首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
narK mutants of Escherichia coli produce wild-type levels of nitrate reductase but, unlike the wild-type strain, do not accumulate nitrite when grown anaerobically on a glucose-nitrate medium. Comparison of the rates of nitrate and nitrite metabolism in cultures growing anaerobically on glucose-nitrate medium revealed that a narK mutant reduced nitrate at a rate only slightly slower than that in the NarK+ parental strain. Although the specific activities of nitrate reductase and nitrite reductase were similar in the two strains, the parental strain accumulated nitrite in the medium in almost stoichiometric amounts before it was further reduced, while the narK mutant did not accumulate nitrite in the medium but apparently reduced it as rapidly as it was formed. Under conditions in which nitrite reductase was not produced, the narK mutant excreted the nitrite formed from nitrate into the medium; however, the rate of reduction of nitrate to nitrite was significantly slower than that of the parental strain or that which occurred when nitrite reductase was present. These results demonstrate that E. coli is capable of taking up nitrate and excreting nitrite in the absence of a functional NarK protein; however, in growing cells, a functional NarK promotes a more rapid rate of anaerobic nitrate reduction and the continuous excretion of the nitrite formed. Based on the kinetics of nitrate reduction and of nitrite reduction and excretion in growing cultures and in washed cell suspensions, it is proposed that the narK gene encodes a nitrate/nitrite antiporter which facilitates anaerobic nitrate respiration by coupling the excretion of nitrite to nitrate uptake. The failure of nitrate to suppress the reduction of trimethylamine N-oxide in narK mutants was not due to a change in the level of trimethylamine N-oxide reductase but apparently resulted from a relative decrease in the rate of anaerobic nitrate reduction caused by the loss of the antiporter system.  相似文献   

3.
Nitrate uptake is essential for various bacterial processes and combines with nitrite export to form the usual initial steps of denitrification, a process that reduces nitrate to dinitrogen gas. Although many bacterial species contain NarK-like transporters that are proposed to function as either nitrate/proton symporters or nitrate/nitrite antiporters based on sequence homology, these transporters remain, in general, poorly characterized. Several bacteria appear to contain a transporter that is a fusion of two NarK-like proteins, although the significance of this arrangement remains elusive. We demonstrate that NarK from Paracoccus denitrificans is expressed as a fusion of two NarK-like transporters. NarK1 and NarK2 are separately capable of supporting anaerobic denitrifying growth but with growth defects that are partially mitigated by coexpression of the two domains. NarK1 appears to be a nitrate/proton symporter with high affinity for nitrate and NarK2 a nitrate/nitrite antiporter with lower affinity for nitrate. Each transporter requires two conserved arginine residues for activity. A transporter consisting of inactivated NarK1 fused to active NarK2 has a dramatically increased affinity for nitrate compared with NarK2 alone, implying a functional interaction between the two domains. A potential model for nitrate and nitrite transport in P. denitrificans is proposed.  相似文献   

4.
5.
6.
7.
Two polytopic membrane proteins, NarK and NarU, are assumed to transport nitrite out of the Escherichia coli cytoplasm, but how nitrate enters enteric bacteria is unknown. We report the construction and use of four isogenic strains that lack nitrate reductase Z and the periplasmic nitrate reductase, but express all combinations of narK and narU. The active site of the only functional nitrate reductase, nitrate reductase A, is located in the cytoplasm, so nitrate reduction by these four strains is totally dependent upon a mechanism for importing nitrate. These strains were exploited to determine the roles of NarK and NarU in both nitrate and nitrite transport. Single mutants that lack either NarK or NarU were competent for nitrate-dependent anaerobic growth on a non-fermentable carbon source, glycerol. They transported and reduced nitrate almost as rapidly as the parental strain. In contrast, the narK-narU double mutant was defective in nitrate-dependent growth unless nitrate transport was facilitated by the nitrate ionophore, reduced benzyl viologen (BV). It was also unable to catalyse nitrate reduction in the presence of physiological electron donors. Synthesis of active nitrate reductase A and the cytoplasmic, NADH-dependent nitrite reductase were unaffected by the narK and narU mutations. The rate of nitrite reduction catalysed by the cytoplasmic, NADH-dependent nitrite reductase by the double mutant was almost as rapid as that of the NarK+-NarU+ strain, indicating that there is a mechanism for nitrite uptake by E. coli that is in-dependent of either NarK or NarU. The nir operon encodes a soluble, cytoplasmic nitrite reductase that catalyses NADH-dependent reduction of nitrite to ammonia. One additional component that contributes to nitrite uptake was shown to be NirC, the hydrophobic product of the third gene of the nir operon, which is predicted to be a polytopic membrane protein with six membrane-spanning helices. Deletion of both NarK and NirC decreased nitrite uptake and reduction to a basal rate that was fully restored by a single chromosomal copy of either narK or nirC. A multicopy plasmid encoding NarU complemented a narK mutation for nitrite excretion, but not for nitrite uptake. We conclude that, in contrast to NirC, which transports only nitrite, NarK and NarU provide alternative mechanisms for both nitrate and nitrite transport. However, NarU might selectively promote nitrite ex-cretion, not nitrite uptake.  相似文献   

8.

