首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secondary metabolism in fungi is frequently associated with asexual and sexual development. Aspergillus parasiticus produces aflatoxins known to contaminate a variety of agricultural commodities. This strictly mitotic fungus, besides producing conidia asexually, produces sclerotia, structures resistant to harsh conditions and for propagation. Sclerotia are considered to be derived from the sexual structure, cleistothecia, and may represent a vestige of ascospore production. Introduction of the aflatoxin pathway-specific regulatory gene, aflR, and aflJ, which encoded a putative co-activator, into an O-methylsterigmatocystin (OMST)-accumulating strain,A. parasiticus SRRC 2043, resulted in elevated levels of accumulation of major aflatoxin precursors, including norsolorinic acid (NOR), averantin (AVN), versicolorin A (VERA) and OMST. The total amount of these aflatoxin precursors, NOR, VERA, AVN and OMST, produced by the aflR plus aflJ transformants was two to three-fold that produced by the aflR transformants. This increase indicated a synergisticeffect of aflR and aflJ on the synthesis of aflatoxin precursors. Increased production of the aflatoxin precursors was associated with progressive decrease in sclerotial size, alteration in sclerotial shape and weakening in the sclerotial structure of the transformants. The results showed that sclerotial development and aflatoxin biosynthesis are closely related. We proposed that competition for a common substrate, such as acetate, by the aflatoxin biosynthetic pathway could adversely affect sclerotial development in A. parasiticus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Transformation of sterigmatocystin and O-methylsterigmatocystin (two metabolic aflatoxin precursors) to aflatoxins by aflatoxigenic and nonaflatoxigenic field isolates of Aspergillus flavus was studied. The 24 nonaflatoxigenic isolates investigated failed to transform both precursors. Among the 8 aflatoxin-producing isolates used, 7 transformed both precursors whereas the remaining failed to transform both. According to these results, the usefulness of the measurement of enzymatic activities related to aflatoxin production in understanding the true status of conflictive field isolates is discussed.Abbreviations ST sterigmatocystin - OMST O-methylsterigmatocystin - AFB1 aflatoxin B1 - AFB2 aflatoxin B2 - AFG1 aflatoxin G1 - AFG2 aflatoxin G2 - GM growth medium of Adye and Mateles - RM replacement medium of Adye and Mateles  相似文献   

3.
Versicolorin A hemiacetal was converted to versicolorin C in cell-free systems fromAspergillus parasiticus. The rate of reaction catalyzed by the 35–70% ammonium sulfate fraction was 0.43 nmol min–1 mg–1 with NADPH as cosubstrate and 0.17 nmol. min–1 mg–1 with NADH at 25°C at pH 7.4. The product from incubation of 17-hdyroxy-16,17-dihydrosterigmatocystin with the 35–70% ammonium sulfate fraction and NADPH was a polar compound which was converted to dihydrosterigmatocystin by 0.4 M HCl. The olar comound is proposed to be the 14,17-hydrated open-chain derivative of dihydrosterigmatocystin. Aflatoxin G2a was also reduced in this system to a polar product tentatively identified as the 13,16-hydrated open-chain derivative of AFG2. The reductase activity may be involved in the formation of reduced intermediates and aflatoxins in cultures ofA. parasiticus.  相似文献   

4.
The aflatoxin-producing fungi, Aspergillus flavus and A. parasiticus, form structures called sclerotia that allow for survival under adverse conditions. Deletion of the veA gene in A. flavus and A. parasiticus blocks production of aflatoxin as well as sclerotial formation. We used microarray technology to identify genes differentially expressed in wild-type veA and veA mutant strains that could be involved in aflatoxin production and sclerotial development in A. flavus. The DNA microarray analysis revealed 684 genes whose expression changed significantly over time; 136 of these were differentially expressed between the two strains including 27 genes that demonstrated a significant difference in expression both between strains and over time. A group of 115 genes showed greater expression in the wild-type than in the veA mutant strain. We identified a subgroup of veA-dependent genes that exhibited time-dependent expression profiles similar to those of known aflatoxin biosynthetic genes or that were candidates for involvement in sclerotial production in the wild type.  相似文献   

