共查询到20条相似文献,搜索用时 15 毫秒
1.
We address the issue of what proprioceptive information, regarding movement of the human arm, may be provided to the central nervous system by proprioceptors located within muscles of this limb. To accomplish this we developed a numerical simulation which could provide estimates of the length regimes experienced by a set of model receptors located within some of the principal muscles of the human arm during planar movement of this limb. These receptors were assumed to have characteristics analogous to those associated with a simple model of muscle spindle signalling of movement. To this end each spindle had proprioceptive ‘channels’ associated with it. These corresponded to primary and secondary spindle afferent fibers which could provide independent afferent output regarding the parent muscle the spindle monitored. The angles of the shoulder and elbow joints attained by subjects performing a task requiring movement of the right arm in a horizontal plane to a static visual target were recorded. For this angular data the lengths and rates of change of lengths experienced by muscle fascicles, and hence the model spindles, during movement were calculated by means of the numerical simulation. The discharge rates of the simulated spindles during the movement were calculated to derive a measure of the depth of modulation, induced by the movement, for each spindle. These values were then summed for all spindles to provide a first-order approximation of spindle ensemble coding of the movement. Significant correlations (0.0001, Spearman's rank order) were found between the resulting ensemble encodings and, in order of significance, the angular velocity of the shoulder joint (), the tangential velocity of the hand (), and the angular velocity of the elbow joint (). Correlations between the angular positions of the shoulder () and elbow () were lower. These findings indicate that the ensemble profiles of the simulated muscle spindles, encode information regarding kinematic parameters of movements related to both intrinsic and extrinsic coordinate systems. This suggests that motor structures capable of deriving such an ensemble encoding would be in a position to perform the sensory-motor transformations between intrinsic and extrinsic frames of reference necessary for controlling movements planned in extrinsic coordinates. Received: 12 August 1994 / Accepted in revised form: 17 June 1996 相似文献
2.
Rossi-Durand C 《Somatosensory & motor research》2002,19(4):286-295
Whether the fusimotor system contributes to reflex gain changes during reinforcement maneuvers is re-examined in the light of new data. Recently, from direct recordings of spindle afferent activity originating from ankle flexor muscles, we showed that mental computation increased the muscle spindle mechanical sensitivity in completely relaxed human subjects without concomitant alpha-motoneuron activation, providing evidence for selective fusimotor drive activation. In the present study, the effects of mental computation were investigated on monosynaptic reflexes elicited in non-contracting soleus muscle either by direct nerve stimulation (Hoffmann reflex, H) or by tendon tap (Tendinous reflex, T). The aim was to relate the time course of the changes in reflex size to the increase in spindle sensitivity during mental task in order to explore whether fusimotor activation can influence the size of the monosynaptic reflex. The results show changes in reflex amplitude that parallel the increase in muscle spindle sensitivity. When T-reflex is consistently facilitated during mental effort, the H-reflex is either depressed or facilitated, depending on the subjects. These findings suggest that the increased activity in muscle spindle primary endings may account for mental computation-induced changes in both tendon jerk and H-reflex. The facilitation of T-reflex is attributed to the enhanced spindle mechanical sensitivity and the inhibition of H-reflex is attributed to post-activation depression following the increased Ia ongoing discharge. This study supports the view that the fusimotor sensitization of muscle spindles is responsible for changes in both the mechanically and electrically elicited reflexes. It is concluded that the fusimotor drive contributed to adjustment of the size of tendon jerk and H-reflex during mental effort. The possibility that a mental computation task may also operate by reducing the level of presynaptic inhibition is discussed on the basis of H-reflex facilitation. 相似文献
3.
This study reconstructed a three dimensional fluid/structure interaction (FSI) model to investigate the compliance of human soft palate during calm respiration. Magnetic resonance imaging scans of a healthy male subject were obtained for model reconstruction of the upper airway and the soft palate. The fluid domain consists of nasal cavity, nasopharynx and oropharynx. The airflow in upper airway was assumed as laminar and incompressible. The soft palate was assumed as linear elastic. The interface between airway and soft palate was the FSI interface. Sinusoidal variation of velocity magnitude was applied at the oropharynx corresponding to ventilation rate of 7.5L/min. Simulations of fluid model in upper airway, FSI models with palatal Young's modulus of 7539Pa and 3000Pa were carried out for two cycles of respiration. The results showed that the integrated shear forces over the FSI interface were much smaller than integrated pressure forces in all the three directions (axial, coronal and sagittal). The total integrated force in sagittal direction was much smaller than that of coronal and axial directions. The soft palate was almost static during inspiration but moved towards the posterior pharyngeal wall during expiration. In conclusion, the displacement of human soft palate during respiration was mainly driven by air pressure around the surface of the soft palate with minimal contribution of shear stress of the upper airway flow. Despite inspirational negative pressure, expiratory posterior movement of soft palate could be another factor for the induction of airway collapse. 相似文献
4.
