首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the various subcellular fractions of rat liver 45-75% of the total dolichol was esterified with a fatty acid. The esterification reaction was localized exclusively in the microsomes, and the transferase activity is 3-fold higher in the cation-insensitive smooth microsomes than in other microsomal subfractions. Although fatty acyl-CoAs tested served as substrates, palmitoyl-CoA was the most rapidly utilized. None of the phosphatidylcholine or phosphatidylethanolamine species tested could be utilized to esterify dolichol with a fatty acid, indicating the absence of transacylation. alpha-Saturated dolichols were esterified at a higher rate than their alpha-unsaturated counterparts. Albumin and low concentrations of Triton X-100 activated the esterification reaction, which was not dependent on mono- or divalent cations, ATP, or CoA. The sensitivity of the transferase activity to trypsin indicates localization of the enzyme(s) involved on the outer surface of microsomes (i.e. the cytoplasmic surface of the endoplasmic reticulum), as is also the case for enzymes of dolichol biosynthesis. Transferase activity was detected in all tissues examined but at a much lower level than in liver and testis. The patterns of fatty acids in dolichol esters of different organelles exhibited some specificity. Labeling in vivo indicated that esterification of dolichol may play a role in targeting this lipid from the endoplasmic reticulum to lysosomes.  相似文献   

2.
Biosynthesis of dolichol by rat liver peroxisomes   总被引:1,自引:0,他引:1  
The ability of peroxisomes and microsomes to synthesize dolichol from [3H]mevalonate, [3H]isopentenyl-P2 or [3H]farnesyl-P2 in vitro was investigated. It was found that isoprenoid biosynthesis also occurs in peroxisomes and that this process demonstrates properties differing from those of isoprenoid biosynthesis by microsomes. The pH optimum in peroxisomes was 8.0 and, in contrast to microsomes, the peroxisomal biosynthesis was largely insensitive to detergents. After treatment with proteolytic enzymes, microsomes lost their capacity to incorporate [3H]mevalonate into dolichol, whereas proteolysis of intact peroxisomes did not influence their corresponding rate of incorporation. The soluble content of peroxisomes was separated from the membranes and found to demonstrate half of the biosynthetic capacity of the intact organelle. Fasting and cholestyramine treatment decreased only the microsomal incorporation of [3H]mevalonate into dolichol, while treatment with clofibrate, di-2-ethylhexyl phthalate or phenobarbital increased microsomal, but decreased peroxisomal labeling. After injection of [3H]mevalonate into the portal vein of rats, high initial labeling of dolichol was recovered both in isolated microsomes and peroxisomes, whereas when [3H]glycerol was administered, peroxisomal phospholipids became labeled later than the corresponding microsomal constituents. These results support the conclusion that dolichol is synthesized both in peroxisomes and the endoplasmic reticulum, but that the biosynthetic processes at these two locations have different properties.  相似文献   

3.
Inner mitochondrial membranes from liver contain a dolichol kinase which required CTP as a phosphoryl donor. Kinase activity was linear with protein concentration and unlike other reported kinases, activated almost equally well by Mg2+, Mn2+ or Ca2+. Thin-layer chromatography showed that the reaction product co-migrated with authentic dolichyl monophosphate. The phosphorylation of dolichol did not occur in presence of ATP, GTP or UTP but required exogenous dolichol for maximal activity. Newly synthesized [3H]dolichyl monophosphate has been shown to be glycosylated in the presence of GDP[14C]mannose or UDP[14C]glucose. The double labeled lipids formed by the sugar nucleotide-dependent reactions were identified respectively as [14C]mannosylphosphoryl[3H]dolichol and [14C]glucosylphosphoryl [3H]dolichol. These results are discussed in terms of regulation of N-glycosylation processes in inner mitochondrial membranes from liver.  相似文献   

4.
Endogenous dolichol was shown to function as a natural acceptor of mannose residues by using regenerating rat liver containing [(3)H]dolichol. When subcellular fractions from this liver were incubated with GDP-[(14)C]mannose a double-labelled lipid, which represented 30% of the total [(14)C]mannolipid, could be isolated. This lipid was shown to be identical with the dolichol phosphate mannose formed from exogenous dolichol phosphate, by chromatography, stability to alkali and by chemical cleavage to mannose and dolichol derivatives. It was formed by the rough endoplasmic reticulum and mitochondria. If it is concerned in glycoprotein synthesis this would suggest that it functions in the formation of both secreted and mitochondrial glycoproteins. When both the dolichol and retinol of rat tissue were radioactive they made similar contributions to the synthesis of the lipid by liver microsomal fractions and intestinal epithelial cells.  相似文献   

