首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction potentials, lipophilicities, cellular uptake and cytotoxicity have been examined for two series of platinum(IV) complexes that yield common platinum(II) complexes on reduction: cis-[PtCl(4)(NH(3))(2)], cis,trans,cis-[PtCl(2)(OAc)(2)(NH(3))(2)], cis,trans,cis-[PtCl(2)(OH)(2)(NH(3))(2)], [PtCl(4)(en)], cis,trans-[PtCl(2)(OAc)(2)(en)] and cis,trans-[PtCl(2)(OH)(2)(en)] (en=ethane-1,2-diamine, OAc=acetate). As previously reported, the reduction occurs most readily when the axial ligand is chloride and least readily when it is hydroxide. The en series of complexes are marginally more lipophilic than their ammine analogues. The presence of axial chloride or acetate ligands results in a slighter higher lipophilicity compared with the platinum(II) analogue whereas hydroxide ligands lead to a substantially lower lipophilicity. The cellular uptake is similar for the platinum(II) species and their analogous tetrachloro complexes, but is substantially lower for the acetato and hydroxo complexes, resulting in a correlation with the reduction potential. The activities are also correlated with the reduction potentials with the tetrachloro complexes being the most active of the platinum(IV) series and the hydroxo being the least active. These results are interpreted in terms of reduction, followed by aquation reducing the amount of efflux from the cells resulting in an increase in net uptake.  相似文献   

2.
Two dioxygen adducts of thiolato-iron(II) porphyrins, [K(222)][Fe(TPpivP)(SC6HF4)(O2)] 1a and [Na(18c.6)][Fe(TPpivP)(SC6HF4)(O2)] 2 were synthesized by reaction of O2 with five-coordinate, high-spin, cryptated alkali metal thiolato-iron(II) 'picket fence' porphyrinate. They were characterized by visible and infrared spectroscopy: lambda max (log epsilon) = 360 nm (4), 427 nm (4.69), 560 nm (3.69), 610 nm (3.40) for both compounds; v(16O-16O) = 1139 cm-1 in chlorobenzene and fluorobenzene for 1a and 2. Single crystals of composition [K(222)][Fe(TPpivP)(SC6HF4)(O2)].[K(222)](SC6HF4)(C 6H5Cl)(H2O) 1b were obtained by diffusion of pentane/xylene mixtures into chlorobenzene solutions of 1a at -5 degrees C. Single crystals of composition [Na(18c.6)][Fe(TPpivP)(SC6HF4)(O2)] were obtained by slow diffusion of pentane into benzene solutions of 2. Structures of 1b and 2 were studied at 20 degrees C (1b) and -100 degrees C (1b and 2). 1b: space group P2(1)/c (monoclinic), a = 16.806(5) A (1.6806 nm), b = 14.331(4) A (1.4331 nm), c = 52.000(15) A (5.2000 nm), beta = 92.95(2) degrees, V = 12.507 A3 (12.507 nm3), Z = 4, Dcal = 1.28 g.cm-3 (t = 20 degrees C). The final R1 factor was 0.085 for 5238 reflections having I greater than 3 sigma(I). 2: space group P2(1)/c (monoclinic), a = 13.107(3) A (1.3107 nm), b = 27.055(4) A (2.7055 nm), c = 25.029(4) A (2.5029 nm), beta = 96.84(2) degrees, V = 8812 A3 (8.812 nm3), Z = 4, Dcal = 1.18 g.cm-3 (t = -100 degrees C). The final R1 factor was 0.088 for 6587 reflections having I greater than 3 sigma(I). The iron atom is, in both compounds, bonded to the four porphyrinato nitrogens (Np), the sulfur atom of the axial thiolate and one oxygen atom of the axially end-on bonded dioxygen molecule. The average Fe-Np distance found in 1b [1.994(4) A, 0.1994 nm] is not significantly different from that found in 2 [1.993(3) A, 0.1993 nm]. The Fe-S bond length is 2.367(3) A (0.2367 nm) in 1b and 2.365(2) A (0.2365 nm) in 2. The Fe-O1 distances with the oxygen atom of O2 bonded to iron are respectively 1.837(9) A (0.1837 nm) and 1.850(4) A (0.1850 nm). The end-on bonded O2 molecule is disordered in both complexes 1b and 2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Studies on diiron dithiolato complexes have proven fruitful for modeling the active site of the [FeFe]-hydrogenases. Here we present a departure from the classical Fe(2)S(2) motif by examining the viability of Fe(2)N(2) butterfly compounds as functional models for the diiron active site of [FeFe]-hydrogenases. Derivatization of Fe(2)(BC)(CO)(6) (1, BC=benzo-[c]-cinnoline) with PMe(3) affords Fe(2)(BC)(CO)(4)(PMe(3))(2), which subsequently undergoes protonation at the Fe-Fe bond. The hydride [(mu-H)Fe(2)(BC)(CO)(4)(PMe(3))(2)]PF(6) was characterized crystallographically as the C(2v) isomer. It represents a rare example of a hydrido diiron complex that exists as observable isomers, depending on the location of the phosphine ligands--diapical and apical-basal. This hydride catalyzes the electrochemical reduction of protons.  相似文献   

