首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occurring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (psi root) was about -2.6 MPa, and recovered to 25-40% loss of conductivity in the morning when psi root was about -1.0 MPa. Daily variation in psi root decreased, and root xylem vulnerability and capacitance increased with rooting depth. However, all species experienced seasonal minimum psi root close to complete hydraulic failure independent of their rooting depth or resistance to embolism. Predawn psi root was lower than psi soil when psi soil was relatively high (> -0.7 MPa) but became less negative than psi soil, later in the dry season, consistent with a transition from a disequilibrium between plant and soil psi induced by nocturnal transpiration to one induced by hydraulic redistribution of water from deeper soil layers. Shallow longitudinal root incisions external to the xylem prevented reversal of embolism overnight, suggesting that root mechanical integrity was necessary for recovery, consistent with the hypothesis that if embolism is a function of tension, refilling may be a function of internal pressure imbalances. All species shared a common relationship in which maximum daily stomatal conductance declined linearly with increasing afternoon loss of root conductivity over the course of the dry season. Daily embolism and refilling in roots is a common occurrence and thus may be an inherent component of a hydraulic signaling mechanism enabling stomata to maintain the integrity of the hydraulic pipeline in long-lived structures such as stems.  相似文献   

2.
袁国富  张佩  薛沙沙  庄伟 《植物生态学报》2012,36(10):1033-1042
分析干旱区深根型荒漠植物的根层土壤水分是揭示荒漠植物与土壤水分关系机理的重要方面。在黑河中游一片风沙侵蚀区域的多枝柽柳(Tamarix ramosissima)人工林地中, 对表层0.3 m到3 m深的土壤不同深度的含水量进行了连续的动态观测。结果显示, 多枝柽柳根系层土壤含水量可以分为明显不同的3层: 浅层(0.2-1.7 m深)相对湿润层、中间(1.7-2.7 m深)相对干层和深层(2.7 m以下)有效含水层。在多枝柽柳生长盛期, 浅层相对湿润层土壤含水量呈现明显的昼夜变化特征, 同时, 在晚上植物根系与浅层土壤之间存在正水势梯度, 这说明存在根系水力提升现象。水力提升是干旱气候下根层浅层土壤含水量保持相对湿润的主要原因, 并因此维系浅层根系的发育, 也为多枝柽柳具备的防风固沙功能提供了可能的解释。据初步估算, 多枝柽柳根系水力提升占每天耗水量的5%-8%, 耗水的主要水分来源仍然是充足的土壤深层有效含水层。  相似文献   

3.
Transverse hydraulic redistribution by a grapevine   总被引:4,自引:0,他引:4  
Root hydraulic redistribution has been shown to occur in numerous plant species under both field and laboratory conditions. To date, such water redistribution has been demonstrated in two fundamental ways, either lifting water from deep edaphic sources to dry surface soils or redistributing water downward (reverse flow) when inverted soil Ψs gradients exist. The importance of hydraulic redistribution is not well documented in agricultural ecosystems under field conditions, and would be important because water availability can be temporally and spatially constrained. Herein we report that a North American grapevine hybrid (Vitis riparia × V. berlandieri cv 420 A) growing in an agricultural ecosystem can redistribute water from a restricted zone of available water under a drip irrigation emitter, laterally across the high resistance pathways of the trunk and into roots and soils on the non-irrigated side. Deuterium-labelled water was used to demonstrate lateral movement across the vine's trunk and reverse flow into roots. Water redistribution from the zone of available water and into roots distant from the source occurred within a relatively short time frame of 36 h, although overnight deposition into rhizosphere soils around the roots was not detected. Deuterium was eventually detected in rhizosphere soils adjacent to roots on the non-irrigated side after 7 d. Application of identical amounts of water with the same deuterium enrichment level (2%) to soils without grapevine roots showed that physical transport of water through the vapour phase could not account for either downward or transverse movement of the label. These results confirmed that root presence facilitated the transport of label into soils distant from the wetted zone. When deuterium-labelled water was allowed to flow directly into the trunk above the root–trunk interface, reverse flow occurred and lateral movement across the trunk and into roots originating around the collar region did not encounter large disproportionate resistances. Rapid redistribution of water into the entire root system may have important implications for woody perennial cultivars growing where water availability is spatially heterogeneous. Under the predominantly dry soil conditions studied in this investigation, water redistributed into roots may extend root longevity and increase the vines water capacitance during periods of high transpiration demand. These benefits would be enhanced by diminished water loss from roots, and could be equally important to other cited benefits of hydraulic redistribution into soils such as enhancement of nutrient acquisition.  相似文献   

