首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Axon migrations are guided by extracellular cues that induce asymmetric outgrowth activity in the growth cone. Several intracellular signaling proteins have been implicated in the guidance response. However, how these proteins interact to generate asymmetric outgrowth activity is unknown. Here, we present evidence that in C. elegans, the CED-10/Rac1 GTPase binds to and causes asymmetric localization of MIG-10/lamellipodin, a protein that regulates actin polymerization and has outgrowth-promoting activity in neurons. Genetic analysis indicates that mig-10 and ced-10 function together to orient axon outgrowth. The RAPH domain of MIG-10 binds to activated CED-10/Rac1, and ced-10 function is required for the asymmetric MIG-10 localization that occurs in response to the UNC-6/netrin guidance cue. We also show that asymmetric localization of MIG-10 in growth cones is associated with asymmetric concentrations of f-actin and microtubules. These results suggest that CED-10/Rac1 is asymmetrically activated in response to the UNC-6/netrin signal and thereby causes asymmetric recruitment of MIG-10/lamellipodin. We propose that the interaction between activated CED-10/Rac1 and MIG-10/lamellipodin triggers local cytoskeletal assembly and polarizes outgrowth activity in response to UNC-6/netrin.  相似文献   

2.
BACKGROUND: Axon migrations are guided by extracellular cues that can act as repellants or attractants. However, the logic underlying the manner through which attractive and repulsive responses are determined is unclear. Many extracellular guidance cues, and the cellular components that mediate their signals, have been implicated in both types of responses. RESULTS: Genetic analyses indicate that MIG-10/RIAM/lamellipodin, a cytoplasmic adaptor protein, functions downstream of the attractive guidance cue UNC-6/netrin and the repulsive guidance cue SLT-1/slit to direct the ventral migration of the AVM and PVM axons in C. elegans. Furthermore, overexpression of MIG-10 in the absence of UNC-6 and SLT-1 induces a multipolar phenotype with undirected outgrowths. Addition of either UNC-6 or SLT-1 causes the neurons to become monopolar. Moreover, the ability of UNC-6 or SLT-1 to direct the axon ventrally is enhanced by the MIG-10 overexpression. We also demonstrate that an interaction between MIG-10 and UNC-34, a protein that promotes actin-filament extension, is important in the response to guidance cues and that MIG-10 colocalizes with actin in cultured cells, where it can induce the formation of lamellipodia. CONCLUSIONS: We conclude that MIG-10 mediates the guidance of AVM and PVM axons in response to the extracellular UNC-6 and SLT-1 guidance cues. The attractive and repulsive guidance cues orient MIG-10-dependant axon outgrowth to cause a directional response.  相似文献   

3.
Ena/VASP: proteins at the tip of the nervous system   总被引:3,自引:0,他引:3  
The emergence of neurites from a symmetrical cell body is an essential feature of nervous system development. Neurites are the precursors of axons and dendrites and are tipped by growth cones, motile structures that guide elongating axons in the developing nervous system. Growth cones steer the axon along a defined path to its appropriate target in response to guidance cues. This navigation involves the dynamic extension and withdrawal of actin-filled finger-like protrusions called filopodia that continuously sample their environment. Ena/VASP proteins, a conserved family of actin-regulatory proteins, are crucial for filopodia formation and function downstream of several guidance cues. Here we review recent findings into Ena/VASP function in neurite initiation, axon outgrowth and guidance.  相似文献   

4.
Ena/VASP proteins play important roles in axon outgrowth and guidance. Ena/VASP activity regulates the assembly and geometry of actin networks within fibroblast lamellipodia. In growth cones, Ena/VASP proteins are concentrated at filopodia tips, yet their role in growth cone responses to guidance signals has not been established. We found that Ena/VASP proteins play a pivotal role in formation and elongation of filopodia along neurite shafts and growth cone. Netrin-1-induced filopodia formation was dependent upon Ena/VASP function and directly correlated with Ena/VASP phosphorylation at a regulatory PKA site. Accordingly, Ena/VASP function was required for filopodial formation from the growth cone in response to global PKA activation. We propose that Ena/VASP proteins control filopodial dynamics in neurons by remodeling the actin network in response to guidance cues.  相似文献   

