首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Both purified and functionally reconstituted bovine heart mitochondrial transhydrogenase were treated with various sulfhydryl modification reagents in the presence of substrates. In all cases, NAD+ and NADH had no effect on the rate of inactivation. NADP+ protected transhydrogenase from inactivation by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in both systems, while NADPH slightly protected the reconstituted enzyme but stimulated inactivation in the purified enzyme. The rate of N-ethylmaleimide (NEM) inactivation was enhanced by NADPH in both systems. The copper-(o-phenanthroline)2 complex [Cu(OP)2] inhibited the purified enzyme, and this inhibition was substantially prevented by NADP+. Transhydrogenase was shown to undergo conformational changes upon binding of NADP+ or NADPH. Sulfhydryl quantitation with DTNB indicated the presence of two sulfhydryl groups exposed to the external medium in the native conformation of the soluble purified enzyme or after reconstitution into phosphatidylcholine liposomes. In the presence of NADP+, one sulfhydryl group was quantitated in the nondenatured soluble enzyme, while none was found in the reconstituted enzyme, suggesting that the reactive sulfhydryl groups were less accessible in the NADP+-enzyme complex. In the presence of NADPH, however, four sulfhydryl groups were found to be exposed to DTNB in both the soluble and reconstituted enzymes. NEM selectively reacted with only one sulfhydryl group of the purified enzyme in the absence of substrates, but the presence of NADPH stimulated the NEM-dependent inactivation of the enzyme and resulted in the modification of three additional sulfhydryl groups. The sulfhydryl group not modified by NEM in the absence of substrates is not sterically hindered in the native enzyme as it can still be quantitated by DTNB or modified by iodoacetamide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Concanavalin A added to monolayer cultures of Reuber H-35 hepatoma cells caused a rapid inactivation of tyrosine aminotransferase (L-tyrosine:2-oxoglutarate aminotransferase, E.C. 2.6.1.5) and loss of reactivity with antibody against the native, dimeric enzyme. Analysis of treated cells with an antibody raised against carboxymethylated, denatured enzyme showed that the inactivated enzyme was reactive with this reagent, which does not react with the native enzyme. Subsequent addition of alpha-methyl-D-mannopyranoside to remove concanavalin A restored both enzyme activity and reactivity to antibody against native enzyme. After long-term treatment with concanavalin A, the restored enzyme levels were significantly higher than in controls treated with the sugar but not the lectin. Analysis of the turnover of the enzyme by two methods revealed that the rate of its degradation is reduced about 2-fold in concanavalin A-treated cells. Treatment with H-35 cells with concanavalin A thus effects an alteration in conformation of tyrosine aminotransferase, rendering it somewhat less sensitive to intracellular degradation.  相似文献   

3.
The plasma membrane ATPase from red beet (Beta vulgaris L.) storage tissue associated with either native plasma membrane vesicles, a detergent-solubilized enzyme preparation or reconstituted liposomes was subjected to radiation inactivation analysis to determine if changes in target molecular size occurred with modification of its amphipathic environment. For each preparation of the enzyme, the decline in ATP hydrolytic activity with increasing dose of γ-ray radiation demonstrated a simple exponential profile indicating the presence of a single target size. Analysis of the radiation inactivation profiles for the plasma membrane associated, solubilized, and reconstituted enzyme revealed target molecular sizes of 225 kilodaltons (kD), 129 kD, and 218 kD, respectively. These results suggest that the plasma membrane associated and reconstituted ATPase preparations consist of enzyme present as a dimer of 100 kD subunits while the solubilized enzyme is present in the monomeric form. These results also indicate that the 100 kD catalytic subunit most likely represents the minimal unit of ATP hydrolytic activity.  相似文献   

4.
A. Martínez 《Amino acids》1995,9(3):285-292
Summary Recombinant human tyrosine hydroxylase isozyme 1 (hTH1) shows a time- and concentration-dependent loss of catalytic activity when incubated with diethylpyrocarbonate (DEP) after reconstitution with Fe(II). The inactivation follows pseudo-first order kinetics with a second order rate constant of 300 M–1 min–1 at pH 6.8 and 20°C and is partially reversed by hydroxylamine. The difference absorption spectrum of the DEP-modified vs native enzyme shows a peak at 244 nm, characteristic of mono-N-carbethoxy-histidine. Up to five histidine residues are modified per enzyme subunit by a five-fold excess of the reagent, and two of them are protected from inactivation by the active site inhibitor dopamine. However, derivatization of only one residue appears to be responsible for the inactivation. Thus, no inactivation by DEP was found when the apoenzyme was preincubated with this reagent prior to its reconstitution with Fe(II), modifying four histidine residues.Abbreviations BH4 (6R)-l-erythro-tetrahydrobiopterin - DEP diethylpyrocarbonate - DOPA 3,4-dihydroxyphenylalanine - hTH1 human tyrosine hydroxylase isoenzyme 1 - apo-hTH1 apoenzyme of hTH1 - Fe(II)-hTH1 holoenzyme (iron reconstituted) of hTH1 - dopamine-Fe(III)-hTH1 holoenzyme of hTH1 with dopamine bound - TH tyrosine hydroxylase  相似文献   

