首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary α-Melanotropin and ACTH, POMC peptides, initiate biological activity by interaction with the classical pigment cell (α-MSH receptor, MC1R) and adrenal gland (ACTH receptor, MC2R) melanocortin receptors, respectively. The recently discovered MC3R, MC4R and MC5R receptors provide new targets and new biological functions for POMC peptides. We have developed conformationally constrained α-melanotropin peptides that interact with all of these receptors as agonists and antagonists and are examining new approaches to obtain highly selective ligands for each of these melanocortin receptors. Previously, we had converted somatostatin-derived peptides into potent and highly selective analogues that act as antagonists at the μ opioid receptors. Using the reverse turn template that came out of these studies, we have designed, de novo, agonist and antagonist peptide analogues that interact with melanocortin receptors.  相似文献   

2.
G protein-coupled receptors represent the largest family of membrane receptors translating extracellular into intracellular signals. Endogenous ligands for these receptors range from physical stimuli (e.g., light and odorants) to ions and chemical transmitters, such as "classical" biogenic amines, nucleotides and peptides. Some of these receptors are pathologically altered in neurodegenerative and psychiatric diseases and indeed represent the target for a variety of already marketed psycho-active drugs. With the publication of the human genome, it has become evident that there still are many "orphan" G protein-coupled receptors, i.e., receptors responding to yet-unidentified endogenous ligands. A large amount of these receptors are expressed in nervous tissues, but, apart from their molecular structure, we have no information concerning their physiological roles and alterations in disease states. In this review, we summarise the advancements and pitfalls of the strategies that have been exploited in recent years to "deorphanise" some of these receptors. We also show how, in some cases, this deorphanisation process has resulted in the identification of new potential targets for drug development as well as in the discovery of previously unknown neurotransmitters, including bioactive peptides and substances that had been merely known as metabolic intermediates. We envisage that the deorphanisation of the remaining orphan G protein-coupled receptors will further advance our knowledge of nervous system pathophysiology and unveil additional targets for new therapeutic approaches to human diseases, including psychosis, depression, anxiety, pain and aging-associated neurodegenerative disorders.  相似文献   

3.
G-protein-coupled receptors (GPCRs) represent an important group of targets for pharmaceutical therapeutics. The completion of the human genome revealed a large number of putative GPCRs. However, the identification of their natural ligands, and especially peptides, suffers from low discovery rates, thus impeding development of therapeutics based on these potential drug targets. We describe the discovery of novel GPCR ligands encrypted in the human proteome. Hundreds of potential peptide ligands were predicted by machine learning algorithms. In vitro screening of selected 33 peptides on a set of 152 GPCRs, including a group of designated orphan receptors, was conducted by intracellular calcium measurements and cAMP assays. The screening revealed eight novel peptides as potential agonists that specifically activated six different receptors in a dose-dependent manner. Most of the peptides showed distinct stimulatory patterns targeted at designated and orphan GPCRs. Further analysis demonstrated a significant in vivo effect for one of the peptides in a mouse inflammation model.  相似文献   

4.
Solid phase synthetic methodology has been developed in our laboratory to incorporate an affinity label (a reactive functionality such as isothiocyanate or bromoacetamide) into peptides (Leelasvatanakij and Aldrich J Peptide Res 56, 80, 2000), and we have used this synthetic strategy to prepare affinity label derivatives of a variety of opioid peptides. To date side reactions have been detected only in two cases, both involving intramolecular cyclization. We have identified several peptide-based affinity labels for δ opioid receptors that exhibit wash-resistant inhibition of binding to these receptors and are valuable pharmacological tools to study opioid receptors. Even in cases where the peptide derivatives do not bind covalently to their target receptor, studying their binding has revealed subtle differences in receptor interactions with particular opioid peptide residues, especially Phe residues in the N-terminal “message” sequences. Solid phase synthetic methodology for the incorporation of other labels (e.g. biotin) into the C-terminus of peptides has also been developed in our laboratory (Kumar and Aldrich Org Lett 5, 613, 2003). These two synthetic approaches have been combined to prepare peptides containing multiple labels that can be used as tools to study peptide ligand-receptor interactions. These solid phase synthetic methodologies are versatile strategies that are applicable to the preparation of labeled peptides for a variety of targets in addition to opioid receptors.  相似文献   