4.
基于叶片水势的内蒙古典型草原植物水分适应特征研究   总被引:1,自引:0,他引:1  
水分是限制草原生态系统植物生存、繁殖和扩散最重要的生态因子,植物通过多样的水分适应策略适应干旱环境。为了解典型草原植物水势特征及其影响因素,在2017年和2018年的生长季对内蒙古典型草原71种植物的叶片黎明水势、午后水势、叶片和根系功能性状进行了测定与分析。结果表明:测定的71种植物叶片的黎明水势分布于-2.67—-0.63 MPa,午后水势分布于-4.67—-1.01 MPa;一年生植物的叶片具有最高的黎明水势、午后水势和最小的水势日差值(叶片的黎明水势与午后水势的差值),多年生禾草的叶片具有最低的黎明水势、午后水势和最大的水势日差值;71种植物对水分的适应策略可分为高水势保持型、低水势忍耐型和变水势波动型;叶片午后水势与叶片干物质含量和根系深度呈极显著的负相关关系(P<0.01),但与比叶面积呈极显著的正相关关系(P<0.01)。本研究有助于从植物生理学的角度上准确认识典型草原植物的水分适应性及水分生态特征。  相似文献   

5.
Water uptake by plant roots: an integration of views   总被引:20,自引:0,他引:20  
Steudle  Ernst 《Plant and Soil》2000,226(1):45-56
A COMPOSITE TRANSPORT MODEL is presented which explains the variability in the ability of roots to take up water and responses of water uptake to different factors. The model is based on detailed measurements of 'root hydraulics' both at the level of excised roots (root hydraulic conductivity, Lpr) and root cells (membrane level; cell Lp) using pressure probes and other techniques. The composite transport model integrates apoplastic and cellular components of radial water flow across the root cylinder. It explains why the hydraulic conductivity of roots changes in response to the nature (osmotic vs. hydraulic) and intensity of water flow. The model provides an explanation of the adaptation of plants to conditions of drought and other stresses by allowing for a `coarse regulation of water uptake' according to the demands from the shoot which is favorable to the plant. Coarse regulation is physical in nature, but strongly depends on root anatomy, e.g. on the existence of apoplastic barriers in the exo- and endodermis. Composite transport is based on the composite structure of roots. A `fine regulation' results from the activity of water channels (aquaporins) in root cell membranes which is assumed to be under metabolic and other control.  相似文献   

6.
Senock  R.S.  Leuschner  C. 《Plant and Soil》1999,208(1):57-71
Field measurements of water flux in small diameter roots are important to the study of whole plant water transport systems. Miniature sap flow gauges were used to capture high resolution water flux patterns in small roots of 2 – 5 mm diameter and simultaneously in the canopy branches of a Eucalyptus saligna tree growing in Hawaii. The axial transport flux rates were then correlated with anatomical measurements to describe the internal hydraulic capacity of the tree. The daily patterns of water flux showed a strong coupling between the canopy and root systems and both systems were tightly synchronized with rapid fluctuations in photosynthetic photon flux density, vapour pressure deficit, and wind speed. When flow rates were normalized by the total vessel lumen area, branches had daily totals equivalent to the surface roots. Daily flows of water through surface roots were consistently 30% greater than through deep roots. Results of an experiment where a portion of the canopy was removed showed the decrease in water flux for all roots was in nearly direct proportion to the decrease in leaf area. The root anatomical measurements suggested a high capacity axial root water transport system with roots containing a smaller number of vessels per unit of sapwood area than branches but with vessel diameters twice that of the branches. However, relative conductivity values of roots and branches were similar and comparable to some of the highest values reported. Overall, the results suggested a highly efficient axial water transport system that would help to maintain a favorable plant water status for maximal stomatal opening. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Midday depressions in stomatal conductance (gs) and photosynthesis are common in plants. The aim of this study was to understand the hydraulic determinants of midday gs, the coordination between leaf and stem hydraulics and whether regulation of midday gs differed between deciduous and evergreen broadleaf tree species in a subtropical cloud forest of Southwest (SW) China. We investigated leaf and stem hydraulics, midday leaf and stem water potentials, as well as midday gs of co‐occurring deciduous and evergreen tree species. Midday gs was correlated positively with midday stem water potential across both groups of species, but not with midday leaf water potential. Species with higher stem hydraulic conductivity and greater daily reliance on stem hydraulic capacitance were able to maintain higher stem water potential and higher gs at midday. Deciduous species exhibited significantly higher stem hydraulic conductivity, greater reliance on stem capacitance, higher stem water potential and gs at midday than evergreen species. Our results suggest that midday gs is more associated with midday stem than with leaf water status, and that the functional significance of stomatal regulation in these broadleaf tree species is probably for preventing stem xylem dysfunction.  相似文献   