5.
Dolichol phosphate is a lipid carrier embedded in the endoplasmic reticulum (ER) membrane essential for the synthesis of N-glycans, GPI-anchors and protein C- and O-mannosylation. The availability of dolichol phosphate on the cytosolic site of the ER is rate-limiting for N-glycosylation. The abundance of dolichol phosphate is influenced by its de novo synthesis and the recycling of dolichol phosphate from the luminal leaflet to the cytosolic leaflet of the ER. Enzymatic defects affecting the de novo synthesis and the recycling of dolichol phosphate result in glycosylation defects in yeast or cell culture models, and are expected to cause glycosylation disorders in humans termed congenital disorders of glycosylation (CDG). Currently only one disorder affecting the dolichol phosphate metabolism has been described. In CDG-Im, the final step of the de novo synthesis of dolichol phosphate catalyzed by the enzyme dolichol kinase is affected. The defect causes a severe phenotype with death in early infancy. The present review summarizes the biosynthesis of dolichol-phosphate and the recycling pathway with respect to possible defects of the dolichol phosphate metabolism causing glycosylation defects in humans.  相似文献   

6.
The topography of the dolichyl phosphate biosynthetic enzymes within the plane of rat liver microsomes was investigated by the use of two impermeant inhibitors of enzyme activity: trypsin and mercury-dextran. Mercury-dextran was found to inactivate over 50% of the activities of the CTP-dependent dolichol kinase and the long-chain prenyltransferase. Trypsin caused over 90% inactivation of the long-chain prenyltransferase and 60% inactivation of the dolichol kinase. In addition, the CTP-dependent dolichol kinase was inhibited over 90% by CDP applied externally to sealed microsomes. Inactivation of the dolichyl phosphate biosynthetic enzymes by the impermeant probes occurred under conditions where the mannose-6-phosphatase activity was highly latent. It was concluded that the active sites of these two enzymes are located on the external surface of the microsomal membranes and that dolichyl phosphate biosynthesis occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum.  相似文献   

7.
Rats were treated with inducers of peroxisomes, mitochondria and the endoplasmic reticulum, as well as receiving diets and drug known to influence the mevalonate pathway. Treatment with clofibrate and 2-diethylhexylphthalate (DEHP) increased microsomal and mitochondrial ubiquinone contents, but a decrease was observed in lysosomes. In vivo labeling of this lipid with [3H]mevalonate was also elevated. The amount of cholesterol did not change upon exposure to these inducers of peroxisomes and mitochondria, but its rate of labeling was decreased. The concentration of dolichol increased only after treatment with DEHP and only in lysosomes. The inducers of the endoplasmic reticulum phenobarbital, 3-methylcholanthrene and N-nitrosodiethylamine enhanced the rate of ubiquinone synthesis and exposure to the latter two substances also elevated the amount of this lipid in microsomes. A cholesterol-rich diet increased the labeling of ubiquinone and decreased cholesterol labeling, while cholestyramine treatment had opposite effects on lipid labeling in both microsomes and mitochondria. The results demonstrate that the ubiquinone contents of the various membranes of hepatocytes change in a characteristic manner under the influence of inducers and dietary factors. Clearly, the level of ubiquinone and its biosynthesis are regulated separately from those of the other products of the mevalonate pathway, cholesterol and dolichol.  相似文献   

8.
Membrane preparations from chick peripheral nervous system (PNS) catalyzed the transfer of [3H]glucose from UDP-[3H]glucose into glucosylphosphoryl dolichol. The initial rate of glucosylphosphoryl dolichol formation in a non-myelin membrane fraction from actively myelinating chick PNS was 11 fold higher than that from adult. Exogenous dolichyl monophosphate stimulated glucosylphosphoryl dolichol synthesis in both fractions. The higher level of glucosylphosphoryl dolichol synthesis corresponded to the onset of myelination in chick PNS. Exogenous dolichyl monophosphate also stimulated the labeling of glucosylated oligosaccharide lipids and glycoproteins in the fraction. On SDS polyacrylamide gel electrophoresis, the relative mobility of the major and minor radioactive glycoprotein corresponded with that of the P0 and PASII glycoprotein in PNS myelin, respectively. The results suggest that myelin glycoproteins in PNS are glycosylated via lipid intermediates.  相似文献   