4.
Four new complexes of uracilato and 5-halouracilato with the divalent metal ions Cu(II), Zn(II) and Ni(II) were obtained and structurally characterized. [Cu(uracilato- N(1))(2)(NH(3))(2)].2(H(2)O) (1) and [Cu(5-chlorouracilato-N(1))(2)(NH(3))(2)](H(2)O)(2) (2) complexes present distorted square planar co-ordination geometry around the metal ion. Although an additional axial water molecule is present [Cu(II)-OH(2)=2.89 A (for 1) and 2.52 A (for 2)] in both cases, only in the complex 2 would be considered in the limit of a bond distance. The Zn(II) in [Zn(5-chlorouracilato-N(1))(NH(3))(3)].(5-chlorouracilato-N(1)).(H(2)O) presents a tetrahedral co-ordination with three ammonia molecules and the N(1) of the corresponding uracilato moiety. A non-coordinated uracilato molecule is present as a counterion and a recognition between co-ordinated and free ligands, by means a tandem of H-bonds, should be mentioned. Finally, the complex [Ni(5-chlorouracilato-N(1))(2)(en)(2)] (H(2)O)(2) (where en is ethylenediamine) presents a typical octahedral trans co-ordination with additional hydrogen bonds between 5-chlorouracilato and the NH(2) groups of ethylenediamine units.  相似文献   

5.
The mycotoxin sporidesmin A (spdA), responsible for the intoxication of animals, causing facial eczema, has been investigated by electrospray ionisation mass spectrometry. Protonated [spdA+H](+) and deprotonated [spdA-H](-) ions are observed in positive and negative ion modes respectively. Reduced spdA, formed by cleavage of the disulfide bond by Na[BH(4)] gives an ion [spdA+H](-), and forms ions of the type [2spdA+M](2-) with a range of divalent metal ions M(2+)=Zn(2+), Cd(2+), Hg(2+), Sn(2+) and Fe(2+). Sodium-containing analogues [2spdA+M+Na](-) are observed, particularly at high cone voltages, where they are stable towards cone voltage-induced fragmentation, indicating appreciable stability of the (spdA)(2)M system. A competition experiment between Cd(2+) and Zn(2+) demonstrates that reduced spdA has a higher affinity for Cd(2+) ions. The related gliotoxin (gtx) forms analogous [2gtx+M](2-) and [2gtx+M+Na](-) ions. The reduction and metal complexation of spdA can be monitored by (1)H NMR spectroscopy, and results in chemical shift changes for those protons adjacent to the sulfur atoms. The isolation of a polymeric cadmium-spdA complex is also reported.  相似文献   