U. Th. Eysel 《Biological cybernetics》1971,8(5):171-179
Summary A simple model has been employed to describe and interprete measurements from deefferented muscle spindle afferents with static and dynamic stimulation; the model simulates the generator potential of the spindle and the time dependent change of sensitivity at the impulse generating membrane. The properties of the model in transforming the steady and time dependent analogue signals into impulse patterns are demonstrated, and the influence of the various parameters on the response characteristics have been investigated. Results from simulations are compared with experimental data, and it is shown that the impulse patterns of secondary muscle spindle afferents can be simulated quantitatively. The frequency distributions of impulse intervals and different sequential dependencies within the impulse patterns are analysed.
Zusammenfassung Zur Beschreibung und Deutung von Messungen an deefferentierten Muskelspindelafferenzen unter statischer und dynamischer Reizung wird ein einfaches Modell verwendet, das haupts?chlich das Generatorpotential des Mechanoreceptors und die zeitabh?ngige ?nderung der Empfindlichkeit an der impulserzeugenden Membran simuliert. Die Eigenschaften des Modells bei der Transformation konstanter und zeitabh?ngiger Analogsignale in Impulsfolgen werden dargestellt und die Einflüsse der verschiedenen Modellparameter untersucht. Im Vergleich der Simulationsergebnisse mit experimentellen Daten wird gezeigt, da? die Impulsmuster sekund?rer Muskelspindelafferenzen quantitativ simuliert werden k?nnen. Die dabei verwendeten Parameter werden angegeben. Analysisert werden die H?ufigkeitsverteilungen der Impulsintervalle und verschiedene sequentielle Abh?ngigkeiten innerhalb der Impulsfolgen.相似文献
5.
Clason C Hinz AM Schieferstein H 《Computer methods in biomechanics and biomedical engineering》2004,7(5):265-276
In cranio-maxillofacial surgery planning and implant design, it is important to know the elastic response of the mandible to load forces as they occur, e.g., in biting. The goal of the present study is to provide a method for a quantitative determination of material parameters for the human jaw bone, whose values can, e.g., be used to devise a prototype plastic model for the mandible. Non-destructive load experiments are performed on a cadaveric mandible using a specially designed test bed. The identical physiological situation is simulated in a computer program. The underlying mathematical model is based on a two component, linear elastic material law. The numerical realization of the model, difficult due to the complex geometry and morphology of the mandible, is via the finite element (FE) method. Combining the validated simulation with the results of the tests, an inverse problem for the determination of Young's modulus and the Poisson ratio of both cortical and cancellous bone can then be solved. 相似文献
6.
7.
The transfer of intramembrane charge during an action potential at 4 degrees C was reconstructed for a model representing the electrical properties of frog skeletal muscle by a cylindrical surface membrane and 16 concentric annuli ("shells") of transverse tubular membrane of equal radial thickness. The lumina of the transverse tubules were separated from extracellular fluid by a fixed series resistance. The quantity, geometrical distribution and steady-state and kinetic properties of charge movement components were described by equations incorporating earlier experimental results. Introducing such nonlinear charge into the distributed model for muscle membrane diminished the maximum amplitude of the action potential within the transverse tubules by 2 mV but increased the maximum size of the after-depolarization by 3-5 mV and also its duration. However, these changes were small in comparison to the 135-mV deflection represented by the action potential. They therefore did not justify altering the values of the electrical parameters adopted by Adrian R.H., and L.D. Peachey (1973. J. Physiol. [Lond.]. 235:103-131.) and used in the present calculations. Cable properties significantly affected the time course and extent of charge movement in each shell during action potential propagation into the tubular system. Q beta charge moved relatively rapidly in all annuli, and did so without significant latency (approximately 0.3 ms) after the surface action potential upstroke. Its peak displacement varied between 53 and 58% (the range representing the difference fiber edge/fiber axis) of the total Q beta charge. This was attained at 5.4-7.3 ms after the stimulus, depending on depth within the tubules. In contrast, q gamma moved after a 1.7-2.9 ms latency and achieved a peak displacement of up to 22-34% of available charge. Both charge movement species could be driven by repetitive (47.7 Hz) action potentials without buildup of charge transfer. Such stimulus frequencies would normally cause tetanus. Latencies in q gamma charge movement in response to an action potential were resolved into (a) propagation of tubular depolarization required to gain the "threshold" of q gamma charge (0.8-1.5 ms) and (b) dielectric loss processes. The latter took consistently around 1.5 ms throughout the tubular system. Taken with (c) the earlier reports of a minimal latency in delta [Ca2+] signals attributed to tubulo-cisternal coupling following voltage sensing (approximately 2 ms: Zhu, P.H., I. Parker, and R. Miledi., 1986. Proc. R. Soc. Lond. B. Biol. Sci. 229:39-46.).(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
8.