9.
The fractionation of mitochondrial membranes on discontinuous sucrose gradient leads to the obtaining of free outer membranes, free inner membranes and two distinct membrane contact site populations characterized as follows. Only outer membrane contact sites and inner membrane contact sites bind hexokinase. Outer membranes and outer membrane contact sites are cholesterol-rich fractions. The endogenous dolichol content is twice fold higher in outer membranes and outer membrane contact sites than in inner membranes and inner membrane contact sites, only the biosynthesis of dolichol in inner membrane contact sites is not stimulated by addition of exogenous [14C]-IPP and FPP. The glycosylation of endogenous dolichol from labeled nucleotide-sugars (UDP-GlcNAc, GDP-Man and UDP-Glc) leads to the synthesis of dolichol-pyrophosphoryl-sugars and dolichol-monophosphoryl-sugars with the rate of synthesis proportional to the dolichol content of each submitochondrial fraction.  相似文献   

10.
The availability of dolichyl phosphate is a major factor in the rate of formation of N-linked glycoproteins in mammalian cells. Recent studies in our laboratory suggested that glycoproteins required for seed germination and early plant development are formed via the dolichyl phosphate pathway. Soybean microsomes contain dolichol kinase and dolichyl phosphate phosphatase, enzymes that regulate dolichyl phosphate levels by interconversion of dolichyl phosphate and dolichol. In the present study, soybean microsomes were fractionated into rough and smooth endoplasmic reticulum and Golgi, and the activities of dolichol kinase and dolichyl phosphate phosphatase were measured in each. Submicrosomal fractions were obtained using a procedure developed for rat liver, and were characterized by marker enzymes, RNA content and electron microscopy. The site of N-glycosylation, the rough endoplasmic reticulum, contained high levels of both dolichol kinase and dolichyl phosphate phosphatase. This makes possible a mechanism whereby glycoprotein formation during seed germination is regulated by availability of dolichyl phosphate.  相似文献   

11.
UDP-Glc:dolichol phosphate glucosyltransferase from lactating rat mammary gland has been partially purified by a combination of (NH4)2SO4 fractionation, gel filtration, ion-exchange chromatography on DEAE-TSK, and affinity chromatography. The partially purified enzyme exhibited several protein bands when examined by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions; among these, a 35-kDa polypeptide was quite prominent and appeared to be enriched during purification. Photoaffinity labeling of the partially purified enzyme preparation with 5-azido-[beta-32P]UDP-Glc identified a 35-kDa polypeptide. Labeling of a solubilized enzyme preparation from crude and stripped microsomes also revealed a 35-kDa band on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Photoinsertion of the probe in this polypeptide is enhanced by the presence of dolichol phosphate and Mg2+. Competition studies with UDP-Glc, UDP-glucuronic acid, other sugar nucleotides, and Glc-1-phosphate provide evidence to validate the specificity of photoaffinity labeling. These studies indicate that this 35-kDa polypeptide is involved in the synthesis of dolichol-P-Glc in rat mammary tissue. The possibility that this polypeptide may represent glucosyltransferase has been discussed.  相似文献   

12.
beta-Adrenergic stimulation of rat parotid acinar cells markedly increases [3H]mannose incorporation into N-linked glycoproteins [Kousvelari, Grant, Banerjee, Newby & Baum (1984) Biochem. J. 222, 17-24]. More than 90% of this protein-bound [3H]mannose was preferentially incorporated into four secretory glycoproteins. The ratio of [3H]mannose/[14C]leucine present in these individual proteins was 1.7-4-fold greater with isoproterenol-treated cells than with untreated controls. In isoproterenol-stimulated cells, [3H]mannose incorporation into mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol was increased 2-3-fold over that observed in unstimulated cells. Similarly, formation of mannosylated oligosaccharide-PP-dolichol was increased approx. 4-fold in microsomes prepared from isoproterenol-treated cells. Also, turnover of oligosaccharide-PP-dolichol was significantly increased (5-fold) by beta-adrenergic stimulation; the half-life for oligosaccharide-PP-dolichol decreased from 6 min in control cells to 1.2 min in isoproterenol-stimulated cells. By 15 min after isoproterenol addition to acinar cells, the specific radioactivity of parotid oligosaccharide moieties increased about 3-fold over the value observed in the absence of the agonist. Taken together, these results strongly suggest that elevation of N-linked protein glycosylation in rat parotid acinar cells after beta-adrenoreceptor stimulation resulted from significant enhancement in the synthesis of mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol and the turnover of oligosaccharide-PP-dolichol.  相似文献   