6.
Twelve zinc(II) complexes with thiosemicarbazone and semicarbazone ligands were prepared and characterized by elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FT-IR and 1H and 13C NMR spectroscopy. Seven three-dimensional structures of zinc(II) complexes were determined by single-crystal X-ray analysis. Their antimicrobial activities were evaluated by MIC against four bacteria (B. subtilis, S. aureus, E. coli and P. aeruginosa), two yeasts (C. albicans and S. cerevisiae) and two molds (A. niger and P. citrinum). The 5- and 6-coordinate zinc(II) complexes with a tridentate thiosemicarbazone ligand (Hatsc), ([Zn(atsc)(OAc)](n) 1, [Zn(Hatsc)(2)](NO(3))(2).0.3H(2)O 2, [ZnCl(2)(Hatsc)] 3 and [Zn(SO(4))(Hatsc)(H(2)O)].H(2)O 4 [Hatsc=2-acetylpyridine(thiosemicarbazone)]), showed antimicrobial activities against test organisms, which were different from those of free ligands or the starting zinc(II) compounds. Especially, complex 2 showed effective activities against P. aeruginosa, C. albicans and moderate activities against S. cerevisiae and two molds. These facts are in contrast to the results that the 5- or 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridine-4N-morpholinethiosemicarbazone, ([Zn(mtsc)(2)].0.2EtOH 5, the previously reported catena-poly [Zn(mtsc)-mu-(OAc-O,O')](n) and [Zn(NO(3))(2)(Hmtsc)] [Hmtsc=2-acetylpyridine (4N-morpholyl thiosemicarbazone)]), showed no activities against the test microorganisms. The 5- and 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridinesemicarbazone, ([Zn(OAc)(2)(Hasc)] 6 and [Zn(Hasc)(2)](NO(3))(2) 7 [Hasc=2-acetylpyridine(semicarbazone)]), showed no antimicrobial activities against bacteria, yeasts and molds. Complex [ZnCl(2)(Hasc)] 8, which was isostructural to complex 3, showed modest activity against Gram-positive bacterium, B. subtilis. The 1:1 complexes of zinc(II) with pentadentate thiosemicarbazone ligands, ([Zn(dmtsc)](n) 9 and [Zn(datsc)](n) 10 [H(2)dmtsc=2,6-diacetylpyridine bis(4N-morpholyl thiosemicarbazone) and H(2)datsc=2,6-diacetylpyridine bis(thiosemicarbazone)]), did not inhibit the growth of the test organisms. On the contrary, 7-coordinate zinc(II) complexes with one pentadentate semicarbazone ligand and two water molecules, ([Zn(H(2)dasc)(H(2)O)(2)](OAc)(2).5.3H(2)O 11 and [Zn(H(2)dasc)(H(2)O)(2)](NO(3))(2).H(2)O 12 [H(2)dasc=2,6-diacetylpyridine bis(semicarbazone)]), showed modest to moderate activities against bacteria. Based on the X-ray structures, the structure-activity correlation for the antimicrobial activities was elucidated. The zinc(II) complexes with 4N-substituted ligands showed no antimicrobial activities. In contrast to the previously reported nickel(II) complexes, properties of the ligands such as the ability to form hydrogen bonding with a counter anion or hydrated water molecules or the less bulkiness of the 4N moiety would be a more important factor for antimicrobial activities than the coordination number of the metal ion for the zinc(II) complexes.  相似文献   

7.
Sodium boro[3H]hydride reduction of tyrosine decarboxylase from Streptococcus faecalis followed by complete hydrolysis of the enzyme produces epsilon-[3H]pyridoxyllysine. Degradation of this material to [4'-3H]pyridoxamine and stereochemical analysis with apoaspartate aminotransferase shows that the re side at C-4' of the cofactor is exposed to solvent at pH 5.5 and 7.0. After binding of L-tyrosine at pH 5.5 or tyramine at pH 7.0 to the holoenzyme, sodium boro[3H]hydride reduction proceeds from the si face at C-4' of the substrate . cofactor complex. This indicates one of two conformational changes occurs upon binding of substrate; either rotation about the C-4 to C-4' bond in the cofactor or rotation about the axis through the C-5 and C-5' bond.  相似文献   