5.
Intraspecific competition is the basis for biological control of aflatoxins, but there is little understanding of the mechanism(s) by which competing strains inhibit toxin production. Evidence is presented that demonstrates a relationship between strength of the vegetative compatibility reaction and aflatoxin production in Aspergillus flavus and A. parasiticus using the suspended disk culture method. Combining wild-type aflatoxin-producing isolates belonging to different vegetative compatibility groups (VCGs) resulted in a substantial reduction in aflatoxin yield. Pairs of aflatoxin-producing isolates within the same VCG, but showing weak compatibility reactions using complementary nitrate-nonutilizing mutants, also were associated with reduced levels of aflatoxin B1. In contrast, pairings of isolates displaying a strong compatibility reaction typically produced high levels of aflatoxins. These results suggest that interactions between vegetatively compatible wild-type isolates of A. flavus and A. parasiticus are cooperative and result in more aflatoxin B1 than pairings between isolates that are incompatible. Successful hyphal fusions among spore germlings produce a common mycelial network with a larger resource base to support aflatoxin biosynthesis. By comparison, vegetative incompatibility reactions might result in the death of those heterokaryotic cells composed of incompatible nuclei and thereby disrupt the formation of mycelial networks at the expense of aflatoxin biosynthesis. The content of this paper was presented at the 50th Anniversary Meeting of the Mycological Society of Japan, June 3–4, 2006, Chiba, Japan  相似文献   

6.
7.
8.
The relevance of oxidative stress in the production of aflatoxin and its precursors was examined in different mutants of Aspergillus parasiticus, which produce aflatoxin or its precursor intermediates, and compared with results obtained from a non-toxigenic strain. In comparison to the non-toxigenic strain (SRRC 255), an aflatoxin producing strain (NRRL 2999) or mutants that accumulate aflatoxin precursors such as norsolorinic acid (by SRRC 162) or versicolorin (by NRRL 6196) or O-methyl sterigmatocystin (by SRRC 2043) had greater oxygen requirements and higher contents of reactive oxygen species. These changes were in the graded order of NRRL 2999 > SRRC 2043 > NRRL 6196 > SRRC 162 > SRRC 255, indicating incremental accumulation of reactive oxygen species, being least in the non-toxigenic strain and increasing progressively during the ternary steps of aflatoxin formation. Oxidative stress in these strains was evident by increased activities of xanthine oxidase and free radical scavenging enzymes (superoxide dismutase and glutathione peroxidase) as compared to the non-toxigenic strain (SRRC 255). Culturing the toxigenic strain in presence of 0.1–10 μM H2O2 in the medium resulted in enhanced aflatoxin production, which could be related to dose-dependent increase in [14C]-acetate incorporation into aflatoxin B1 and increased acetyl CoA carboxylase activity. The combined results suggest that formation of secondary metabolites such as aflatoxin and its precursors by A. parasiticus may occur as a compensatory response to reactive oxygen species accumulation.  相似文献   

9.
【目的】筛选H~+_-ATPase活性降低的植物乳杆菌突变菌,比较其与亲本菌基因表达水平的差异,进一步探索H~+_-ATPase的调控机制。【方法】利用硫酸新霉素诱变、筛选突变菌,并对亲本菌(ZUST)和突变菌(ZUST-1、ZUST-2)进行生长、产酸能力及H~+_-ATPase活性的测定。分别提取亲本菌和突变菌的基因组DNA,扩增H~+_-ATPase全部编码基因并测序。通过荧光定量PCR对H~+_-ATPase全部编码基因进行相对定量分析。【结果】突变菌的生长和产酸能力均低于亲本菌,突变菌ZUST-1和ZUST-2的H~+_-ATPase活性比亲本菌分别降低了10.1%和28.8%。突变菌ZUST-1和ZUST-2的atp A基因均有22个位点发生突变,而ZUST-2的atp C基因有6个位点发生突变。突变菌ZUST-1和ZUST-2的atp A在对数期基因表达水平分别比亲本菌ZUST下调了41.1%和35.7%,在稳定期分别下调了43.6%和14.2%;ZUST-1的atp C基因在对数期的表达水平比ZUST略高,在稳定期比ZUST上调了30%,而ZUST-2的atp C基因未表达。【结论】突变菌H~+_-ATPase活性减弱会导致其全部编码基因在稳定期表达水平上调(除ZUST-2的atp C不表达外),而且atp A和atp C基因突变导致的基因表达水平的差异是影响H~+_-ATPase活性的主要因素,此研究结果为进一步研究植物乳杆菌中H~+_-ATPase的调控机制奠定了基础。  相似文献   