5.
Licia N.Y. Wu  Ronald R. Fisher 《BBA》1982,681(3):388-396
Modification of pyridine dinucleotide transhydrogenase with tetranitromethane resulted in inhibition of its activity. Development of a membrane potential in submitochondrial particles during the reduction of 3-acetylpyridine adenine dinucleotide (AcPyAD+) by NADPH decreased to nearly the same extent as the transhydrogenase rate on tetranitromethane treatment of the membrane. Kinetics of the inactivation of homogeneous transhydrogenase and the enzyme reconstituted into phosphatidylcholine liposomes indicate that a single essential residue was modified per active monomer. NADP+, NADPH and NADH gave substantial protection against tetranitromethane inactivation of both the nonenergy-linked and energy-linked transhydrogenase reactions of submitochondrial particles and the NADPH → AcPyAD+ reaction of reconstituted enzyme. NAD+ had no effect on inactivation. Tetranitromethane modification of reconstituted transhydrogenase resulted in a decrease in the rate of coupled H+ translocation that was comparable to the decrease in the rate of NADPH → AcPyAD+ transhydrogenation. It is concluded that tetranitromethane modification controls the H+ translocation process solely through its effect on catalytic activity, rather than through alteration of a separate H+-binding domain. Nitrotyrosine was not found in tetranitromethane-treated transhydrogenase. Both 5,5′-dithiobis(2-nitrobenzoate)-accessible and buried sulfhydryl groups were modified with tetranitromethane. NADH and NADPH prevented sulfhydryl reactivity toward tetranitromethane. These data indicate that the inhibition seen with tetranitromethane results from the modification of a cysteine residue.  相似文献   

6.
将棕色固氮菌230含铁超氧化物歧化酶对8mol/L脲,10mmol/L EDTA透析制备无活性缺辅基蛋白;将其在8mol/L脲中对10mmol/L硫酸亚铁铵透析得到重组超氧化物歧化酶。重组酶含有与天然酶相近的铁含量,活性为天然酶的89.1%。缺辅基蛋白,重组酶与天然酶都是由二个相同的亚基组成;重组酶的吸收光谱与荧光光谱与天然酶几乎一样,而缺辅基蛋白则有较大的差异;从园二色谱的分析得知,缺辅基蛋白不含有α—螺旋,而天然酶和重组酶中α螺旋的含量分别为21%和20%;缺辅基蛋白比天然酶或重组酶具有更大的巯基反应性。  相似文献   

7.
l-Lactate monooxygenase is rapidly and irreversibly inactivated by reaction with tetranitromethane at 30 °C by a process which is first order in tetranitromethane and in enzyme. The rate of inactivation is increased by the deprotonation of a group with an apparent pKa of 6.6. Binding of the competitive inhibitors acetate, d-lactate, or oxalate to the enzyme provides essentially complete protection from inactivation. Although excess tetranitromethane and long incubation times result in the oxidation of sulfhydryl groups, complete loss of catalytic activity is accompanied by nitration of a single tyrosine per subunit without polymerization of the enzyme with less vigorous conditions. Nitration of the enzyme results in loss of the ability of the coenzyme to be reduced by substrate, partial loss of the reactivity of the coenzyme toward sulfite, and complete loss of the ability of the apoprotein to bind the flavin cofactor. The essential tyrosine appears to be located at the active site of the enzyme and may be directly involved in the catalytic mechanism.  相似文献   

8.
Inorganic pyrophosphatase (PPase) of S. cerevisiae is effectively inactivated by 7-chloro-4-nitrobenzofuran; the CaPP1 substrate analog has a protective effect. The modified enzyme separated from low molecular weight contaminants has an adsorption maximum at 345 nm. Preliminary modification of PPase SH-groups does not influence the enzyme binding to the inhibitor. The PPase activity is reconstituted by beta-mercapto-ethanol; hence, the inhibiting effect of the reagent is due to modification of tyrosine residues. A single reagent-containing peptide was isolated by specific adsorption from the tryptic hydrolysate of modified PPase. Within the primary structure of PPase, this peptide occupies positions 82-111 and contains two tyrosine residues. Hydrolysis of the isolated peptide by chymotrypsin and determination of the structure of fragments obtained by mass spectrometry and automated sequencing revealed that inactivation of PPase is due to selective modification of Tyr89.  相似文献   