8.
Hydraulic lift in drought-tolerant and -susceptible maize hybrids   总被引:9,自引:0,他引:9  
Wan  Changgui  Xu  Wenwei  Sosebee  Ronald E.  Machado  Stephen  Archer  Tom 《Plant and Soil》2000,219(1-2):117-126
Hydraulic lift was investigated in a greenhouse study involving two drought-tolerant maize (Zea mays L.) hybrids (TAES176 and P3223) and a drought-susceptible hybrid (P3225) during the flowering stage. Root systems were grown in two soil compartments – a drier upper soil and a wetter deep soil. The plants were shaded for 3 h during the daytime. Soil volumetric water content (Øv) in the upper pots was measured with time domain reflectometry (TDR) before and after shading. An increase in Øv in the upper pot was detected with TDR in the drought-tolerant hybrids following 3 h of shading, but not in the drought-susceptible hybrid. Furthermore, water exuded from roots in the top soil layers was greater in the more drought-tolerant TAES176 than in P3223 (489 vs. 288 g per pot in 3 h, P<0.005). The sizable amount of water from hydraulic lift allowed TAES176 to reach a peak transpiration rate 27–42% higher than the drought-susceptible hybrid P3225 on the days when the evaporative demand was high. To our knowledge, this is the first experiment that reveals a significant surge of transpiration due to hydraulic lift following midday shading. Hydraulic lift also prevented soil moisture depletion in the upper pots with TAES176, but not with P3223 or P3225. Root characteristics may be responsible for differences in hydraulic lift of the three maize hybrids. There were 2.3–3.3-fold more primary roots in the deep moist soil in P3223 and TAES176 than in P3225 that may enable these hybrids to absorb and transport water at faster rates. Therefore, more water can be exuded into the upper drier soil when transpiration is suppressed by shading. Larger primary roots (20–28% larger diameter) and a higher root volume in the upper soil in TAES176 and P3223 than in P3225 may contribute to higher root hydraulic conductance and greater water efflux from the roots. The negligible hydraulic lift in P3225 may also relate to higher night-time transpiration of the hybrid. This report has documented, for the first time, the existence of genetic variations in hydraulic lift among maize hybrids and links between hydraulic lift and drought tolerance within maize plants. It appears that one of drought tolerance mechanisms in maize may lie in the extent of hydraulic lift.  相似文献   

9.
Root effects on soil water and hydraulic properties   总被引:1,自引:0,他引:1  
Plants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties. In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix. Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations. Presented at the International Conference on Bioclimatology and Natural Hazards, Pol’ana nad Detvou, Slovakia, 17–20 September 2007.  相似文献   