8.
The complex trans-bis(dimethylsulfoxide)chloromethylplatinum(II) (1) is fairly soluble in water, where it undergoes multiple equilibria involving the formation of geometrically distinct [Pt(H(2)O)(DMSO)Cl(CH(3))] aqua-species. On reacting an aqueous solution of 1 with monodentate nitrogen donor ligands L, such as pyridines or amines, two well distinct patterns of behavior can be recognized: (i) a single stage fast substitution of one DMSO by the entering ligand, yielding a complex of the type trans(C,N)-[Pt(DMSO)(L)Cl(CH(3))] which contains four different groups coordinated to the metal and which undergoes a slow conversion into its cis-isomer, (ii) a double substitution affording cationic complex ions of the type cis-[Pt(L)(2)(DMSO)(CH(3))](+). When this latter reaction is carried out using sterically hindered ligands, slow rotation of the bulk ligand around the Pt[bond]N bond allows for the identification of head-to-head and head-to-tail rotamers in solution, through (1)H NMR spectrometry. The addition of chloride anion to 1 leads to the anionic species cis-[Pt(DMSO)Cl(2)(CH(3))](-), where a molecule of DMSO still remains coordinated to the metal center, despite its quite fast rate of ligand exchange (k(exch) with free DMSO=12+/-1 s(-1)). The reaction of complex 1 with bidentate ligands, such as ethylenediamine (en) or simple amino acids, leads to the cationic species [Pt(en)(DMSO)(CH(3))](+) or to the neutral [Pt(DMSO)(N[bond]O)(CH(3))], (where N[bond]-O[double bond]GlyO(-), AlaO(-)).  相似文献   

9.
The 1H NMR relaxation effects produced by paramagnetic Cr(III) complexes on nucleoside 5'-mono- and -triphosphates in D2O solution at pH' = 3 were measured. The paramagnetic probes were [Cr(III)(H2O)6]3+, [Cr(III)(H2O)3(HATP)], [Cr(III)(H2O)3(HCTP)] and [Cr(III)(H2O)3(UTP)-, while the matrix nucleotides (0.1 M) were H2AMP, HIMP-, and H2ATP2-. For the aromatic base protons, the ratios of the transverse to longitudinal paramagnetic relaxation rates (R2p/R1p) for the [Cr(III)(H2O)6]3+/H2ATP2-, [Cr(III)(H2O)3(HATP)]/H2ATP2-, [Cr(III)(H2O)3(HCTP)]/H2ATP2 and [Cr(III)(H2O)3(UTP)]-/H2ATP2 systems were below 2.33 so the dipolar term predominates. For a given nucleotide, R1p for the purine H(8) signal was larger than for the H(2) signal with the [Cr(III)(H2O)6]3+ probe, while R1p for the H(2) signal was larger with all the other Cr(III) probes. Molecular mechanics computations on the [Cr(III)(H2O)4(HPP)(alpha,beta)], [Cr(III)(NH3)4(HPP)(alpha,beta)], [Co(III)(NH3)3(H2PPP)(alpha,beta,gamma)] and [Co(III)(NH3)4(HPP)(alpha,beta)] complexes gave calculated energy-minimized geometries in good agreement with those reported in crystal structures. The molecular mechanics force constants found were then used to calculate the geometry of the inner sphere [Cr(III)(H2O)6]3+ and [Cr(III)(H2O)3(HATP)(alpha,beta,gamma)] complexes as well as the structures of the outer sphere [Cr(III)(H2O)6]3(+)-(H2AMP) and [Cr(III)(H2O)6]-(HIMP)- species. The gas-phase structure of the [Cr(III)(H2O)3(HATP)(alpha,beta,gamma)] complex shows the existence of a hydrogen bond interaction between a water ligand and the adenine N(7)(O...N = 2.82 A). The structure is also stabilized by intramolecular hydrogen bonds involving the -O(2')H group and the adenine N(3) (O...N = 2.80 A) as well as phosphate oxygen atoms and a water molecule (O...O = 2.47 A). The metal center has an almost regular octahedral coordination geometry. The structures of the two outer-sphere species reveal that the phosphate group interacts strongly with the hexa-aquochromium probe. In both complexes, the nucleotides have a similar "anti" conformation around the N(9)-C(1') glycosidic bond. However, a very important difference characterizes the two structures. For the (HIMP)- complex, strong hydrogen bond interactions exist between one and two water ligands and the inosine N(7) and O(6) atoms, respectively (O...O = 2.63 A; O...N = 2.72, 2.70 A). For the H2AMP complex, the [Cr(III)(H2O)6]3+ cation does not interact with N(7) since it is far from the purine system. Hydrogen bonds occur between water ligands and phosphate oxygens. The Cr-H(8) and Cr-H(2) distances revealed by the energy-minimized geometries for the two outer sphere species were used to calculate the R1p values for the H(8) and H(2) signals for comparison with the observed R1p values: 0.92(c), 1.04(ob) (H(8)) and 0.06(c), 0.35(ob) (H(2)) for H2AMP; and 3.76(c), 4.53(ob) (H(8)) and 0.16(c), 0.77(ob) s-1 (H(2)) for HIMP-.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Utilizing a novel combinational technique incorporating spectrafluorometry and photosensitization, this analysis determined cell viability and cytotoxicity through the introduction of reactive oxygen species and measurement of plasma membrane integrity. Chinese hamster ovary and mouse hybridoma cells were treated with silica hydride after being photosensitized with singlet oxygen, hydroxyl/superoxide, and hydroxyl reactive oxygen species through the use of rose Bengal diacetate, malachite green, and N,N'-bis(2-hydroperoxy-2-methoxyethyl)-1,4,5,8-naphthaldiimide, respectively. The analysis resulted in an easy and effective method for quantifying reactive oxygen species reduction and characterized the radical reduction efficacy of silica hydride at 97% (+/- 0.68%, sigma = 0.84) against singlet oxygen species and over 87% (+/- 0.56%, sigma = 0.70) for the combination of hydroxyl and superoxide reactive species, and 98% (+/- 0.37%, sigma = 0.47) effective for hydroxyl radical species. Nontreated photosensitized controls showed less than 1% viability under the same conditions.  相似文献   