9.
The changes in the content of purified isolated cytochrome P-450 LM2 under the action of hydrogen peroxide and during its operation in a soluble reconstituted system were studied. It was found that cytochrome P-450 LM2 inactivation by hydrogen peroxide is accompanied by a decrease in the hemoprotein activity, loss of heme, oxidation of SH-groups and changes in the oligomeric state of the enzyme. There were some differences in the mechanisms of cytochrome P-450 LM2 inactivation under the action of H2O2 and during catalysis.  相似文献   

10.
Rat liver tyrosine aminotransferase was purified 200-fold and an antiserum raised against it in rabbits. 2. Hepatic tyrosine aminotransferase activity was increased fourfold by tyrosine, twofold by tetracycline, 2.5-fold by cortisone 21-acetate and ninefold by a combination of tyrosine and cortisol administered intraperitoneally to rats. 3. Radioimmunoassay with 14C-labelled tyrosine aminotransferase, in conjunction with rabbit antiserum against the enzyme, revealed that cortisol stimulates the synthesis of the enzyme de novo, but that tetracycline has no such effect. 4. Incubation of rat liver homogenates with purified tyrosine aminotransferase in vitro leads to a rapid inactivation of the enzyme, which tetracycline partially inhibits. 5. The inactivation is brought about by intact lysosomes, and the addition of 10mM-cysteine increases the rate of enzyme inactivation, which is further markedly increased by 10mM-Mg2+ and 10mM-ATP. Here again tetracycline partially inhibits the decay rate, leading to the inference that the increase of tyrosine aminotransferase activity in vivo by tetracycline is brought about by the latter inhibiting the lysosomal catheptic action.  相似文献   

11.
The reaction of acetylcholinesterase (acetylcholinehydrolase, EC 3.1.1.7) with tetranitromethane has been studied. The reaction caused a decrease in enzyme activity as measured with the substrate acetylthiocholine under conditions where hydrolysis of the neutral substrate indophenyl acetate was unaltered. The inactivation of acetylcholinesterase by tetranitromethane was greatly accelerated by the quaternary oximes pyridine-2-aldoxime methyl nitrate or toxogonin, though not by other quaternary inhibitors tested and not by an aliphatic oxime. The enhanced inactivation by tetranitromethane in the presence of pyridine-2-aldoxime methyl nitrate was blocked by the enzyme inhibitor decamethonium.The oxime-induced inactivation of acetylcholinesterase by tetranitromethane was accompanied by significant changes in the immunological properties of the enzyme as demonstrated by complement fixation. The reaction also resulted in the disappearance of tyrosine and appearance of nitrotyrosine.  相似文献   

12.
The interaction of clostridiopeptidase of Clostridium histolyticum with EDC, TNM and MA, the specific reagents for COOH-groups, tyrosine and lysine residues was studied. It was shown that at pH 6.0 EDC inactivates the enzyme. The inactivation process follows the pseudo-first order kinetics and is described by a second order rate constant equal to 1 M-1 min-1. The synthetic substrate does not prevent, in practical terms, the enzyme inactivation by EDC. At pH 8.0 TNM modifies about 19 tyrosine residues in the clostridiopeptidase molecule which is accompanied by marked inhibition of the enzyme activity (down to 70-90%). In this case, the inactivation process is not described by simple pseudo-first order kinetics but is characterized by two steps (fast and slow) with second order rate constants of approximately 14 and 3.5 M-1 min-1, respectively. The synthetic substrate partly prevents the inactivation of the enzyme by TNM and protects 11 tyrosine residues. The MA-induced incorporation of 13 +/- 3 maleyl groups into the clostridiopeptidase molecule in partially prevented by the synthetic substrate with protects the enzyme against inactivation. The data obtained suggest that lysine residues are seemingly included into the active center of clostridiopeptidase, whereas tyrosine residues provide for the maintenance of active conformation of the enzyme.  相似文献   