10.
A two-year study was conducted to evaluate the efficacy of three formulations of nontoxigenic strains of Aspergillus flavus and Aspergillus parasiticus to reduce preharvest aflatoxin contamination of peanuts. Formulations included: (1) solid-state fermented rice; (2) fungal conidia encapsulated in an extrusion product termed Pesta; (3) conidia encapsulated in pregelatinized corn flour granules. Formulations were applied to peanut plots in 1996 and reapplied to the same plots in 1997 in a randomized design with four replications, including untreated controls. Analysis of soils for A. flavus and A. parasiticus showed that a large soil population of the nontoxigenic strains resulted from all formulations. In the first year, the percentage of kernels infected by wild-type A. flavus and A. parasiticus was significantly reduced in plots treated with rice and corn flour granules, but it was reduced only in the rice-treated plots in year two. There were no significant differences in total infection of kernels by all strains of A. flavus and A. parasiticus in either year. Aflatoxin concentrations in peanuts were significantly reduced in year two by all formulation treatments with an average reduction of 92%. Reductions were also noted for all formulation treatments in year one (average 86%), but they were not statistically significant because of wide variation in the aflatoxin concentrations in the untreated controls. Each of the formulations tested, therefore, was effective in delivering competitive levels of nontoxigenic strains of A. flavus and A. parasiticus to soil and in reducing subsequent aflatoxin contamination of peanuts.  相似文献   

11.
Since the initial discovery of Xanthomonas perforans on tomato in 1991, it has completely displaced Xanthomonas euvesicatoria as the bacterial spot of tomato pathogen in Florida. Previous research has shown that X. perforans produces at least three different bacteriocin-like compounds (BcnA, BcnB, BcnC) antagonistic toward X. euvesicatoria strains. In this study pathogenicity-attenuated, bacteriocin-producing mutants of X. perforans were created to determine their potential as biological control agents for control of X. euvesicatoria. Several candidate genes were chosen based on previous studies in which mutant phenotypes exhibited reduced virulence in either X. perforans (OpgHXcv) or the closely related X. euvesicatoria strain 85-10 (hpaB, hpaC, xopA, xopD, avrBs2 and gumD). Each candidate gene in X. perforans was amplified and PCR-assisted deletion mutagenesis was performed in the wild-type (wt) X. perforans strain to create potential attenuation mutants. Each mutant was tested for growth rate, disease severity and antagonism toward X. euvesicatoria strains. Three mutants, XopA, opgH, and gumD were significantly less pathogenic than the wild-type strain with the opgH mutant reaching significantly lower internal populations than all other mutants except hpaC. The opgH-strain was the most affected in its ability to grow internally in plant tissue while inhibiting X. euvesicatoria populations equal to or more than the other mutant strains. This mutant strain could potentially be used as part of an effective biological control strategy.  相似文献   

12.
Soil isolates of Aspergillus section Flavi from Mazandaran and Semnan provinces with totally different climatic conditions in Iran were examined for aflatoxins (AFs; B and G types), cyclopiazonic acid (CPA) and sclerotia production. A total of 66 Aspergillus flavus group strains were identified from three species viz. Aspergillus flavus, Aspergillus parasiticus and Aspergillus nomius in both locations. A. flavus (87.9%) was found to be the prominent species followed by A. nomius (9.1%) and A. parasiticus (3.0%). Only 27.5% of A. flavus isolates were aflatoxigenic (B1 or B1 and B2), out of which approximately 75% were capable to producing CPA. All the A. parasiticus and A. nomius isolates produced AFs of both B (B1 and B2) and G (G1 and G2) types, but did not produce CPA. Sclerotia production was observed in only 4 isolates of A. flavus among all 66 isolates from three identified species. A. flavus isolates were classified into various chemotypes based on the ability to produce aflatoxins and CPA. In this study, a new naturally occurring toxigenic A. flavus chemotype comprising of two strains capable of producing more AFB2 than AFB1 has been identified. A relatively larger proportion of aflatoxigenic A. flavus strains were isolated from corn field soils of Mazandaran province which indicate a possible relationship between high levels of relative humidity and the incidence of aflatoxin-producing fungi. The importance of incidence of Aspergillus section Flavi in corn field soils regard to their mycotoxin production profiles and crop contamination with special reference to climatic conditions is discussed.  相似文献   

13.
One hundred and twenty-nine mutants of Azospirillum brasilense strain Sp6, resistant to methylammonium, were isolated. Three of the mutants were found to be able to reduce acetylene in the presence of 4 mM ammonium or 120mM methylammonium, concentrations which strongly reduced the nitrogenase activity of the parental strain. Under N2-fixing conditions, two mutants failed to switch off nitrogenase when NH4Cl was added. Moreover, the three mutants showed a reduced capacity to incorporate [14C]methylammonium. The level of glutamine synthetase activity found in the mutants was not reduced as compared to that of the parental strain. All of the data indicate an impairement in the mechanism of ammonium uptake by the bacterial cell.Abbreviations MEA Methylammonium - MSP minimal medium (ammonium free) - PY complete medium - GS glutamine synthetase  相似文献   