11.
novel antifungal and antibacterial activities of new synthesized phytochemical coumarin compounds [H2L1, HL2 and H2L3] and their copper (II) complexes [L1Cu], [L2Cu(OAc)] and [(L3)Cu2(H2O)4(OAc)2] were evaluated against nine pathogenic fungal species (Alternaria alternata, Aspergillus flavus, Botrytis cinerea, Cladosporium herbarum, Fusarium moniliforme, Helminthosporium tetramera, Penicillium expansum, Rhizopus stolonifer andVerticillium albo-atrum) and eight pathogenic bacterial species, from which four Gram-positive bacteria (Bacillus subtilis, Micrococcus luteus, Staphylococcus citrus andStreptococcus pneumoniae) and four Gram-negative bacteria (Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa andSalmonella typhi). The phytochemical copper (II) complex [L2Cu(OAc)] was the most effective derivative, where it reaches to 90 and 100% inhibition in the most sensitive pathogens (B. subtilis and A. flavus), respectively accompanied with a significant reduction in pectinolytic and cellulytic enzyme activities in all tested pathogenic species. Addition of [L2Cu(OAc)] complex leading to leakage of sugars and electrolytes from the most sensitive microbial cells accompanied with collapsed hyphae ofA. Flavus and membrane blobbing ofB. Subtilis. The production of mycotoxins decreased with the extension exposure to [L2Cu(OAc)] complex reaching to a minimum values for the mycelium originating from the inoculum exposed to the minimum inhibitory concentration (2%). Both aflatoxin (AFB1) and citrinin were the most sensitive toxins.  相似文献   

12.
The active sites of certain metalloenzymes involved in oxygen metabolism, such as manganese catalase and the oxygen-evolving complex of photosystem II, contain micro -oxo-bridged Mn clusters with ligands that include H(2)O and micro (1,3)-carboxylato bridges provided by protein side chains. In order to understand better the vibrational spectra of such clusters, the low-frequency resonance Raman spectra of a series of structurally characterized Mn-oxo model complexes were examined. The series includes complexes of the type [Mn(2)(O)(OAc)(2)(bpy)(2)(L)(2)] and [Mn(2)(O)(2)(OAc)(bpy)(2)(L)(2)], where bpy=2,2'-bipyridine, OAc=acetate and L=H(2)O or Cl(-). Complexes containing the isotopomers OAc- d(3) and D(2)O, as well as those containing both isotopomers, were also examined. Normal coordinate analyses (NCA) were performed on the various complexes using theGF matrix method. Selected vibrational modes in the 200-600 cm(-1) region were assigned based on the spectra and NCA, which identify vibrational modes arising from the metal-ligand bonds. These results will be useful in interpreting the vibrational spectra obtained from metalloproteins containing Mn-oxo complexes in their active sites.  相似文献   