5.
-Melanotropin and ACTH, POMC peptides, initiate biological activity by interaction with the classical pigment cell (-MSH receptor, MC1R) and adrenal gland (ACTH receptor, MC2R) melanocortin receptors, respectively. The recently discovered MC3R, MC4R and MC5R receptors provide new targets and new biological functions for POMC peptides. We have developed conformationally constrained -melanotropin peptides that interact with all of these receptors as agonists and antagonists and are examining new approaches to obtain highly selective ligands for each of these melanocortin receptors. Previously, we had converted somatostatin-derived peptides into potent and highly selective analogues that act as antagonists at the opioid receptors. Using the reverse turn template that came out of these studies, we have designed, de novo, agonist and antagonist peptide analogues that interact with melanocortin receptors.  相似文献   

6.
《TARGETS》2002,1(6):206-213
Despite current drug therapies, including those that target enzymes, channels and known G-protein-coupled receptors (GPCRs), cardiovascular disease remains the major cause of ill health, which suggests that other transmitter systems might be involved in this disease. In humans, ∼175 genes have been predicted to encode ‘orphan’ GPCRs, where the endogenous ligand is not yet known. As a result of intensive screening using ‘reverse pharmacology’, an increasing number of orphan receptors are being paired with their cognate ligands, many of which are peptides. The existence of some of these peptides such as urotensin-II and relaxin had been known for some time but others, including ghrelin and apelin, represent novel sequences. The pharmacological characterization of these emerging peptide–receptor systems is a tantalising area of cardiovascular research, with the prospect of identifying new therapeutic targets.  相似文献   

7.
Summary Intracellular enzymes or receptors are interesting targets for the pharmacomodulation of cellular metabolism. We have previously shown that modification of relatively long peptides by a palmitoyl-lysine residue could facilitate their delivery into the cytoplasm of living cells. Several peptides containing pseudosubstrate sequences of protein kinase C (PKC) have been evaluated for their ability to modulate phosphorylation of model substrate, neuronal morphology or tumor necrosis factor secretion. In this work we have evaluated the effect of palmitoyl-modified PKC-pseudosubstrate peptides on induction of apoptosis. We have established that these peptides are able to induce apoptosis in different human cell types (primary fibroblasts, T- and B-lymphocyte cell lines) as assessed by (terminal deoxynucleotidyl transferase dUTP nick-end labelling) and DNA fragmentation. In contrast, control peptides (non-lipidic PKC-pseudosubstrate peptides and irrelevant lipopeptides) had no or little effect on programmed cell death. This work highlights the pharmacological interest of lipopeptides and argues in favor of the potential role of PKC(s) in the cell death machinery. K. Thiam and E. Loing have contributed equally to this work.  相似文献   

8.
Dysregulation of glutamatergic synapses plays an important role in the pathogenesis of neurological diseases. In addition to mediating excitatory synaptic transmission, postsynaptic glutamate receptors interact with various membrane and intracellular proteins. They form structural and/or signaling synaptic protein complexes and thereby play diverse postsynaptic functions. Recently, several postsynaptic protein complexes have been associated with various neurological diseases and hence, have been characterized as important therapeutic targets. Moreover, novel small molecules and therapeutic peptides targeting and modulating the activities of these protein complexes have been discovered, some of which have advanced through preclinical translational research and/or clinical studies. This article describes the recent investigation of eight key protein complexes associated with the postsynaptic ionotropic and metabotropic glutamate receptors as therapeutic targets for central nervous system diseases.  相似文献   