G. Steiblen T. Orsire C. Pallen A. Botta D. Marzin 《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2005,588(2):143-151
Aneugenic compounds act on non-DNA targets to exert genotoxicity via an indirect mechanism. In contrast to DNA-binding agents, these compounds are expected to possess threshold levels of activity. Therefore, the risk for adverse effects following human exposure to an aneugen could be minimal, if the threshold of activity has been clearly determined in vivo and in vitro and providing the human exposure level is below this threshold. Thus, the development of a single-cell model to allow comparisons between in vitro and in vivo threshold values for aneugenic compounds is of importance.The in vivo micronucleus test is one of the main assays used in genetic toxicology, and is often performed in the mouse. Thus, an extensive database is available in the literature. However, there are only few data concerning the in vitro micronucleus assay using mouse cells, as the majority of in vitro micronucleus assays have been performed using human lymphocytes. In addition, there is a lack of data concerning thresholds for any compound using this model.First, we evaluated whether the use of mouse splenocytes would be an acceptable alternative to that of human lymphocytes to identify aneugens. To allow valid comparisons, the two protocols were first harmonized. Thus, phytohemagglutinin (PHA) and concanavalin A were used as specific mitogens for human lymphocytes and mouse splenocytes, respectively, in order to achieve similar cell-proliferation rates. To achieve similar and sufficient numbers of binucleated cells, cytochalasin B was added 44 and 56 h after culture initiation of the human and mouse cells, respectively.Second, we compared the sensitivity of the mouse protocol with that of the human protocol by exposing the cells to the aneugens nocodazole and paclitaxel.There was good reproducibility of the cytotoxic/genotoxic responses of the two cell models following exposure to the aneugens. The sensitivity of the mouse splenocytes to paclitaxel was higher than that of the human lymphocytes. The two cell types were equally sensitive to nocodazole. 相似文献
9.
Yoshida M Taniguchi K Katayose M 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(8):2255-2264
Functional performance tests (FPTs) that consist of movements, such as hopping, landing, and cutting, provide useful measurements. Although some tests have been established for kinematic studies of the knee joint, very few tests have been established for the ankle joint. To use the FPT as a test battery for patients with an ankle sprain, it is necessary to document typical patterns of muscle activation and range of motion (ROM) of the ankle joint during FPTs. Therefore, the purpose of this study was to investigate the pattern of the ROM of the ankle inversion/eversion and the muscle activity of the peroneus longus muscle (PL) and the tibial anterior muscle (TA) in normal subjects during the side-hop test. To emphasize the characteristics of ROM and electromyography (EMG) at each phase, the side-hop tests were divided into 4 phases: lateral-hop contact phase (LC), lateral-hop flight phase (LF), medial hop contact phase (MC), and medial hop flight phase (MF), and the ROM of ankle inversion/eversion, a peak angle of ankle inversion, and Integral EMG (IEMG) of PL and TA compared among 4 phases. Fifteen male subjects with no symptoms of ankle joint problems participated in this research. The ROM of ankle inversion/eversion during the side-hop test was 27 ± 3.8° (mean ± SD), and there was a significant difference in the ROM of ankle inversion/eversion among 4 phases (p < 0.05). The phase in which the widest ROM was presented was the MF. A peak angle of the ankle inversion at MC was significantly greater than at LC and MF (p <0.05). A peak angle of the ankle inversion at LF was significantly greater than at LC and MF. The PL remained contracting with 50-160% of maximal voluntary contraction (MVC). The IEMGs of PL in both the contact phases were significantly greater than in both the flight phases (p < 0.05). In addition, the PL activity at LC was significantly greater than at MC. The TA remained contracting at 50-80% of MVC through the side-hop test. The IEMG of TA at both the contact phases was significantly greater than at 2 flight phases. However, there was no significant difference between LC and MF. Results of this study could be useful as basic data when evaluating the validity of the side-hop test for patients with ankle sprain. 相似文献
10.