13.
Selective chemical modification of adrenocortical cytochrome P-450scc, responsible for key stages of steroid biogenesis, with tetranitromethane has been carried out. Nitration of the cytochrome P-450scc tyrosine residues results in heme protein inactivation with syncatalytic loss of enzyme activity. Analysis of the cytochrome P-450scc inactivation kinetics indicates that there are several pools of tyrosine residues, differing in their accessibility to tetranitromethane. The modification of cytochrome P-450scc results in changes in the hemeprotein spectral properties and its conformation which indicates to the involvement of essential tyrosine residue(s) in the heme-protein interaction. Cholesterol and adrenodoxin (high-spin effectors) prevent the inactivation of cytochrome P-450scc with tetranitromethane, i.e., protect the essential tyrosine residue(s) from modification. Possible functions of the tyrosine residues in the cytochrome P-450scc molecule are discussed.  相似文献   

14.
I S Krishnan  R D Dua 《FEBS letters》1985,185(2):267-271
Preliminary chemical modification studies indicated the presence of tyrosine, carboxyl, arginine, histidine and the absence of serine and sulfhydryl residues at or near the active site of Clostridium pasteurianum glutamine synthetase. The conditions for tyrosine modification with tetranitromethane were optimized. The inactivation kinetics follow pseudo-first-order kinetics with respect to enzyme and second order with respect to modifier per active site. There was no inactivation at pH 6.5 suggesting the absence of thiol oxidation. The synthetase and transferase reactions followed the same pattern of inactivation on enzyme modification and both were equally protected by glutamate plus ATP. Thus tyrosine residues are present at the active site of the enzyme and are essential for both transferase and synthetase activities.  相似文献   

15.
Liquefying alpha-amylase from Bacillus amyloliquefaciens was inactivated by treatment with tetranitromethane and N-acetylimidazole. The loss of activity occurred with modification of five tyrosine residues. Preincubation of the enzyme with either the substrate or the competitive inhibitor at saturating levels provided complete protection against inactivation. However, the presence of substrate/inhibitor in the reaction mixture protected only two of the five modifiable tyrosine residues, suggesting the involvement of only two tyrosine residues at the active center. This was confirmed when hydroxylamine treatment of the acetylated enzyme fully restored the enzymatic activity. Both nitration and acetylation increased the apparent Km of the enzyme for soluble starch, which indicated that the tyrosine residues are involved in substrate binding. Reduction of nitrotyrosine residues to aminotyrosine residues failed to restore the enzymatic activity. So, the loss of activity on modification of tyrosine residues was ascribed to conformational perturbances and not simply to the changes in the ionic character of tyrosine residues.  相似文献   

16.
Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase and other enzymes when incubated with L-cysteine or L-cystine. Cystine-dependent inactivation was caused by cystathionase and required pyridoxal 5'-phosphate, but a second protein was needed to reconstitute cysteine-dependent inactivation. A cytosolic protein was isolated that oxidized free cysteine and brought about inactivation of tyrosine aminotransferase when coincubated with cystathionase. Hematin also oxidized cysteine, which led to cysteine-dependent inactivation of tyrosine aminotransferase in the presence of cystathionase. The inactivation of tyrosine aminotransferase involved three steps: initial oxidation of cysteine to form cystine; desulfuration of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. Since dithiothreitol reactivated tyrosine aminotransferase, the sulfane probably inactivated the enzyme by oxidation of thiol groups. The present results do not indicate whether the cysteine oxidase activity is enzymatic nor do they prove which form of polysulfide inactivates tyrosine aminotransferase. Reduced glutathione greatly slowed the rates at which sulfane accumulated and at which tyrosine aminotransferase was inactivated. Incubation of DL-cystathionine with liver cytosols led to formation of cysteine, which was oxidized and cleaved to form persulfide, and caused inactivation of tyrosine aminotransferase. Thus, sulfane sulfur that is generated by an enzyme of the transulfuration pathway inactivates a transaminase by nonselective oxidation of enzyme-bound thiol groups.  相似文献   

17.
The inactivation of lysozyme caused by the radicals produced by thermolysis of 2, 2-azo-bis-2-amidino-propane can be prevented by the addition of different compounds that can react with the damaging free radicals. Compounds of high reactivity (propyl gallate, Trolox, cysteine, albumin, ascorbate, and NADH) afford almost total protection until their consumption, resulting in well-defined induction times. The number of radicals trapped by each additive molecule consumed ranges from 3 (propyl gallate) to 0.12 (cysteine). This last value is indicative of chain oxidation of the inhibitor. Uric acid is able to trap nearly 2.2 radicals per added molecule, but even at large (200 μM) concentrations, a residual inactivation of the enzyme is observed, which may be caused by urate-derived radicals.