13.
To investigate the relationship between antimicrobial activities and the molecular structures of nickel(II) complexes with thiosemicarbazone and semicarbazone ligands, nickel(II) complexes with ligands Hmtsc, Hatsc, Hasc and H2dmtsc, were prepared and characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopies, magnetic susceptibility measurements, UV-Vis absorption spectra, TG/DTA and single-crystal X-ray analysis. Their antimicrobial activities were evaluated by the MIC against four bacteria (B. subtilis, S. aureus, E. coli and P. aeruginosa), two yeasts (C. albicans and S. cerevisiae) and two molds (A. niger and P. citrinum). The 4-coordinate, diamagnetic nickel(II) complexes showed antimicrobial activities which were different from those of free ligands or the starting nickel(II) compounds; [Ni(mtsc)(OAc)] 1 showed selective and effective antimicrobial activities against two Gram-positive bacteria (B. subtilis and S. aureus) and modest activities against a yeast (S. cerevisiae), [Ni(mtsc)Cl] 3 exhibited moderate activities against a Gram-positive bacterium (S. aureus), and [Ni(atsc)(OAc)] 5 showed modest activities against two Gram-positive bacteria (B. subtilis and S. aureus). On the other hand, the 6-coordinate, paramagnetic nickel(II) complexes with two protonated or deprotonated ligands ([Ni(mtsc)2] 2, [Ni(atsc)(mtsc)] 4, [Ni(atsc)2] 6, [Ni(Hatsc)2](NO3)(2)7, [Ni(Hatsc)2]Cl(2)8 and [Ni(Hasc)2](OAc)(2)9) and the sterically crowded 4-coordinate, diamagnetic nickel(II) complex ([Ni(dmtsc)] 10) did not inhibit the growth of the test organisms. The structure-activity correlation in this series of nickel(II) complexes was discussed based on their ligand-replacement abilities.  相似文献   

14.
A new labeling approach for incorporating bioactive peptides into a technetium-99m coordination complex is described. This method exploits the chemical properties of the novel metal-nitrido fragment [99mTc(N)(PXP)]2+, composed of a terminal Tc[triple bond] N multiple bond bound to an ancillary diphosphine ligand (PXP). It will be shown that this basic, molecular building block easily forms in solution as the dichloride derivative [99mTc(N)(PXP)Cl2], and that this latter complex selectively reacts with monoanionic and dianionic, bidentate ligands (YZ) having soft, pi-donor coordinating atoms to afford asymmetrical nitrido heterocomplexes of the type [99mTc(N)(PXP)(YZ)]0/+ without removal of the basic motif [99mTc(N)(PXP)]2+. The reactions of the amino acid cysteine was studied in detail. It was found that cysteine readily coordinates to the metal fragment [99mTc(N)(PXP)]2+ either through the [NH2, S-] pair of donor atoms or, alternatively, through the [O-, S-] pair, to yield the corresponding asymmetrical complexes in very high specific activity. Thus, these results were conveniently employed to devise a new, efficient procedure for labeling short peptide sequences having a terminal cysteine group available for coordination to the [99mTc(N)(PXP)]2+ fragment. Examples of the application of this novel approach to the labeling of the short peptide ligand H-Arg-Gly-Asp-Cys-OH (H(2)1) and of the peptidomimetic derivative H-Cys-Val-2-Nal-Met-OH (H2) will be discussed.  相似文献   