10.
Effect of rootstock on apple (Malus domestica) tree water relations   总被引:1,自引:0,他引:1  
The effects of rootstock on mid-season water relations, under orchard conditions of non-limiting soil moisture, were determined for bearing 'Empire' apple trees ( Malus domestica Borkh.) on the clonal rootstocks M9, M26, M7, MM106, and MM104 (most to least dwarfing) in their sixth and seventh growing seasons. Stem water potentials (ψstem) of trees on M9 and M26 were more negative at midday, under warm, sunny conditions, than were the trees on the other three rootstocks. However, change in ψstem per change in stem distance through the canopy (water potential gradient) did not vary among rootstocks at midday. There was no rootstock effect on diurnal variation in transpiration or stomatal conductance. Differences in water storage capacitance, relative to tree size, were determined in a separate study but did not account for the differences observed in ψstem. Calculated hydraulic conductivities of xylem water transport suggest that rootstocks differ in their ability to conduct water to the scion, but hydraulic conductivity of the scion was not affected by rootstock. Root-stock differences in hydraulic conductivity were not accounted for by differences in tree size.  相似文献   

11.
12.
Hydraulic lift occurs in some deep-rooted shrub and herbaceous species. In this process, water taken up by deep roots from the moist subsoil is delivered to the drier topsoil where it is later reabsorbed by shallow roots. However, little is known about the existence of hydraulic lift in shallow-rooted xeric species. The objectives of this study were 1) to ascertain whether hydraulic lift exists in Gutierrezia sarothrae (broom snakeweed), a widespread North American desert species with a shallow root system, grown in pot and field conditions and 2) if it does, how much water can be transferred from the subsoil to the 30 cm topsoil during the night. Snakeweed seedlings were transplanted in buried pots allowing the deeper roots to grow into the subsoil 30 cm below the surface. Soil water content inside and outside of the pot was measured seasonally and diurnally with time domain reflectometry technique (TDR). An increase in water content was detected in the pot after the plant was covered for 3 h by an opaque plastic bag during the day, suggesting hydraulic lift from deeper depths and exudation of water into the drier topsoil. Root exudation was also observed on native range sites dominated by snakeweed. Water efflux in the pot was 271 g per plant per night. which was equivalent to 15.3% of the extrapolated, porometer-derived whole-plant daily transpiration. Hydraulic lift observed in Gutierrezia improved water uptake during the day when evaporative demand is high and less water is available in the topsoil. We concluded that hydraulic lift might help snakeweed to alleviate the effect of water stress.  相似文献   

13.
黄土高原地区春小麦对有限灌溉的反应及其生理生态基础   总被引:3,自引:1,他引:2  
鄢Xun  王俊 《西北植物学报》2001,21(4):791-795
从对黄土高原地区有限灌溉条件下作物生理生态反应的众多研究中得出:(1)水分轻度亏缺时,作物可通过根信号物质ABA调节叶片的气孔导度。非水力根信号作用太强,可因降低光合作用而减少干物质生产和影响干物质分配模式而影响产量和水分利用效率,故削弱非水力根信号的作用将有利于提高产量。(2)浅层根系占根系总量比值越高,对干旱越敏感,表现为根信号能力增强;深层根系所占比例越高,越有利于土壤深层水分利用,并可削弱根信号,同理,给土壤中下层补水或采用播种前灌溉,可因为减少了无效蒸发,且削弱根信号而提高水分利用率。(3)本地区有限灌溉的最佳时期由于降水变率较高而变得较为复杂,不同降水年型,最佳灌溉时期差异很大,对有限灌溉进行科学管理还需要做更多的研究工作。  相似文献   