14.
Virginiae butanolide (VB) is a member of the γ-butyrolactone autoregulators and triggers the production of streptogramin antibiotics virginiamycin M1 and S in Streptomyces virginiae. A VB biosynthetic gene (barS2) was localized in a 10-kb regulatory island which controls the virginiamycin biosynthesis/resistance of S. virginiae, and analyzed by gene disruption/complementation. The barS2 gene is flanked by barS1, another VB biosynthetic gene catalyzing stereospecific reduction of an A-factor-type precursor into a VB-type compound, and barX encoding a pleiotropic regulator for virginiamycin biosynthesis. The deduced product of barS2 possessed moderate similarity to a putative dehydrogenase of Streptomyces venezuelae, encoded by jadW 2 located in similar gene arrangement to that in the regulatory island of S. virginiae. A barS2-disruptant (strain IC152), created by means of homologous recombination, showed no differences in growth in liquid medium or morphology on solid medium compared to a wild-type strain, suggesting that BarS2 does not play any role in primary metabolism or morphological differentiation of S. virginiae. In contrast, no initiation of virginiamycin production or VB production was detected with the strain IC152 until 18 h of cultivation, at which time full production of virginiamycin occurs in the wild-type strain. The delayed virginiamycin production of the strain IC152 was fully restored to the level of the wild-type strain either by the exogenous addition of VB or by complementation of the intact barS2 gene, indicating that the lack of VB production at the initiation phase of virginiamycin production is the sole reason for the defect of virginiamycin production, and the barS2 gene is of primary importance for VB biosynthesis in S. virginiae. An erratum to this article can be found at  相似文献   

15.
The effect of inactivation of the PPX1 and PPN1 genes encoding the yeast exopolyphosphatases on the activities of these enzymes and polyphosphate content in the cytosol of Saccharomyces cerevisiae was studied under Pi deficit and Pi excess in the cultivation medium. Under Pi deficit, exopolyphosphatase activity in strain CRN (with inactivated PPN1 gene) and in the parent strain CRY increased 3- and 1.5-fold, respectively. In the strain CRX (with inactivated PPX1 gene), exopolyphosphatase activity did not change under Pi deficit. Transfer from Pi-deficient to Pi-rich medium was accompanied by an ~1.7-fold increase of exopolyphosphatase activities in the cytosol preparations of strains CRY, CRX, and CRN. In the cytosol of the double mutant, exopolyphosphatase activity was practically absent under all of the above cultivation conditions. The content of polyphosphates in the cytosol preparations of all strains under study substantially decreased under Pi deficit. Transfer from Pi-deficient to Pi-rich medium was accompanied by polyphosphate over-accumulation only in the cytosol preparations of stains CRX and CNX, where their levels increased ~1.3 and 3.5-fold, respectively. No over-accumulation was observed in the parent strain CRY and in the PPN1-deficient strain CRN. These data suggest that the exopolyphosphatases encoded by the PPX1 and PPN1 genes are not involved in polyphosphate synthesis.  相似文献   

16.
Summary A convenient miniassay for aflatoxin has been developed for cultures ofAspergillus flavus andA. parasiticus grown for 3–10 days in 10 ml of a coconut extract medium. The sensitivity of the assay, as measured by photofluorometry (365 nm maximum excitation; 445 nm maximum emission), is of the order of 0.01 M (3.12 ng/ml) for aflatoxin B1 dissolved in aqueous iodine (0.26 mM). High performance liquid chromatography, monitored by fluorometric analysis of both an aflatoxin B1 standard and selected culture filtrates, confirmed the sensitivity of the assay and indicated specificity for iodine-enhanced fluorescence of aflatoxin in the coconut extract medium. Thin layer chromatography further confirmed the aflatoxin titers and the specificity for enhancement of aflatoxins B1 and G1 in culture filtrates.Alabama Agricultural Experiment Station Journal No. 6-871297.  相似文献   