The aim of this paper is to create a model for mapping the surface electromyogram (EMG) signals to the force that generated by human arm muscles. Because the parameters of each person's muscle are individual, the model of the muscle must have two characteristics: (1) The model must be adjustable for each subject. (2) The relationship between the input and output of model must be affected by the force-length and the force-velocity behaviors are proven through Hill's experiments. Hill's model is a kinematic mechanistic model with three elements, i.e. one contractile component and two nonlinear spring elements.In this research, fuzzy systems are applied to improve the muscle model. The advantages of using fuzzy system are as follows: they are robust to noise, they prove an adjustable nonlinear mapping, and are able to model the uncertainties of the muscle.Three fuzzy coefficients have been added to the relationships of force-length (active and passive) and force-velocity existing in Hill's model. Then, a genetic algorithm (GA) has been used as a biological search method that can adjust the parameters of the model in order to achieve the optimal possible fit.Finally, the accuracy of the fuzzy genetic implementation Hill-based muscle model (FGIHM) is invested as following: the FGIHM results have 12.4% RMS error (in worse case) in comparison to the experimental data recorded from three healthy male subjects. Moreover, the FGIHM active force-length relationship which is the key characteristics of muscles has been compared to virtual muscle (VM) and Zajac muscle model. The sensitivity of the FGIHM has been evaluated by adding a white noise with zero mean to the input and FGIHM has proved to have lower sensitivity to input noise than the traditional Hill's muscle model. 相似文献
11.
12.
Brokaw CJ 《Cell motility and the cytoskeleton》1999,42(2):134-148
Outer arm dynein removal from flagella by genetic or chemical methods causes decreased frequency and power, but little change in bending pattern. These results suggest that outer arm dynein operates within bends to increase the speed of bend propagation, but does not produce forces that alter the bending pattern established by inner arm dyneins. A flagellar model incorporating different cross-bridge models for inner and outer arm dyneins has been examined. The inner arm dynein model has a hyperbolic force-velocity curve, with a maximum average force at 0 sliding velocity of about 14 pN for each 96 nm group of inner arm dyneins. The outer arm dynein model has a very different force-velocity curve, with a maximum force at about 10-15% of V(max). The outer arm dynein model is adjusted so that the unloaded sliding velocity for a realistic mixture of inner and outer arm dyneins is twice the unloaded sliding velocity for the inner arm dynein model alone. With these cross-bridge models, a flagellar model can be obtained that reduces its sliding velocity and frequency by approximately 50% when outer arm dyneins are removed, with little change in bending pattern. The addition of outer arm dyneins, therefore, gives an approximately 4-fold increase in power output against viscous resistances, and outer arm dyneins may generate 90% or more of the power output. Cell Motil. 相似文献
13.
14.
15.
C Kober R Sader H Thiele H J Bauer H F Zeilhofer K H Hoffmann H H Horch 《Biomedizinische Technik》2000,45(5):119-125
A new modular software concept for individual numerical simulation of the human mandible using the finite element method (FEM) is presented. The main task is an individual analysis of regional stress and stress-compatibility on the basis of computed tomographic data in individual patients. Simulation should, however, also be possible in parallel with biomechanical experiments, or for further research projects. For this purpose, rapid and uncomplicated generation of the FEM model, easy modification of input data, and short computation times are required. Practical use in the clinical setting makes appreciable additional demands on the individual software components. 相似文献
16.