15.
A series of mononuclear copper(II) complexes having a 1:1 molar ratio of copper and the planar heterocyclic base like 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) are prepared from a reaction of copper(II) nitrate.trihydrate and the base (L) in ethanol or aqueous ethanol at different temperatures. The complexes [Cu(dpq)(NO(3))(2)] (2), [Cu(dpq)(NO(3))(H(2)O)(2)](NO(3)) (3), [Cu(dpq)(NO(3))(2)(H(2)O)(2)].2H(2)O (4.2H(2)O) and [Cu(dppz)(NO(3))(2)(H(2)O)].H(2)O (5.H(2)O) have been characterized by X-ray crystallography. The crystal structures show the presence of the heterocyclic base in the basal plane. The coordination geometries of the copper(II) centers are axially elongated square-pyramidal (4+1) in 2, 3 and 5, and octahedral (4+2) in 4. The nitrate anion in the coordination sphere displays unidentate and bidentate chelating bonding modes. The axial ligand is either H(2)O or NO(3) in these structures giving a Cu-L(ax) distance of approximately 2.4 A. The one-electron paramagnetic complexes (mu approximately 1.8 mu(B)) exhibit axial EPR spectra in DMF glass at 77 K giving g(parallel)>g( perpendicular ) with an A(parallel) value of approximately 170G indicating a [d(x)2(-y)2](1) ground state. The complexes are redox active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V vs. SCE giving an order of the E(1/2) values as 5(dppz)>2-4 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). The complexes bind to calf thymus DNA giving an order 5 (dppz)>2 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). An effect of the extended planar ring in dpq and dppz is observed in the DNA binding. The complexes show nuclease activity with pUC19 supercoiled DNA in DMF/Tris-HCl buffer containing NaCl in presence of mercaptopropanoic acid as a reducing agent. The extent of cleavage follows the order: [Cu(phen)(2)(H(2)O)](ClO(4))(2)>5>2 approximately 3 approximately 4>1. The bis-phen complex is a better cleaver of SC DNA than 1-5 having mono-heterocyclic base. Mechanistic investigations using distamycin reveal minor groove biding for the phen, dpq complexes, and a major groove binding for the dppz complex 5. The cleavage reactions are found to be inhibited in the presence of hydroxyl radical scavenger DMSO and the reactions are proposed to proceed via sugar hydrogen abstraction pathway. The ancillary ligand is found to have less effect in DNA binding but are of importance in DNA cleavage reactions.  相似文献   

16.
Redox thermodynamic data provide a detailed insight into control of the reduction potential E degrees' of the [Fe(S-Cys)4] site in rubredoxin. Mutant forms were studied in which specific structural changes were made in both the primary and secondary coordination spheres. Those changes have been probed by resonance Raman spectroscopy. The decrease of approximately 200 mV in E degrees' observed for the [Fe(S-Cys)3(O-Ser)]-/2- couples in the surface ligand mutants C9S and C42S is essentially enthalpic in origin and associated with the substitution of ligand thiolate by ligand olate. However, the pH dependence of the potentials below characteristic pKa(red) approximately equals 7 is an entropic contribution, plausibly associated with increased conformational flexibility induced by a longer Fe(II)-O(H)-Ser bond in the reduced form. The presence of a second surface Ser ligand in the new double mutant protein C9S/C42S affects the enthalpic term primarily for pH>pKa(red) > or = 9.3, but for pHpKa approximately 9: [Fe(III)(S-Cys)3(OH)]- + e- --> [Fe(II)(S-Cys)3(OH)]2-. pH [Fe(II)(S-Cys)3(OH2)]-.  相似文献   

17.
In contrast to the comprehensive structural information about metal complexes with adenine, the corresponding to its isomer 2-aminopurine (H2AP) is extremely poor. With the aim to rationalize the metal binding pattern of H2AP, we report the molecular and/or crystal structure of four novel compounds with various iminodiacetate-like (IDA-like) copper(II) chelates: [Cu(IDA)(H2AP)(H2O)]·H2O (1), [Cu(MIDA)(H2AP)(H2O)]·3H2O (2), {[Cu(NBzIDA)(H2AP)]·1.5H2O}n (3) and [Cu(MEBIDA)(H2AP)(H2O)]·3.5 H2O (4), where IDA, MIDA, NBzIDA and MEBIDA are R = H, CH3, benzyl- and p-tolyl- in R-N-(CH2-COO-)2 ligands, respectively. Synthesis strategies include direct reactions of copper(II) chelates with H2AP (alone, for 1 and 3) and/or with the base pairs H2AP:thymine (1-4) or H2AP:cytosine (3). Moreover, these compounds have been also investigated by spectral and thermal methods. Regardless of the N-derivative of the IDA chelator, molecular recognition between H2AP and the referred Cu(II)-chelates only displays the formation of the Cu-N7(purine-like) bond what is clearly in contrast to what was previously reported for adenine. The metal binding pattern of 2-aminopurine is discussed on the basis of the electronic effects and steric hindrance of the 2-amino exocyclic group.  相似文献   