17.
The primary target of photoinhibition is the photosystem II reaction center. The process involves a reversible damage, followed by an irreversible inhibition of photosystem II activity. During cell exposition to high light intensity, the D1 protein is specially degraded. An atrazine-resistant mutant of Synechocystis 6714, AzV, reaches the irreversible step of photoinhibition faster than wild-type cells. Two point mutations present in the psbA gene of AzV (coding for D1) lead to the modification of Phe 211 to Ser and Ala 251 to Val in D1. Transformation of wild-type cells with the AzV psbA gene shows that these two mutations are sufficient to induce a faster photodamage of PSII. Other DCMU-and/or atrazine-resistant mutants do not differ from the wild type when photoinhibited. We conclude that the QB pocket is involved in PSII photodamage and we propose that the mutation of Ala 251 might be related to a lower rate of proteolysis of the D1 protein than in the wild type.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PSII photosystem II - RCII reaction center II  相似文献   

18.
Tylosin is a macrolide antibiotic used as veterinary drug and growth promoter. Attempts were made for hyper production of tylosin by a strain of Streptomyces fradiae NRRL-2702 through irradiation mutagenesis. Ultraviolet (UV) irradiation of wild-type strain caused development of six morphologically altered colony types on agar plates. After screening using Bacillus subtilis bioassay only morphological mutants indicated the production of tylosin. An increase of 2.7±0.22-fold in tylosin production (1500 mg/l) in case of mutant UV-2 in complex medium was achieved as compared to wild-type strain (550 mg/l). Gamma irradiation of mutant UV-2 using 60Co gave one morphologically altered colony type γ-1, which gave 2500 mg/l tylosin yield in complex medium. Chemically defined media promoted tylosin production upto 3800 mg/l. Maximum value of qp (3.34 mg/gh) was observed by mutant γ-1 as compared to wild strain (0.81 mg/gh). Moreover, UV irradiation associated changes were unstable with loss of tylosin activity whereas mutant γ-1 displayed high stability on subsequent culturing.  相似文献   

19.
We investigated the adaptative response of S. cerevisiae in sod mutants (sod1Δ, sod2Δ and sod1Δsod2Δ) after H2O2 treatment in the stationary phase. sod2Δ and sod1Δsod2Δ demonstrated the highest levels of GSH in the control, suggesting that pathways which include GSH protect these double mutants against oxidative stress. In addition, sod1Δ and sod1Δsod2Δ had higher iron levels than the wild-type, independently of H2O2 stress. Fe levels were increased in sod2Δ following H2O2 In addition, the sod2Δ mutant was more sensitive to H2O2 treatment than the wild-type. These results suggest that sod2Δ sensibility may be associated with •OH production by the Fenton reaction. This increased iron demand in the sod2Δ mutant may be a reflection of the cells’ efforts to reconstitute proteins that are inactivated in conditions of excess superoxide. MDA levels were assayed by HPLC in these mutants. The highest MDA levels could be observed after 10mM H2O2 treatment in the sod1Δsod2Δ double mutant. After treatment with a GSH inhibitor, the MDA level was still higher in the same strain. Thus, both direct and indirect GSH pathways are involved in the protection of lipid membranes and proteins in these mutants and may constitute an adaptative response to enhanced basal oxidative damage produced by superoxide.  相似文献   

20.
Pseudomonas tolaasii strain PT814 produces extracellular toxins, tolaasins, and a volatile toxin, tovsin, that are responsible for the induction of brown blotch and rotting, respectively, in a cultivated mushroom,Pleurotus ostreatus. Insertions of single transposon mini-Tn5Km 1 into the chromosome ofP. tolaasii strain PT814 generated mutants that are pleiotropically defective in tolaasin and protease production, and altered in colony morphology. The mutants, however, produce tovsin at the level of wild-type. Variants phenotypically similar to the pleiotropic mutants ofP. tolaasii strain PT814 spontaneously occurred inP. tolaasii strain S8501 at 22–30°C in vitro. The occurrence of variants was significantly reduced in the presence of extracts ofP ostreatus or at a temperature of 15–20°C. ThertpA gene (rtpA=regulator gene of tolaasin production and other pleiotropic traits) isolated from aP. tolaasii strain PT814 gene library restored the wild-type phenotype in both the mini-Tn5km 1 insertion and spontaneous mutants. mini-Tn5km 1 insertions were also located in the allele ofrtpA. Nucleotide sequencing of thertpA DNA revealed an open reading frame of 2,751 bp predicted to encode a protein consisting of 917 amino acid residues with a molecular mass of 100.6 kDa and displaying the conserved amino acid sequence of both sensor, and receiver domains of “bacterial two-component regulators”. The data suggest that the machinery responding to environmental stimuli is essential for the pathogenic interaction ofP. tolaasii with the mushroom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号