Background

The cytochrome P450 CYP1A1 and CYP1B1 enzymes are involved in carcinogenesis via activation of pro-carcinogenic compounds to carcinogenic metabolites. CYP1A1 and CYP1B1 have shown elevated levels in human tumors as determined by qRT-PCR and immunohistochemical studies. However studies that have examined CYP1 expression by enzyme activity assays are limited.

Results

In the current study the expression of CYP1A1 and CYP1B1 was investigated in a panel of human tumors of bladder and colorectal origin by qRT-PCR and enzyme activity assays. The results demonstrated that 35% (7/20) of bladder tumors and 35% (7/20) of colon tumors overexpressed active CYP1 enzymes. CYP1B1 mRNA was overexpressed in 65% and 60% of bladder and colon tumors respectively, whereas CYP1A1 was overexpressed in 65% and 80% of bladder and colon tumors. Mean mRNA levels of CYP1B1 and CYP1A1 along with mean CYP1 activity were higher in bladder and colon tumors compared to normal tissues (p<0.05). Statistical analysis revealed CYP1 expression levels to be independent of TNM status. Moreover, incubation of tumor microsomal protein in 4 bladder and 3 colon samples with a CYP1B1 specific antibody revealed a large reduction (72.5 ± 5.5 % for bladder and 71.8 ± 7.2% for colon) in catalytic activity, indicating that the activity was mainly attributed to CYP1B1 expression.

Conclusions

The study reveals active CYP1 overexpression in human tumors and uncovers the potential use of CYP1 enzymes and mainly CYP1B1 as targets for cancer therapy.  相似文献   

9.
Overexpression of JNK binding domain inhibited glucose deprivation-induced JNK1 activation, relocalization of Daxx from the nucleus to the cytoplasm, and apoptosis signal-regulating kinase 1 (ASK1) oligomerization in human prostate adenocarcinoma DU-145 cells. However, SB203580, a p38 inhibitor, did not prevent relocalization of Daxx and oligomerization of ASK1 during glucose deprivation. Studies from in vivo labeling and immune complex kinase assay demonstrated that phosphorylation of Daxx occurred during glucose deprivation, and its phosphorylation was mediated through the ASK1-SEK1-JNK1-HIPK1 signal transduction pathway. Data from immunofluorescence staining and protein interaction assay suggest that phosphorylated Daxx may be translocated to the cytoplasm, bind to ASK1, and subsequently lead to ASK1 oligomerization. Mutation of Daxx Ser667 to Ala results in suppression of Daxx relocalization during glucose deprivation, suggesting that Ser667 residue plays an important role in the relocalization of Daxx. Unlike wild-type Daxx, a Daxx deletion mutant (amino acids 501-625) mainly localized to the cytoplasm, where it associated with ASK1, activated JNK1, and induced ASK1 oligomerization without glucose deprivation. Taken together, these results show that glucose deprivation activates the ASK1-SEK1-JNK1-HIPK1 pathway, and the activated HIPK1 is probably involved in the relocalization of Daxx from the nucleus to the cytoplasm. The relocalized Daxx may play an important role in glucose deprivation-induced ASK1 oligomerization.  相似文献   

10.
11.
Estrogens are critical for breast cancer initiation and development. Sulfotransferase 1A1 (SULT1A1) and UDP-glucuronosyltransferase 1A1 (UGT1A1) conjugate and inactivate both estrogens and their metabolites, thus preventing estrogen-mediated mitosis and mutagenesis. SULT1A1 and UGT1A1 genes are both polymorphic, and different alleles encode functionally different allozymes. We hypothesize that low activity alleles SULT1A1*2 and UGT1A1*28 are associated with the higher risk for breast cancer and more severe breast tumor phenotypes. We performed a case-control study, which included 119 women of Russian ancestry with breast cancer and 121 age-matched Russian female controls. We used PCR, followed by pyrosequencing to determine SULT1A1 and UGT1A1 genotypes. Our data showed that UGT1A1*28 allele was presented at a higher frequency than the wild type UGT1A1*1 allele in breast cancer patients as compared to controls (p = 0.002, OR = 1.79, CI 1.23-2.63). Consistently, the frequency of genotypes that contain the UGT1A1*28 allele in the homozygous or heterozygous state was greater than the frequency of the wild type UGT1A1*1/*1 genotype in breast cancer patients as compared to controls (p = 0.003, OR = 4.00, CI 1.49-11.11 and p = 0.014, OR = 2.04, CI 1.14-3.57, respectively). The group of individuals, carrying the UGT1A1*28 allele in the homo- or heterozygous state also presented larger breast tumors (>2 cm) as compared to the group with high enzymatic activity genotypes p = 0.011, OR = 3.44, CI 1.42-8.36). No association was observed between any of the SULT1A1 genotypes and breast cancer risk or phenotypes. Our data suggest that UGT1A1 but not SULT1A1 genotype might be important for breast cancer risk and phenotype in Russian women.  相似文献   