5.
A network of connections is established as neural circuits form between neurons. To make these connections, neurons initiate asymmetric axon outgrowth in response to extracellular guidance cues. Within the specialized growth cones of migrating axons, F-actin and microtubules asymmetrically accumulate where an axon projects forward. Although many guidance cues, receptors and intracellular signaling components that are required for axon guidance have been identified, the means by which the asymmetry is established and maintained is unclear. Here, we discuss recent studies in invertebrate and vertebrate organisms that define a signaling module comprising UNC-6 (the Caenorhabditis elegans ortholog of netrin), UNC-40 (the C. elegans ortholog of DCC), PI3K, Rac and MIG-10 (the C. elegans ortholog of lamellipodin) and we consider how this module could establish polarized outgrowth in response to guidance cues.  相似文献   

6.
Shakir MA  Gill JS  Lundquist EA 《Genetics》2006,172(2):893-913
Many genes that affect axon pathfinding and cell migration have been identified. Mechanisms by which these genes and the molecules they encode interact with one another in pathways and networks to control developmental events are unclear. Rac GTPases, the cytoskeletal signaling molecule Enabled, and NIK kinase have all been implicated in regulating axon pathfinding and cell migration. Here we present evidence that, in Caenorhabditis elegans, three Rac GTPases, CED-10, RAC-2, and MIG-2, define three redundant pathways that each control axon pathfinding, and that the NIK kinase MIG-15 acts in each Rac pathway. Furthermore, we show that the Enabled molecule UNC-34 defines a fourth partially redundant pathway that acts in parallel to Rac/MIG-15 signaling in axon pathfinding. Enabled and the three Racs also act redundantly to mediate AQR and PQR neuronal cell migration. The Racs and UNC-34 Ena might all control the formation of actin-based protrusive structures (lamellipodia and filopodia) that mediate growth cone outgrowth and cell migration. MIG-15 does not act with the three Racs in execution of cell migration. Rather, MIG-15 affects direction of PQR neuronal migration, similar to UNC-40 and DPY-19, which control initial Q cell polarity, and Wnt signaling, which acts later to control Q cell-directed migration. MIG-2 Rac, which acts with CED-10 Rac, RAC-2 Rac, and UNC-34 Ena in axon pathfinding and cell migration, also acts with MIG-15 in PQR directional migration.  相似文献   

7.
Neurons require precise targeting of their axons to form a connected network and a functional nervous system. Although many guidance receptors have been identified, much less is known about how these receptors signal to direct growth cone migration. We used Caenorhabditis elegans motoneurons to study growth cone directional migration in response to a repellent UNC-6 (netrin homolog) guidance cue. The evolutionarily conserved kinase MIG-15 [homolog of Nck-interacting kinase (NIK)] regulates motoneuron UNC-6-dependent repulsion through unknown mechanisms. Using genetics and live imaging techniques, we show that motoneuron commissural axon morphology defects in mig-15 mutants result from impaired growth cone motility and subsequent failure to migrate across longitudinal obstacles or retract extra processes. To identify new genes acting with mig-15, we screened for genetic enhancers of the mig-15 commissural phenotype and identified the ezrin/radixin/moesin ortholog ERM-1, the kinesin-1 motor UNC-116 and the actin regulator WVE-1 complex. Genetic analysis indicates that mig-15 and erm-1 act in the same genetic pathway to regulate growth cone migration and that this pathway functions in parallel to the UNC-116/WVE-1 pathway. Further, time-lapse imaging of growth cones in mutants suggests that UNC-116 might be required to stimulate protrusive activity at the leading edge, whereas MIG-15 and ERM-1 maintain low activity at the rear edge. Together, these results support a model in which the MIG-15 kinase and the UNC-116-WVE-1 complex act on opposite sides of the growth cone to promote robust directional migration.  相似文献   

8.
The Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins is required for filopodia formation in growth cones and plays a crucial role in guidance cue-induced remodeling of the actin cytoskeleton. In vivo studies with pharmacological inhibitors of actin polymerization have previously provided evidence for the view that filopodia are needed for growth cone navigation in the developing visual pathway. Here we have re-examined this issue using an alternative strategy to generate growth cones without filopodia in vivo by artificially targeting Xena/XVASP (Xenopus homologs of Ena/VASP) proteins to mitochondria in retinal ganglion cells (RGCs). We used the specific binding of the EVH1 domain of the Ena/VASP family of proteins with the ligand motif FP4 to sequester the protein at the mitochondria surface. RGCs with reduced function of Xena/XVASP proteins extended fewer axons out of the eye and possessed dynamic lamellipodial growth cones missing filopodia that advanced slowly in the optic tract. Surprisingly, despite lacking filopodia, the axons navigated along the optic pathway without obvious guidance errors, indicating that the Xena/XVASP family of proteins and filopodial protrusions are non-essential for pathfinding in retinal axons. However, depletion of Xena/XVASP proteins severely impaired the ability of growth cones to form branches within the optic tectum, suggesting that this protein family, and probably filopodia, plays a key role in establishing terminal arborizations.  相似文献   