9.
Conus peptides--a rich pharmaceutical treasure   总被引:3,自引:1,他引:2  
Marine predatory cone snails (genus Conus) with over 500 species represent what is arguably the largest single genus of marine animals alive today. All Conus are venomous and utilize a complex mixture of Conus peptides to capture their preys and for other biological purposes. Each component of Conus peptides selectively  相似文献   

10.
Intracellular enzymes or receptors are interesting targets for thepharmacomodulation of cellular metabolism. We have previously shown thatmodification of relatively long peptides by a palmitoyl-lysine residue couldfacilitate their delivery into the cytoplasm of living cells. Severalpeptides containing pseudosubstrate sequences of protein kinase C (PKC) havebeen evaluated for their ability to modulate phosphorylation of modelsubstrate, neuronal morphology or tumor necrosis factor secretion. In thiswork we have evaluated the effect of palmitoyl-modified PKC-pseudosubstratepeptides on induction of apoptosis. We have established that these peptidesare able to induce apoptosis in different human cell types (primaryfibroblasts, T- and B-lymphocyte cell lines) as assessed by (terminal deoxynucleotidyl transferase dUTP nick-end labelling) and DNAfragmentation. In contrast, control peptides (non-lipidicPKC-pseudosubstrate peptides and irrelevant lipopeptides) had no or littleeffect on programmed cell death. This work highlights the pharmacologicalinterest of lipopeptides and argues in favor of the potential role of PKC(s)in the cell death machinery.  相似文献   

11.
Delta‐opioid (DOP) receptors are members of the G protein‐coupled receptor (GPCR) sub‐family of opioid receptors, and are evolutionarily related, with homology exceeding 70%, to cognate mu‐opioid (MOP), kappa‐opioid (KOP), and nociceptin opioid (NOP) receptors. DOP receptors are considered attractive drug targets for pain management because agonists at these receptors are reported to exhibit strong antinociceptive activity with relatively few side effects. Among the most potent analgesics targeting the DOP receptor are the linear and cyclic enkephalin analogs known as DADLE (Tyr‐D ‐Ala‐Gly‐Phe‐D ‐Leu) and DPDPE (Tyr‐D ‐Pen‐Gly‐Phe‐D ‐Pen), respectively. Several computational and experimental studies have been carried out over the years to characterize the conformational profile of these penta‐peptides with the ultimate goal of designing potent peptidomimetic agonists for the DOP receptor. The computational studies published to date, however, have investigated only a limited range of timescales and used over‐simplified representations of the solvent environment. We provide here a thorough exploration of the conformational space of DADLE and DPDPE in an explicit solvent, using microsecond‐scale molecular dynamics and bias‐exchange metadynamics simulations. Free‐energy profiles derived from these simulations point to a small number of DADLE and DPDPE conformational minima in solution, which are separated by relatively small energy barriers. Candidate bioactive forms of these peptides are selected from identified common spatial arrangements of key pharmacophoric points within all sampled conformations. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 21–27, 2014.  相似文献   

12.
Using novel synthetic radioligands, we have discovered receptors for the recently paired apelin (APJ orphan receptor), ghrelin (GHS orphan receptor), and urotensin II (orphan GPR14) in the human cardiovascular system and determined their anatomical localisation. In addition, we have established functional vasoactive properties for these three peptides as potential vasoconstrictor/vasodilator mediators and provided evidence for alteration of receptor density in cardiovascular disease. We find that receptors for apelin, ghrelin, and urotensin II are widely distributed in human cardiovascular tissue, suggesting perhaps vasoactive roles for these peptides in human vascular physiology and a potential role in pathophysiology. Apelin and urotensin II are potent vasoconstrictors with low efficacy, consistent with their low receptor density. Ghrelin receptor density was increased (approximately three- to fourfold) with atherosclerosis of coronary artery disease and accelerated atherosclerosis of saphenous vein grafts, compared with normal vessels, highlighting a potentially beneficial role for this novel vasodilator peptide in human vascular disease. Our approach has demonstrated one successful strategy for translating genetic information encoding recently paired orphan receptor ligands into discovery of function. This study has the advantage of focussing on the actual disease processes, which allow the more precise identification of novel therapeutic targets.  相似文献   