14.
15.
《植物生态学报》2018,42(9):885
根系吸水是树木水分关系的重要环节, 在树木生理活动中发挥着至关重要的作用。深层土壤中的水资源含量一般相对较高, 常可为树木生长供给大量水分, 并在旱季保障其生存与正常生长。因此, 了解树木对深层土壤水的吸收利用特征与机制, 可帮助深入认识树木与环境的互作机制、树木的生长与生存策略、物种间的共存与竞争机制等内容, 同时还可帮助构建既能降低外部水资源投入, 又能避免水分生态环境负面效应的人工林绿色栽培制度。基于已有研究, 该文对树木吸收利用深层土壤水的特征与机制进行了综述。首先, 探讨了深层根系和深层土壤的界定, 指出对于除寒温带针叶林以外的其他主要森林植被类型, 可以1 m作为树木深根系和深土层的平均划分(参考)标准, 并明确了全球范围内树木深根系的成因。其次, 对已有研究中观察到的树木对深层土壤水的吸收利用特征及其影响因素进行了归纳与总结, 并从深根系性状调节、整株水力特性协调两方面探讨了树木高效吸收利用深层土壤水的机制, 如可通过深根系的空间、时间和效率调节策略来促进对深土层水分的吸收。最后, 提出了树木利用深土层水分对人工林培育的几点启示, 包括水分管理.中应使林木适度利用深层土壤水, 选用合适的灌水频率、合理的树种混交能促进深层土壤水分储库“缓冲”作用的发挥, 基于树木土壤水分利用深度的间伐木选择技术等, 并指出了该领域现有研究的不足以及今后的发展方向。  相似文献   

16.
A better understanding of the mechanisms of water uptake by plant roots should be vital for improving drought resistance and water use efficiency (WUE). In the present study, we have demonstrated correlations between root system hydraulic conductivity and root characteristics during evolution using six wheat evolution genotypes (solution culture) with different ploidy chromosome sets (Triticum boeoticum Bioss., T. monococcum L.: 2n = 2x = 14; T. dicoccides Koern., T. dicoccon (Schrank) Schuebl.: 2n = 4x = 28;T. vulgare Vill., T. aestivum L. cv. Xiaoyan No. 6: 2n = 6x = 42). The experimental results showed that significant correlations were found between root system hydraulic conductivity and root characteristics of the materials with the increase in ploidy chromosomes (2x→6x) during wheat evolution. Hydraulic conductivity of the wheat root system at the whole-plant level was increased with chromosome ploidy during evolution, which was positively correlated with hydraulic conductivity of single roots, whole plant biomass,root average diameter, and root growth (length, area), whereas the root/shoot ratio had an inverse correlation with the hydraulic conductivity of root system with increasing chromosome ploidy during wheat evolution. Therefore, it is concluded that that the water uptake ability of wheat roots was strengthened from wild to modern cultivated species during evolution, which will provide scientific evidence for genetic breeding to improve the WUE of wheat by genetic engineering.  相似文献   

17.
The present study aims at characterizing plant water status under field conditions on a daily basis, in order to improve operational predictions of plant water stress. Ohm's law analog serves as a basis for establishing daily soil-plant relationships, using experimental data from a water-limited soybean crop: 227-1. The daily transpiration flux, T, is estimated from experimental evapotranspiration data and simulated soil evaporation values. The difference, 227-2, named the effective potential gradient, is derived from i) the midday leaf potential of the uppermost expanded leaves and ii) an effective soil potential accounting for soil potential profile and an effectiveness factor of roots competing for water uptake. This factor is experimentally estimated from field observation of roots. G is an apparent hydraulic conductance of water flow from the soil to the leaves. The value of the lower potential limit for water extraction, required to assess the effective soil potential, is calculated with respect to the plant using the predawn leaf potential. It is found to be equal to –1.2 MPa. It appears that over the range of soil and climatic conditions experienced, the daily effective potential gradient remains constant (1.2 MPa), implying that, on a daily basis, transpiration only depends on the hydraulic conductance. The authors explain this behaviour by diurnal variation of osmotic potential, relying on Morgan's theory (1984). Possible generalization of the results to other crop species is suggested, providing a framework for reasoning plant water behaviour at a daily time step.  相似文献   