9.
In the developing nervous system, axons are guided to their targets by the growth cone. Lamellipodial and filopodial protrusions from the growth cone underlie motility and guidance. Many molecules that control lamellipodia and filopodia formation, actin organization, and axon guidance have been identified, but it remains unclear how these molecules act together to control these events. Experiments are described here that indicate that, in Caenorhabditis elegans, two WH2-domain-containing activators of the Arp2/3 complex, WVE-1/WAVE and WSP-1/WASP, act redundantly in axon guidance and that GEX-2/Sra-1 and GEX-3/Kette, molecules that control WAVE activity, might act in both pathways. WAVE activity is controlled by Rac GTPases, and data are presented here that suggest WVE-1/WAVE and CED-10/Rac act in parallel to a pathway containing WSP-1/WASP and MIG-2/RhoG. Furthermore, results here show that the CED-10/WVE-1 and MIG-2/WSP-1 pathways act in parallel to two other molecules known to control lamellipodia and filopodia and actin organization, UNC-115/abLIM and UNC-34/Enabled. These results indicate that at least three actin-modulating pathways act in parallel to control actin dynamics and lamellipodia and filopodia formation during axon guidance (WASP-WAVE, UNC-115/abLIM, and UNC-34/Enabled).  相似文献   

10.
In Caenorhabditis elegans hermaphrodites, the U-shaped gonad arms are formed by directed migration of the gonadal distal tip cells (DTCs). The stereotyped pattern of DTC migration is carefully controlled by extracellular and cell surface molecules during larval development. Here we report that two proteins, SQV-5 (chondroitin synthase) and its cofactor MIG-22 (chondroitin polymerizing factor), are required for chondroitin biosynthesis and are essential for the dorsally guided migration of DTCs. We found that MIG-22 is expressed in migrating DTCs, hypodermal seam cells, developing vulva and oocytes. The expression of SQV-5 or MIG-22 in both DTCs and hypodermis rescued the DTC migration defects of the relevant mutants more efficiently than when they were expressed in either single tissue. Furthermore, the expression of SQV-5 by the mig-22 promoter significantly rescued sqv-5 mutants, implying that these two proteins act in the same tissues and that chondroitin proteoglycans produced in both of these tissues are required for DTC migration. The DTC migration defects caused by sqv-5 or mig-22 mutations were partially suppressed in the anterior and enhanced in the posterior DTCs in unc-6, unc-5 or unc-40 mutant backgrounds, suggesting that chondroitin proteoglycans play roles in the UNC-6/netrin-dependent guidance of DTCs.  相似文献   

11.
The transmembrane protein MIG-13 is a key regulator required for anterior migration of neural cells in Caenorhabditis elegans, but the signaling mechanisms involved remain unknown. Here, we isolated a suppressor mutation in the unc-71/adm-1 gene, which rescued the AVM neuron migration defect in mig-13 mutants. Genetic analyses revealed that UNC-71 at least partly acts downstream of MIG-13 and has an inhibitory effect on the anterior cell migration. The unc-71 mutation also rescued the anterior migration defect of AVM neuron in src-1 mutants. These findings suggest that MIG-13 controls anteroposterior cell migration by interacting with UNC-71 and SRC-1 in C. elegans.  相似文献   

12.
Huang X  Cheng HJ  Tessier-Lavigne M  Jin Y 《Neuron》2002,34(4):563-576
The netrin UNC-6 repels motor axons by activating the UNC-5 receptor alone or in combination with the UNC-40/DCC receptor. In a genetic screen for C. elegans mutants exhibiting partial defects in motor axon projections, we isolated the max-1 gene (required for motor neuron axon guidance). max-1 loss-of-function mutations cause fully penetrant but variable axon guidance defects. Mutations in unc-5 and unc-6, but not in unc-40, dominantly enhance the mutant phenotypes of max-1, whereas overexpression of unc-5 or unc-6, but not of unc-40, bypasses the requirement for max-1. MAX-1 proteins contain PH, MyTH4, and FERM domains and appear to be localized to neuronal processes. Human MAX-1 and UNC5H2 colocalize in discrete subcellular regions of transfected cells. Our results suggest a possible role for MAX-1 in netrin-induced axon repulsion by modulating the UNC-5 receptor signaling pathway.  相似文献   