Compounds of lower reactivity (tryptophan, Tempol, hydroquinone, desferrioxamine, diethylhydroxylamine, methionine, histidine, NAD+ and tyrosine) only partially decrease the lysozyme inactivation rates. For these compounds, we calculated the concentration necessary to reduce the enzyme inactivation rate to one half of that observed in the absence of additives. These concentrations range from 9 μM (tryptophan and Tempol) to 5 mM (NAD+).  相似文献   

18.
《Free radical research》2013,47(5-6):373-384
The inactivation of lysozyme caused by the radicals produced by thermolysis of 2, 2-azo-bis-2-amidino-propane can be prevented by the addition of different compounds that can react with the damaging free radicals. Compounds of high reactivity (propyl gallate, Trolox, cysteine, albumin, ascorbate, and NADH) afford almost total protection until their consumption, resulting in well-defined induction times. The number of radicals trapped by each additive molecule consumed ranges from 3 (propyl gallate) to 0.12 (cysteine). This last value is indicative of chain oxidation of the inhibitor. Uric acid is able to trap nearly 2.2 radicals per added molecule, but even at large (200 μM) concentrations, a residual inactivation of the enzyme is observed, which may be caused by urate-derived radicals.

Compounds of lower reactivity (tryptophan, Tempol, hydroquinone, desferrioxamine, diethylhydroxylamine, methionine, histidine, NAD+ and tyrosine) only partially decrease the lysozyme inactivation rates. For these compounds, we calculated the concentration necessary to reduce the enzyme inactivation rate to one half of that observed in the absence of additives. These concentrations range from 9 μM (tryptophan and Tempol) to 5 mM (NAD+).  相似文献   

19.
The abilities of several nucleotides to protect tyrosine aminotransferase (L-tyrosine: 2-oxoglutarate aminotransferase, EC 2.6.1.5) against proteolytic inactivation in vitro have been examined as part of an ongoing investigation of the role of cyclic GMP in the intracellular degradation of the hepatic enzyme. Although neither cyclic GMP nor cyclic AMP was found to exert such a protective effect, certain nucleotide analogs were observed to inhibit the inactivation of tyrosine aminotransferase by trypsin and chymotrypsin. The nucleotides which conferred the strongest protection were the dibutyryl derivatives of cyclic GMP and cyclic AMP. This phenomenon appears to require a purine nucleotide with hydrophobic substituent(s), while the cyclic phosphate is not essential. The nucleotides probably act by direct interaction with tyrosine aminotransferase as indicated by changes in kinetic properties and heat stability of the enzyme and by their failure to inhibit trypsin when other protein substrates, including another aminotransferase, were used. Dibutyryl cyclic AMP was shown to block the appearance of a characteristic 43 kDa tryptic cleavage product of tyrosine aminotransferase but not the conversion of the native 54 kDa form to a size of 50 kDa. Arguments are presented against the involvement of the protective effect in the actions of dibutyryl cyclic nucleotides on tyrosine aminotransferase in cells.  相似文献   

20.
D-beta-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme, which is a tetramer both in the mitochondrial inner membrane and as the purified enzyme reconstituted with phospholipid. For the active enzyme-phospholipid complex in the absence of ligands, we previously found that reaction with N-ethylmaleimide (at 5 mol/mol of enzyme subunit) resulted in progressive loss of enzymic activity with an inactivation stoichiometry of 1 equiv of sulfhydryl derivatized per mole of enzyme and a maximum derivatization of 2 equiv [Latruffe, N., Brenner, S. C., & Fleischer, S. (1980) Biochemistry 19, 5285-5290]. We now find, in the presence of nucleotide or substrate, that the rate of inactivation is significantly reduced, which indicates that these ligands afford protection of the essential sulfhydryl. Further, in the presence of ligands, the inactivation stoichiometry is 0.5, consistent with half-of-the-site reactivity of the essential sulfhydryl. Thus, at a low ratio of N-ethylmaleimide to enzyme, nucleotide or substrate affords essentially complete protection of the nonessential sulfhydryl from derivatization. The binding characteristics of NADH to both the native and N-ethylmaleimide-derivatized enzyme have been compared by fluorescence spectroscopy. Quenching of intrinsic tryptophan fluorescence of the protein shows that the enzyme, derivatized with N-ethylmaleimide either in the absence or in the presence of NAD+, binds NADH but with a reduced Kd (approximately 50 microM as compared with approximately 20 microM for native enzyme). However, a critical change has occurred in that resonance energy transfer from protein to bound NADH, observed in the native enzyme, is abolished in the N-ethylmaleimide-derivatized enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号