12.
Cytochrome P450 (CYP) 1A1 and CYP1B1 are important phase I xenobiotic metabolizing enzymes involved in the metabolism of numbers of toxins, endogenous hormones, and pharmaceutical drugs. Polymorphisms in these phase I genes can alter enzyme activity and are known to be associated with cancer susceptibility related to environmental toxins and hormone exposure. Their genotypes may also display ethnicity-dependent population frequencies. The present study was aimed to determine the frequencies of commonly known functional polymorphisms of CYP1A1 and CYP1B1 genes in a Haryana state population of North India. The allelic frequency of CYP1A1 polymorphism m1 (MspI) was 29.65% and m2 (Ile462Val) was 24.85%. The frequency of CYP1B1 polymorphism m1 (Val432Leu) was 45.85% and m2 (Asn453Ser) was 16.2%. We observed inter- and intra-ethnic variation in the frequency distribution of these polymorphisms. Analysis of polymorphisms in these genes might help in predicting the risk of cancer. Our results emphasize the need for more such studies in high-risk populations.  相似文献   

13.
Hydrogen bonds in small chain alcohol-alcohol binary systems alter the dielectric permittivity of the binary system. With a view to obtain a better understanding of the interactions in such systems, the complex permittivity spectra of mixtures of methanol (ME) with 1propanol (1PR) and 1butanol (1BU) have been measured in the frequency range 10 MHz to 20 GHz using time domain reflectometry at 288 K, 298 K, 308 K and 318 K. The dielectric parameters such as static dielectric constant and relaxation time were obtained using the calibration method based on nonlinear least squares fit method. Using these parameters excess permittivity, excess inverse relaxation time, Kirkwood correlation factor, and thermodynamic parameters were determined. It is observed that the static permittivity decreases with increase in mole fractions of 1PR/1BU in ME whereas the relaxation time increases for both the binary systems. Computational conformational analysis was performed using ab initio Hartree-Fock using Gaussian-03 program. The present studies indicate a difference in the solvation of ME by 1PR/1BU and vice versa. Further, the interaction of ME-1PR is distinctly different at the 0.55 molar concentration of 1PR while the ME-1BU system shows strong interactions in both the methanol and the 1BU rich regions.  相似文献   

14.
Rap1 and SPA-1 in hematologic malignancy   总被引:8,自引:0,他引:8  
Rap1 is a member of the Ras family of GTPases and, depending on the cellular context, has an important role in the regulation of proliferation or cell adhesion. In lymphohematopoietic tissues, SPA-1 is a principal Rap1 GTPase-activating protein. Mice that are deficient for the SPA-1 gene develop age-dependent progression of T-cell immunodeficiency followed by a spectrum of late onset myeloproliferative disorders, mimicking human chronic myeloid leukemia. Recent studies reveal that deregulated Rap1 activation in SPA-1-deficient mice causes enhanced expansion of the bone marrow hematopoietic progenitors, but induces progressive unresponsiveness or anergy in T cells. Rap1 and its regulator, SPA-1, could, therefore, provide unique molecular targets for the control of human hematologic malignancy.  相似文献   

15.
GD1a was previously shown responsible for regulating cell motility, cellular adhesiveness to vitronectin, phosphorylation of c-Met and metastatic ability of mouse FBJ osteosarcoma cells. To determine the particular molecules regulated by GD1a, FBJ cells were assessed for tumor-related gene expression by semi-quantitative RT-PCR. Caveolin-1 and stromal interaction molecule 1 (Stim1) expression in FBJ-S1 cells, rich in GD1a, were found to be 6 and 4 times as much, respectively, than in FBJ-LL cells devoid of GD1a. Enhanced production of caveolin-1 in protein was confirmed by Western blotting. A low-metastatic FBJ-LL cell variant, having high GD1a expression through β1-4GalNAcT-1 (GM2/GD2 synthase) cDNA transfection (Hyuga S, et al, Int J Cancer 83: 685-91, 1999), showed enhanced production of caveolin-1 and Stim1 in mRNA and protein, compared to mock-transfectant M5. Incubation of FBJ-M5 cells with exogenous GD1a augmented the expression of caveolin-1 in mRNA and protein and Stim1 in mRNA as well. Treatment of FBJ-S1 with fumonisin B1, an inhibitor of N-acylsphinganine synthesis, for 15 days caused the complete depletion of gangliosides and suppressed the expression of caveolin-1 and Stim1. St3gal5 siRNA transfected cells showed decreased expression of caveolin-1 and Stim1 mRNA, as well as St3gal5 mRNA. These findings clearly indicate ganglioside GD1a to be involved in the regulation of the transformation suppressor genes, caveolin-1 and Stim1. Moreover, treatment with GD1a of mouse melanoma B16 cells and human hepatoma HepG2 cells brought about elevated expression of caveolin-1 and Stim1. Li Wang and Shizuka Takaku are equal contributors to the present work  相似文献   