13.
Extracellular guidance cues steer axons towards their targets by eliciting morphological changes in the growth cone. A key part of this process is the asymmetric recruitment of the cytoplasmic scaffolding protein MIG-10 (lamellipodin). MIG-10 is thought to asymmetrically promote outgrowth by inducing actin polymerization. However, the mechanism that links MIG-10 to actin polymerization is not known. We have identified the actin regulatory protein ABI-1 as a partner for MIG-10 that can mediate its outgrowth-promoting activity. The SH3 domain of ABI-1 binds to MIG-10, and loss of function of either of these proteins causes similar axon guidance defects. Like MIG-10, ABI-1 functions in both the attractive UNC-6 (netrin) pathway and the repulsive SLT-1 (slit) pathway. Dosage sensitive genetic interactions indicate that MIG-10 functions with ABI-1 and WVE-1 to mediate axon guidance. Epistasis analysis reveals that ABI-1 and WVE-1 function downstream of MIG-10 to mediate its outgrowth-promoting activity. Moreover, experiments with cultured mammalian cells suggest that the interaction between MIG-10 and ABI-1 mediates a conserved mechanism that promotes formation of lamellipodia. Together, these observations suggest that MIG-10 interacts with ABI-1 and WVE-1 to mediate the UNC-6 and SLT-1 guidance pathways.  相似文献   

14.
The Caenorhabditis elegans genome contains three rac-like genes, ced-10, mig-2, and rac-2. We report that ced-10, mig-2 and rac-2 act redundantly in axon pathfinding: inactivating one gene had little effect, but inactivating two or more genes perturbed both axon outgrowth and guidance. mig-2 and ced-10 also have redundant functions in some cell migrations. By contrast, ced-10 is uniquely required for cell-corpse phagocytosis, and mig-2 and rac-2 have only subtle roles in this process. Rac activators are also used differentially. The UNC-73 Trio Rac GTP exchange factor affected all Rac pathways in axon pathfinding and cell migration but did not affect cell-corpse phagocytosis. CED-5 DOCK180, which acts with CED-10 Rac in cell-corpse phagocytosis, acted with MIG-2 but not CED-10 in axon pathfinding. Thus, distinct regulatory proteins modulate Rac activation and function in different developmental processes.  相似文献   

15.
Rac GTPases act as molecular switch in various morphogenic events. However, the regulation of their activities during the development of multicellular organisms is not well understood. Caenorhabditis elegans rac genes ced-10 and mig-2 have been shown to act redundantly to control P cell migration and the axon outgrowth of D type motoneurons. We showed that ced-10 and mig-2 also control amphid axon outgrowth and amphid dendrite fasciculation in a redundant fashion. Our biochemical and genetic data indicate that unc-73, which encodes a protein related to Trio-like guanine nucleotide exchange factor, acts as a direct activator of ced-10 and mig-2 during P cell migration and axon outgrowth of D type motoneurons and amphid sensory neurons. Furthermore, rac regulators ced-2/crkII and ced-5/dock180 function genetically upstream of ced-10 and mig-2 during axon outgrowth of D type motoneurons and act upstream of mig-2 but not ced-10 during P cell migration. However, neither ced-2/crkII nor ced-5/dock180 is involved in amphid axon outgrowth. Therefore, distinct rac regulators control ced-10 and mig-2 differentially in various cellular processes.  相似文献   

16.
Ena/VASP family proteins are important modulators of cell migration and localize to focal adhesions, stress fibres and the very tips of lamellipodia and filopodia. Proline-rich proteins like vinculin and zyxin are well established interaction partners, which mediate Ena/VASP-recruitment via their EVH1-domains to focal adhesions and stress fibres. However, it is still unclear, which binding partners Ena/VASP proteins may have at lamellipodia tips and how their recruitment to these cellular protrusions is regulated. Here, we report the identification of a novel protein with high similarity to the C. elegans MIG-10 protein, which we termed PREL1 (Proline Rich EVH1 Ligand). PREL1 is a 74 kDa protein and shares homology with the Grb7-family of signalling adaptors. We show that PREL1 directly binds to Ena/VASP proteins and co-localizes with them at lamellipodia tips and at focal adhesions in response to Ras activation. Moreover, PREL1 directly binds to activated Ras in a phosphoinositide-dependent manner. Thus, our data pinpoint PREL1 as the first direct link between Ras signalling and cytoskeletal remodelling via Ena/VASP proteins during cell migration and spreading.  相似文献   