Scale dependence of the correlation between human population presence and vertebrate and plant species richness 总被引:2,自引:0,他引:2
Pautasso M 《Ecology letters》2007,10(1):16-24
Human presence is generally negatively related to species richness locally, but the relationship is positive at coarse scales. An increase in the strength of the latter correlation with increasing study resolution has been documented within studies, but it is not known whether such a scale dependence is present across different studies. We test this with data on the spatial co-occurrence of human beings and the species richness of plants and vertebrates from a continuum of scales. The correlation coefficient between human presence and species richness is positively related to study grain and extent. The correlation turns from positive to negative below a study grain of c. 1 km and below a study extent of c. 10 000 km2 . The broad-scale positive correlation between human presence and species richness suggests that people have preferentially settled and generally flourished in areas of high biodiversity and/or have contributed to it with species introductions and habitat diversification. The scale dependency of the correlation between people and biodiversity's presence emphasizes the importance of the preservation of green areas in densely populated regions. 相似文献
17.
The shoulder of a non-throwing arm during a baseball pitch must be in a constant position while the shoulder of the throwing arm moves in a nearly circular path around it. However, it has not been investigated whether a skilled pitch requires less shoulder-joint movement. It was hypothesized that pitchers with less shoulder movement of the non-throwing arm can be considered to have higher skill and to attain higher initial ball velocity. Nine baseball pitchers were used as subjects. The coach classified them into a skilled and an unskilled group. The pitching motions were recorded using two high-speed cameras. The time series of three-dimensional landmark coordinates of the shoulder joint of the non-throwing arm during the baseball pitch were calculated using the direct linear transformation method. The shoulder-joint movement (SJM) index, which expresses the movement (displacement) of the shoulder joint of the non-throwing arm quantitatively, was proposed to compare the SJM at different skill levels and investigate the relationship between SJM and initial ball velocity. The SJM of the skilled pitchers was smaller than that of the unskilled pitchers, and the smaller value of the SJM led to faster initial ball velocity. The data suggest that the less SJM of the non-throwing arm is required to attain a skilled pitch and higher initial ball velocity. 相似文献
18.
Craig D Takahashi Dan Nemet Christie M Rose-Gottron Jennifer K Larson Dan M Cooper David J Reinkensmeyer 《Journal of applied physiology》2006,100(2):695-706
The motor system adapts to novel dynamic environments by forming internal models that predict the muscle forces needed to move skillfully. The goal of this study was to determine how muscle fatigue affects internal model formation during arm movement and whether an internal model acquired while fatigued could be recalled accurately after rest. Twelve subjects adapted to a viscous force field applied by a lightweight robot as they reached to a target. They then reached while being resisted by elastic bands until they could no longer touch the target. This protocol reduced the strength of the muscles used to resist the force field by approximately 20%. The bands were removed, and subjects adapted again to the viscous force field. Their adaptive ability, quantified by the amount and time constant of adaptation, was not significantly impaired following fatigue. The subjects then rested, recovering approximately 70% of their lost force-generation ability. When they reached in the force field again, their prediction of the force field strength was different than in a nonfatigued state. This alteration was consistent with the use of a higher level of effort than normally used to counteract the force field. These results suggest that recovery from fatigue can affect recall of an internal model, even when the fatigue did not substantially affect the motor system's ability to form the model. Recovery from fatigue apparently affects recall because the motor system represents internal models as a mapping between effort and movement and relies on practice to recalibrate this mapping. 相似文献
19.
The human cornea (the external lens of the eye) has the macroscopic structure of a thin shell, originated by the organization of collagen lamellae parallel to the middle surface of the shell. The lamellae, composed of bundles of collagen fibrils, are responsible for the experimentally observed anisotropy of the cornea. Anomalies in the fibril structure may explain the changes in the mechanical behavior of the tissue observed in pathologies such as keratoconus. We employ a fiber-matrix constitutive model and propose a numerical model for the human cornea that is able to account for its mechanical behavior in healthy conditions or in the presence of keratoconus under increasing values of the intraocular pressure. The ability of our model to reproduce the behavior of the human cornea opens a promising perspective for the numerical simulation of refractive surgery. 相似文献
20.
Summary Sections through the soleus muscle of the rat were incubated with concanavalin A (Con A) or wheat germ agglutinin (WGA) conjugated to fluorescein isothiocyanate. Binding of these lectins to structures which comprise the muscle spindle was studied by fluorescence microscopy. The distribution of the lectins was heaviest in the outer capsule of the spindle and at the surface of intrafusal muscle fibres. The periaxial space in the equatorial region of spindles was unlabelled except in the immediate vicinity of the axial bundle. Binding by Con A was more extensive than by WGA, suggesting that more glucopyranoside units are accessible within the muscle spindle than are those of N-acetylglucosamine. 相似文献