13.
Inflammation and glucocorticoids stimulate hepatic glycoprotein synthesis, resulting in an increased secretion of serum glycoproteins. We now present evidence that the synthesis of dolichol and dolichol phosphate from mevalonate is increased in hepatocytes from inflamed rats. Also, in inflamed rats, the levels of dolichol and dolichol phosphate are increased in liver homogenates and microsomes. Dexamethasone treatment of the cells, however, does not increase the synthesis of dolichol and dolichol phosphate from mevalonate. The results suggest that the inflammation-induced dolichol-linked saccharide and glycoprotein synthesis is possibly mediated through an increase in the level of dolichol and dolichol phosphate in the liver. Since dexamethasone treatment does not increase the synthesis of dolichol and dolichol phosphate, its action on glycoprotein synthesis appears to be different and to affect the induction of enzymes in mannosyl phosphoryl dolichol- and dolichol-linked oligosaccharide synthesis.  相似文献   

14.
The alpha- and beta-phosphorothioate analogs of UDP-Gal and UDP-Glc, in which a sulfur is exchanged for a non-bridging oxygen at one of the phosphate groups, have been synthesized and tested for their resistance to enzymatic degradation and for their usefulness in glycosyltransferase reactions. The alpha analogs were found to be no more resistant to hydrolysis than the native nucleotide sugars, but as previously reported (R. B. Marchase et al. (1987) Biochim. Biophys. Acta 916: 157) the beta S analogs were approximately 10 times more resistant. The beta S analog and native UDP-Glc were found to have comparable Km's when used in assays for glucosylphosphoryl dolichol synthase with rat liver and hen oviduct microsomes, although the apparent Vmax of the reaction was about twofold higher for the analog, presumably due to its resistance to degradation. Partially purified 4 beta-galactosyltransferase exhibited a Vmax with (beta S)UDP-Gal that was only slightly lower than that with UDP-Gal and a Km that was slightly increased. The effectiveness of the analog was especially apparent in assays for 4 beta-galactosyltransferase on intact sperm and in rat liver homogenates, in which hydrolysis of the normal substrate was very rapid and net incorporation was at least 4 times greater with the beta S analog in each system.  相似文献   

15.
We found in the Escherichia coli genome sequence a homologue of RER2, a Saccharomyces cerevisiae gene required for proper localization of an endoplasmic reticulum protein, and designated it rth (RER2 homologue). The disruption of this gene was lethal for E. coli. To reveal its biological function, we isolated temperature-sensitive mutants of the rth gene. The mutant cells became swollen and burst at the nonpermissive temperature, indicating that their cell wall integrity was defective. Further analysis showed that the mutant cells were deficient in the activity of cis-prenyltransferase, namely, undecaprenyl diphosphate synthase, a key enzyme of the carrier lipid formation of peptidoglycan synthesis. The cellular level of undecaprenyl phosphate was in fact markedly decreased in the mutants. These results are consistent with the fact that the Rer2 homologue of Micrococcus luteus shows undecaprenyl diphosphate synthase activity (N. Shimizu, T. Koyama, and K. Ogura, J. Biol. Chem. 273:19476-19481, 1998) and demonstrate that E. coli Rth is indeed responsible for the maintenance of cell wall rigidity. Our work on the yeast rer2 mutants shows that they are defective in the activity of cis-prenyltransferase, namely, dehydrodolichyl diphosphate synthase, a key enzyme of dolichol synthesis. Taking these data together, we conclude that the RER2 gene family encodes cis-prenyltransferase, which plays an essential role in cell wall biosynthesis in bacteria and in dolichol synthesis in eukaryotic cells and has been well conserved during evolution.  相似文献   

16.
Y Maeda  S Tomita  R Watanabe  K Ohishi    T Kinoshita 《The EMBO journal》1998,17(17):4920-4929
Biosynthesis of glycosylphosphatidylinositol and N-glycan precursor is dependent upon a mannosyl donor, dolichol phosphate-mannose (DPM). The Thy-1negative class E mutant of mouse lymphoma and Lec15 mutant Chinese hamster ovary (CHO) cells are incapable of DPM synthesis. The class E mutant is defective in the DPM1 gene which encodes a mammalian homologue of Saccharomyces cerevisiae Dpm1p that is a DPM synthase, whereas Lec15 is a different mutant, indicating that mammalian DPM1 is not sufficient for DPM synthesis. Here we report expression cloning of a new gene, DPM2, which is defective in Lec15 cells. DPM2, an 84 amino acid membrane protein expressed in the endoplasmic reticulum (ER), makes a complex with DPM1 that is essential for the ER localization and stable expression of DPM1. Moreover, DPM2 enhances binding of dolichol phosphate, a substrate of DPM synthase. Mammalian DPM1 is catalytic because a fusion protein of DPM1 that was stably expressed in the ER synthesized DPM without DPM2. Therefore, biosynthesis of DPM in mammalian cells is regulated by DPM2.  相似文献   