17.
In 1990, the discovery of three Caenorhabditis elegans genes (unc5, unc6, unc40) involved in pioneer axon guidance and cell migration marked a significant advancement in neuroscience research [Hedgecock EM, Culotti JG, Hall DH. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 1990;4:61-85]. The importance of this molecular guidance system was exemplified in 1994, when the vertebrate orthologue of Unc6, Netrin-1, was discovered to be a key guidance cue for commissural axons projecting toward the ventral midline in the rodent embryonic spinal cord [Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 1994;78:409-424]. Since then, Netrin-1 has been found to be a critical component of embryonic development with functions in axon guidance, cell migration, morphogenesis and angiogenesis. Netrin-1 also plays a role in the adult brain, suggesting that manipulating netrin signals may have novel therapeutic applications.  相似文献   

18.
Ena/VASP family proteins are important modulators of cell migration and localize to focal adhesions, stress fibres and the very tips of lamellipodia and filopodia. Proline-rich proteins like vinculin and zyxin are well established interaction partners, which mediate Ena/VASP-recruitment via their EVH1-domains to focal adhesions and stress fibres. However, it is still unclear, which binding partners Ena/VASP proteins may have at lamellipodia tips and how their recruitment to these cellular protrusions is regulated. Here, we report the identification of a novel protein with high similarity to the C. elegans MIG-10 protein, which we termed PREL1 (Proline Rich EVH1 Ligand). PREL1 is a 74 kDa protein and shares homology with the Grb7-family of signalling adaptors. We show that PREL1 directly binds to Ena/VASP proteins and co-localizes with them at lamellipodia tips and at focal adhesions in response to Ras activation. Moreover, PREL1 directly binds to activated Ras in a phosphoinositide-dependent manner. Thus, our data pinpoint PREL1 as the first direct link between Ras signalling and cytoskeletal remodelling via Ena/VASP proteins during cell migration and spreading.  相似文献   

19.
The UNC-6/netrin guidance cue functions in axon guidance in vertebrates and invertebrates, mediating attraction via UNC-40/DCC family receptors and repulsion via by UNC-5 family receptors. The growth cone reads guidance cues and extends lamellipodia and filopodia, actin-based structures that sense the extracellular environment and power the forward motion of the growth cone. We show that UNC-6/netrin, UNC-5 and UNC-40/DCC modulated the extent of growth cone protrusion that correlated with attraction versus repulsion. Loss-of-function unc-5 mutants displayed increased protrusion in repelled growth cones, whereas loss-of-function unc-6 or unc-40 mutants caused decreased protrusion. In contrast to previous studies, our work suggests that the severe guidance defects in unc-5 mutants may be due to latent UNC-40 attractive signaling that steers the growth cone back towards the ventral source of UNC-6. UNC-6/Netrin signaling also controlled polarity of growth cone protrusion and F-actin accumulation that correlated with attraction versus repulsion. However, filopodial dynamics were affected independently of polarity of protrusion, indicating that the extent versus polarity of protrusion are at least in part separate mechanisms. In summary, we show here that growth cone guidance in response to UNC-6/netrin involves a combination of polarized growth cone protrusion as well as a balance between stimulation and inhibition of growth cone (e.g. filopodial) protrusion.  相似文献   

20.
The Eph receptor tyrosine kinases (RTKs) are regulators of cell migration and axon guidance. However, our understanding of the molecular mechanisms by which Eph RTKs regulate these processes is still incomplete. To understand how Eph receptors regulate axon guidance in Caenorhabditis elegans, we screened for suppressors of axon guidance defects caused by a hyperactive VAB-1/Eph RTK. We identified NCK-1 and WSP-1/N-WASP as downstream effectors of VAB-1. Furthermore, VAB-1, NCK-1, and WSP-1 can form a complex in vitro. We also report that NCK-1 can physically bind UNC-34/Enabled (Ena), and suggest that VAB-1 inhibits the NCK-1/UNC-34 complex and negatively regulates UNC-34. Our results provide a model of the molecular events that allow the VAB-1 RTK to regulate actin dynamics for axon guidance. We suggest that VAB-1/Eph RTK can stop axonal outgrowth by inhibiting filopodia formation at the growth cone by activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex and by inhibiting UNC-34/Ena activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号