18.
A new octanuclear copper(II) complex has been synthesized and structurally characterized by X-ray crystallography: [Cu(8)(HL)(4)(OH)(4)(H(2)O)(2)(ClO(4))(2)].(ClO(4))(2).2H(2)O (1) (H(3)L=2,6-bis(hydroxyethyliminoethyl)-4-methyl phenol). The complex is formed by the linkage of two terminal bimetallic cationic units and a tetranuclear mu(3)-hydroxo bridged dicubane core by a very short intramolecular hydrogen bond (O-H...O, 1.48(3)A and the angle 175 degrees). The coordination sphere of the terminal copper atoms is square pyramidal, the apical positions being occupied by water and a perchlorate ion. Complex 1 self-assembles to form a new type of water-perchlorate helical network [(H(2)O)(2)(ClO(4))](infinity) involving oxygen atoms of coordinated perchlorate ion and the two lattice water molecules through hydrogen-bonding interaction. The variable temperature-dependent susceptibility measurement (2-300K) of 1 reveals a strong antiferromagnetic coupling, J(1)=-220cm(-1) and J(2)=-98cm(-1) (J(1) and J(2) representing the exchange constant within [Cu(2+)](4) and [Cu(2+)](2) units, respectively). The complex binds to double-stranded supercoiled plasmid DNA giving a K(app) value of 1.2x10(7)M(-1) and displays efficient oxidative cleavage of supercoiled DNA in the presence of H(2)O(2) following a hydroxyl radical pathway.  相似文献   

19.
Several beta replacement and alpha,beta elimination reactions catalyzed by tryptophanase from Escherichia coli are shown to proceed stereospecifically with retention of configuration. These conversions include synthesis of tryptophan from (2S,3R)- and (2s,3s)-[3(-3H)]serine in the presence of indole, deamination of these serines in D2O to pyruvate and ammonia, and cleavage of (2S,3R)-and (2S,3S)-[3(-3H)]tryptophan in D2O to indole, pyruvate, and ammonia. A coupled reaction with lactate dehydrogenase was used to trap the stereospecifically labeled [3-H,2H,3H]pryuvates as lactate, which was oxidized to acetate for chirality analysis of the methyl group. During deamination of tryptophan there is significant intramolecular transfer of the alpha proton of the amino acid to C-3 of indole. To determine the exposed face of the cofactor.substrate complex on the enzyme surface and to analyze its conformational orientation, sodium boro[3H]hydride was used to reduce tryptophanase-bound alaninepyridoxal phosphate Schiff's base. Degradation of the resulting pyridoxylalanine to (2S)-[2(-3H)]alanine and (4'S)-[4'(-3H)]pyridoxamine demonstrates that reduction occurs from the exposed si face at C-4' of the complex and that the ketimine double bond is trans.  相似文献   

20.
A solution study on the coordinative ability of galactaric acid (GalAH(2)), d-glucosamine (GlcN) and d-glucosaminic acid (GlcNAH) toward Fe(3+) ion is reported. UV spectroscopic study provides useful information to identify complex species formation and their stability constants are determined by means of potentiometric measurements. GalAH(2) behaves as chelating ligand through carboxylic oxygen and alpha-hydroxylic oxygen in the protonated or dissociated form depending on pH value. Two complex species [Fe(2)GalA(OH)(4)] and Na[FeGalAH(-2)] .2H(2)O are also isolated in the solid state and characterised through IR spectroscopy. GlcNAH also binds the Fe(3+) ion through carboxylic and hydroxylic groups, while NH(2) group is probably involved in metal coordination up to pH 4. GlcN demonstrates low ligating ability at acidic pH and does not prevent metal hydroxyde precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号