16.
We analyzed the expression of high in normal-1 (HIN-1), a putative breast tumor suppressor gene, and uteroglobin related protein-1 (UGRP-1), a homologue of HIN-1, in adult and developing mouse tissues. Highest HIN-1 and UGRP-1 expression is detected in the lung, while lower level HIN-1 expression is also detected in the stomach, heart, small intestine, uterine and mammary glands. The expression of both genes was detected only at E17.5-18.5 and the HIN-1 messenger RNA was localized to the epithelia of the trachea, bronchi, and uterine glands. The expression of HIN-1 is up-regulated during retinoic acid induced differentiation of bronchial epithelial cells. We also identified two putative Drosophila HIN-1 homologues. The expression of HIN-1 is restricted to terminally differentiated airway epithelial cells in vivo and in vitro implicating HIN-1 in the acquisition or maintenance of terminally differentiated epithelial phenotype.  相似文献   

17.
Estrogens are critical for breast cancer initiation and development. Sulfotransferase 1A1 (SULT1A1) and UDP-glucuronosyltransferase 1A1 (UGT1A1) conjugate and inactivate both estrogens and their metabolites, thus preventing estrogen-mediated mitosis and mutagenesis. SULT1A1 and UGT1A1 are both polymorphic, and different alleles encode functionally different allozymes. We hypothesize that low-activity alleles SULT1A1*2 and UGT1A1*28 are associated with higher risk for breast cancer and more severe breast tumor phenotypes. We performed a case-control study, which included 119 women of Russian ancestry with breast cancer and 121 age-matched Russian female controls. We used PCR followed by pyrosequencing to determine the SULT1A1 and UGT1A1 genotypes. Allele UGT1A1*28 was present at a higher frequency than the wild-type UGT1A1*1 allele in breast cancer patients as compared to controls (P = 0.002, OR = 1.79, CI 1.23–2.63). Consistently, the frequency of genotypes that contain allele UGT1A1*28 in the homozygous or the heterozygous state was greater in breast cancer patients as compared with the frequency of the wild-type UGT1A1*1/*1 genotype (P = 0.003, OR = 4.00, CI 1.49–11.11 and P = 0.014, OR = 2.04, CI 1.14–3.57, respectively). Individuals carrying allele UGT1A1*28 in the homo-or heterozygous state had larger breast tumors (>2 cm) as compared to the group with high-activity genotypes (P = 0.011, IR = 3.44, CI 1.42–8.36). No association was observed between any of the SULT1A1 genotypes and breast cancer risk or phenotypes. Our data suggest that UGT1A1, but not SULT1A1, genotypes are important for breast cancer risk and phenotype in Russian women. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 2, pp. 263–270. The article was translated by the authors.  相似文献   

18.
19.
RELATED TO UBIQUITIN (RUB) modification of CULLIN (CUL) subunits of the CUL-RING ubiquitin E3 ligase (CRL) superfamily regulates CRL ubiquitylation activity. RUB modification requires E1 and E2 enzymes that are analogous to, but distinct from, those activities required for UBIQUITIN (UBQ) attachment. Gene duplications are widespread in angiosperms, and in line with this observation, components of the RUB conjugation pathway are found in multiples in Arabidopsis. To further examine the extent of redundancy within the RUB pathway, we undertook biochemical and genetic characterizations of one such duplication event- the duplication of the genes encoding a subunit of the RUB E1 into AUXIN RESISTANT1 (AXR1) and AXR1-LIKE1 (AXL1). In vitro, the two proteins have similar abilities to function with E1 C-TERMINAL-RELATED1 (ECR1) in catalyzing RUB1 activation and RUB1-ECR1 thioester formation. Using mass spectrometry, endogenous AXR1 and AXL1 proteins were found in complex with 3HA-RUB1, suggesting that AXR1 and AXL1 exist in parallel RUB E1 complexes in Arabidopsis. In contrast, AXR1 and AXL1 differ in ability to correct phenotypic defects in axr1-30, a severe loss-of-function AXR1 mutant, when the respective coding sequences are expressed from the same promoter, suggesting differential in vivo functions. These results suggest that while both proteins function in the RUB pathway and are biochemically similar in RUB-ECR1 thioester formation, they are not functionally equivalent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号