13.
Allatostatins are the largest family of known arthropod neuropeptides. To date more than 150 different arthropod type-A allatostatins have been identified and are characterized by the C-terminal signature, (Y/F)XFG(L/I)amide. Using specific allatostatin antisera, positive immunoreactivity has been identified within the central and peripheral nervous systems of the flatworm (platyhelminth) Procerodes littoralis and the roundworm (nematode) Panagrellus redivivus. Comparative analyses of the allatostatin-like immunoreactivity and that of other known helminth neuropeptides (FMRFamide-like peptides [FLPs]) indicate differences in the distribution of these peptide families. Specific differences in neuropeptide distribution have been noted within the pharyngeal innervation of flatworms and in the cephalic papillary neurons of nematodes. In arthropods, type-A allatostatins have functions that include potent myoactivity. In this study, seven members of the allatostatin superfamily induced concentration-dependent contractions of flatworm muscle fibres. Pharmacological studies indicate that these peptides do not interact with muscle-based FLP receptors. The type-A allatostatins, therefore, represent the second family of neuropeptides that induce muscle contraction in flatworms. Although the majority of arthropod type-A allatostatins examined did not affect the somatic body wall muscle or the ovijector of the pig nematode, Ascaris suum, two type-A allatostatins (GDGRLYAFGLamide and DRLYSFGLamide) exhibited significant inhibitory effects on the A. suum ovijector at 10 μM. These data suggest that allatostatin-like peptides and receptors occur in helminths. Further, although arthropod type-A allatostatins display inter-phyla activities, their receptors are less compelling as potential targets for broad-spectrum parasiticides (endectocides) than FLP receptors.  相似文献   

14.
Bacteriocins are gene encoded, bacterially produced antimicrobial peptides that have been the focus of considerable scientific interest but which are relatively underutilized by the food, veterinary and medical industries. One means via which the latter issue can be overcome is through a better understanding of how these peptides work or, more specifically, the identification of bacteriocin receptors and the subsequent application of such information to enhance the potency, and commercial value, of bacteriocins. For a time since the identification of lipid II and subunits of the mannose phosphotransferase system as receptors for several class I (modified) and class II (unmodified) bacteriocins, respectively, there were relatively few developments in this area. However, a number of recent studies have addressed this issue, resulting in the identification of a maltose ABC transporter and metallopeptidase as the targets for the garvicin ML (class IIc) and LsbB (class IId) bacteriocins, respectively, and, most recently, the identification of UppP as the receptor for lactococcin G and enterocin 1071 (both class IIb). In addition to these exciting discoveries, the development, and further application, of new strategies to facilitate receptor identification has the potential to lead to even further breakthroughs in bacteriocin research.  相似文献   

15.
About 5-10% of the G protein-coupled receptors (GPCRs) contain N-terminal signal peptides that are cleaved off by the signal peptidases of the endoplasmic reticulum (ER) during the translocon-mediated receptor insertion into the ER membrane. The reason as to why only a subset of the GPCRs requires these additional signal peptides was addressed in the past decade only by a limited number of studies. Recent progress suggests that signal peptides of GPCRs do not only serve the classical ER targeting and translocon gating functions as described for the signal peptides of secretory proteins. In the case of GPCRs, uncleaved pseudo signal peptides may regulate receptor expression at the plasma membrane and may also influence G protein coupling. Moreover, signal peptides of GPCRs seem to match functionally with sequences of the mature N tails. In this review, we summarize the current knowledge about cleavable signal peptides of GPCRs and address the question whether these sequences may be future drug targets in pharmacology.  相似文献   

16.
Various techniques for generation of peptide and peptidomimetic libraries are summarized in this article. Multipin, tea bag, and split-couple-mix techniques represent the major methods used to make peptides and peptidomimetics libraries. The synthesis of these libraries were made in either discrete or mixture format. Peptides and peptidomimetics combinatorial libraries were screened to discover leads against a variety of targets. These targets, including bacteria, fungus, virus, receptors, and enzymes were used in the screening of the libraries. Discovered leads can be further optimized by combinatorial approaches.  相似文献   