17.
A mixed membrane fraction isolated from C. albicans yeast cells catalyzed the transfer of glucose from UDP-Glc into three classes of endogenous acceptors: glucolipid, glycoprotein and lipid-linked oligosaccharides. About 80 of the total radioactivity transferred into these products corresponded to the glucolipid which was identified as dolichol phosphate glucose by several criteria. The remainder was detected in about equal proportions in the other two fractions. Conditions that stimulated or inhibited glucolipid synthesis did not affect the extent of glycoprotein labeling. The synthesis of dolichol phosphate glucose exhibited a Kmof 104 M UDP-Glc and was stimulated by Mg2+but not by Mn2+or Ca2+. The latter cations were, however, better stimulators of glycoprotein labeling than Mg2+. Most nucleotides strongly inhibited the synthesis of dolichol phosphate glucose, UMP being a competitive inhibitor with a Kiof 100 M. The dolichol phosphate glucose synthase reaction was reversed about 57 by 0.62 mM UDP but not by UMP.  相似文献   

18.
The relationship between the neutral lipid and phospholipid metabolism and some structure-function peculiarities of regenerating rat liver endoplasmic reticulum membranes (13 hours after surgery, i.e., corresponding to the G1-period of the cell cycle) was studied. There was an increase in the degree of the endoplasmic reticulum membrane development and the nonesterified fatty acid (NFA) and triglyceride (TG) content in regenerating rat liver microsomes. The relative specific radioactivity of neutral lipid and phospholipid fractions in regenerating rat liver microsomes was lower than in control animals, presumably due to the high rate of the microsomal lipid exchange in the regenerating liver with other cell organelles. The changes in the lipid content and rate of their metabolism in the regenerating rat liver were associated with the increase in the membrane microviscosity and the decrease in the activity of the membrane-bound enzyme (glucose-6-phosphatase). The differences in the time-dependent changes in the synthesis and metabolism of lipids in the NFA and TG fractions may be regarded as an endogenous factor determining the structure-function peculiarities of endoplasmic reticulum membranes.  相似文献   

19.
Characterization and kinetics of dolichol uptake by a Vero cell line are reported. Vero cells incorporate dolichol in a time- and dose-dependent manner. Optimal uptake is found at 37 degrees C and at a pH of 7.4. In contrast to cholesterol, an inhibitory effect on the dolichol incorporation is found for farnesol, geraniol, and retinol. Long chain polyprenols were slightly stimulatory. The translocation seems not to be highly energy dependent. The lack of substantial inhibition by chloroquine does not plead for a receptor-mediated endocytosis. Incorporated dolichol was distributed over both membranes and supernatant fractions, paralleling the distribution of the lysosomal marker beta-N-acetylhexosaminidase. The incorporated dolichol is subject to a fast efflux process, which is potentiated by the presence of lipid acceptors in the extracellular medium.  相似文献   

20.
Inflammation was induced in rats by the subcutaneous injection of turpentine. Microsomes were prepared from the livers between 2 and 72 h after injection. Mannose and glucose incorporation into mannosyl and glucosyl dolichyl monophosphate was increased 2-fold over saline-injected controls 24 h after induction of inflammation. Synthesis of glycosylated dolichyl pyrophosphoryl oligosaccharides was also increased compared to controls. Extraction and assay of dolichol monophosphate from inflamed and control rat liver microsomes indicated that the endogenous levels of the lipid were elevated in the inflamed state. CTP-dependent phosphorylation of endogenous dolichol was also found to increase in microsomes from inflamed rats 24 h after injection of turpentine. When exogenous dolichol was added to the microsomal system an increase in phosphorylation was observed as early as 6 h after turpentine injection. Furthermore, the increase appeared to be biphasic, there being two peaks of elevated activity at 12 and 36-48 h after induction of inflammation. The earlier peak was the greater of the two. The results suggest that the increase in glycosylation of dolichol derivatives was due to greater amounts of endogenous dolichol monophosphate. The increase in dolichol monophosphate was itself due to greater availability of dolichol and an increase in the levels of CTP-dependent dolichol kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号