNA sequences on the nucleosome enough to promote release of the remodeler. Target DNA sequences were highly stimulatory at multiple positions flanking the nucleosome and had the strongest influence when separated from the nucleosome by 23 or fewer base pairs. These results suggest that the DNA-binding domain's affinity for extranucleosomal DNA is the key determinant for the direction that Chd1 shifts the nucleosome.  相似文献   

19.
Despite decades of study on nucleosomes, there has been no experimental determination of the free energy of association between histones and DNA. Instead, only the relative free energy of association of the histone octamer for differing DNA sequences has been available. Recently, a method was developed based on quantitative analysis of nucleosome dissociation in dilution experiments that provides a simple practical measure of nucleosome stability. Solution conditions were found in which nucleosome dissociation driven by dilution fit well to a simple model involving a noncooperative nucleosome assembly/disassembly equilibrium, suggesting that this approach might allow absolute equilibrium affinity of the histone octamer for DNA to be measured. Here, we show that the nucleosome assembly/disassembly process is not strictly reversible in these solution conditions, implying that equilibrium affinities cannot be obtained from these measurements. Increases in [NaCl] or temperature, commonly employed to suppress kinetic bottlenecks in nucleosome assembly, lead to cooperative behavior that cannot be interpreted with the simple assembly/disassembly equilibrium model. We conclude that the dilution experiments provide useful measures of kinetic but not equilibrium stability. Kinetic stability is of practical importance: it may govern nucleosome function in vivo, and it may (but need not) parallel absolute thermodynamic stability.  相似文献   

20.
Telomeric chromatin has different features with respect to bulk chromatin, since nucleosomal repeat along the chain is unusually short. We studied the role of telomeric DNA sequences on nucleosomal spacing in a model system. Nucleosomal arrays, assembled on a 1500-bp-long human telomeric DNA and on a DNA fragment containing 8 copies of the 601 strong nucleosome positioning sequence, have been studied at the single molecule level, by atomic force microscopy imaging. Random nucleosome positioning was found in the case of human telomeric DNA. On the contrary, nucleosome positioning on 601 DNA is characterized by preferential positions of nucleosome dyad axis each 200 bp. The AFM-derived nucleosome organization is in satisfactory agreement with that predicted by theoretical modeling, based on sequence-dependent DNA curvature and flexibility. The reported results show that DNA sequence has a main role, not only in mononucleosome thermodynamic stability, but also in the organization of nucleosomal arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号