18.
We report physiological and anatomical characteristics of water transport across roots grown in soil of two cultivars of grapevine (Vitis vinifera) differing in response to water stress (Grenache, isohydric; Chardonnay, anisohydric). Both cultivars have similar root hydraulic conductances (Lo; normalized to root dry weight) that change diurnally. There is a positive correlation between Lo and transpiration. Under water stress, both cultivars have reduced minimum daily Lo (predawn) attributed to the development of apoplastic barriers. Water-stressed and well-watered Chardonnay had the same diurnal change in amplitude of Lo, while water-stressed Grenache showed a reduction in daily amplitude compared with well-watered plants. Hydraulic conductivity of root cortex cells (Lpcell) doubles in Chardonnay but remains unchanged in Grenache. Of the two most highly expressed plasma membrane intrinsic protein (PIP) aquaporins in roots (VvPIP1;1 and VvPIP2;2), only VvPIP2;2 functions as a water channel in Xenopus laevis oocytes. VvPIP1;1 interacts with VvPIP2;2 to induce 3-fold higher water permeability. These two aquaporins are colocated in the root from in situ hybridization and immunolocalization of VvPIP1 and VvPIP2 subfamily members. They occur in root tip, exodermis, root cortex (detected up to 30 mm), and stele. VvPIP2;2 mRNA does not change diurnally or with water stress, in contrast to VvPIP1;1, in which expression reflects the differences in Lo and Lpcell between cultivars in their responses to water stress and rewatering. VvPIP1;1 may regulate water transport across roots such that transpirational demand is matched by root water transport capacity. This occurs on a diurnal basis and in response to water stress that corresponds to the difference in drought tolerance between the cultivars.  相似文献   

19.
吸收和传导水分一直被视为植物根系最主要的功能之一,而人们对根系在某些情况下还可以向土壤释放水分的事实及其对植物生长和生态系统功能的影响了解得还很不充分,尽管这样的证据由来已久。土壤-根系统水分再分配(Hydraulic redistribution, HR)是近20年间被发现和证实的,指水分从土壤中较湿的部分经由植物的根系传导而运动到土壤中较干的部分,通常发生在蒸腾减弱的夜间,可以沿水势梯度下降的方向而在不同土层间向上向下或侧向运动。HR研究揭示了土壤-植物-大气连续体中有时会存在土壤-根-土壤的水流小通路,细化了土壤-根系统中水分储存和运输的时空动态和机制。土壤水分状况的连续监测、根木质部液流测量、稳定性同位素技术的使用构成了HR实验研究的三大手段。当土壤中深层水分充足的时候,HR可以提高根系吸收和传导水分的效率,有利于植物充分利用资源,延长了浅层土壤的水分可利用期,有利于维持植物组织的生理活性和水流传导;旱季后降水来临的时候,HR可以将一部分降水转移到深层土壤,增加了可利用性水分的总量。对于干旱半干旱的沙地和草原、季节性干旱的森林等类型,HR过程可能对生态系统水分循环产生重要影响。有必要在国内针对这些生态系统展开深入的实验研究,同时探索将HR过程适当结合到生态系统模型和水文模型中,从而更准确地研究和预测群落内植物水分关系和生态系统水分动态。此外,结合农林设计、植被恢复、生态需水量估算和农业节水等方面进行的HR研究也值得深入探索。  相似文献   

20.
Changes in Root Hydraulic Conductivity During Wheat Evolution   总被引:5,自引:0,他引:5  
A better understanding of the mechanisms of water uptake by plant roots should be vital for improving drought resistance and water use efficiency (WUE). In the present study, we have demonstrated correlations between root system hydraulic conductivity and root characteristics during evolution using six wheat evolution genotypes (solution culture) with different ploidy chromosome sets (Triticum boeoticum Bioss., T. monococcum L.: 2n=2x=14;T. dicoccides Koern., T. dicoccon (Schrank) Schuebl.:2n=4x=28;T. vulgare Vill., T. aestivum L. cv. Xiaoyan No. 6:2n=6x=42). The experimental results showed that significant correlations were found between root system hydraulic conductivity and root characteristics of the materials with the increase in ploidy chromosomes (2x→6x) during wheat evolution. Hydraulic conductivity of the wheat root system at the whole-plant level was increased with chromosome ploidy during evolution, which was positively correlated with hydraulic conductivity of single roots, whole plant biomass,root average diameter, and root growth (length, area), whereas the root/shoot ratio had an inverse correlation with the hydraulic conductivity of root system with increasing chromosome ploidy during wheat evolution. Therefore, it is concluded that that the water uptake ability of wheat roots was strengthened from wild to modern cultivated species during evolution, which will provide scientific evidence for genetic breeding to improve the WUE of wheat by genetic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号