17.
G-protein-coupled receptors (GPCRs) are a large family of remarkably versatile membrane proteins that are attractive therapeutic targets because of their involvement in a vast range of normal physiological processes and pathological diseases. Upon activation, intracellular domains of GPCRs mediate signaling to G-proteins, but these domains have yet to be effectively exploited as drug targets. Cell-penetrating lipidated peptides called pepducins target specific intracellular loops of GPCRs and have recently emerged as effective allosteric modulators of GPCR activity. The lipid moiety facilitates translocation across the plasma membrane, where pepducins then specifically modulate signaling of their cognate receptor. To date, pepducins and related lipopeptides have been shown to specifically modulate the activity of diverse GPCRs and other membrane proteins, including protease-activated receptors (PAR1, PAR2, and PAR4), chemokine receptors (CXCR1, CXCR2, and CXCR4), sphingosine 1-phosphate receptor-3 (S1P3), the melanocortin-4 receptor, the Smoothened receptor, formyl peptide receptor-2 (FPR2), the relaxin receptor (LGR7), G-proteins (Gα(q/11/o/13)), muscarinic acetylcholine receptor and vanilloid (TRPV1) channels, and the GPIIb integrin. This minireview describes recent advances made using pepducin technology in targeting diverse GPCRs and the use of pepducins in identifying potential novel drug targets.  相似文献   

18.
Members of the erbB family receptor tyrosine kinases (erbB1, erbB2, erbB3, and erbB4) are overexpressed in a variety of human cancers and represent important targets for the structure-based drug design. Homo- and heterodimerization (oligomerization) of the erbB receptors are known to be critical events for receptor signaling. To block receptor self-associations, we have designed a series of peptides derived from potential dimerization surfaces in the extracellular subdomain IV of the erbB receptors (erbB peptides). In surface plasmon resonance (BIAcore) studies, the designed peptides have been shown to selectively bind to the erbB receptor ectodomains and isolated subdomain IV of erbB2 with submicromolar affinities and to inhibit heregulin-induced interactions of erbB3 with different erbB receptors. A dose-dependent inhibition of native erbB receptor dimerization by the erbB peptides has been observed in 32D cell lines transfected with different combinations of erbB receptors. The peptides effectively inhibited growth of two types of transformed cells overexpressing different erbB receptors, T6-17 and 32D, in standard MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and cell viability assays. The study identifies distinct loops within the membrane-proximal part of the subdomain IV as potential receptor-receptor interaction sites for the erbB receptors and demonstrates the possibility of disabling receptor activity by structure-based targeting of the dimerization interfaces. Molecular models for possible arrangement of the erbB1.EGF complex, consistent with the involvement of subdomain IV in inter-receptor interactions, are proposed. Small dimerization inhibitors described herein can be useful as probes to elucidate different erbB signaling pathways and may be developed as therapeutic agents.  相似文献   

19.
Cholecystokinin (CCK) receptors are overexpressed in numerous human cancers, like medullary thyroid carcinomas, small cell lung cancers and stromal ovarian cancers. The specific receptor-binding property of the endogenous ligands for these receptors can be exploited by labeling peptides with a radionuclide and using these as carriers to guide the radioactivity to the tissues that express the receptors. In this way, tumors can be visualized using positron emission tomography and single photon emission computed tomography imaging. A variety of radiolabeled CCK/gastrin-related peptides has been synthesized and characterized for imaging. All peptides have the C-terminal CCK receptor-binding tetrapeptide sequence Trp-Met-Asp-Phe-NH2 in common or derivatives thereof. This review focuses on the development and application of radiolabeled CCK/gastrin peptides for radionuclide imaging and radionuclide therapy of tumors expressing CCK receptors. We discuss both preclinical studies as well as clinical studies with CCK and gastrin peptides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号