首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 A plastid phylogeny of the genus Ilex based on three different loci (the atpB-rbcL spacer, trnL-trnF and rbcL) is compared with its nuclear phylogeny based on two different loci (the ribosomal ITS and the 5S RNA spacer). These two sets of molecular data are then compared to geographical and temporal data from the fossil record. The plastid phylogeny is strongly correlated with the geographic distribution of extant species. However, the nuclear phylogeny is strongly incongruent with the plastid phylogeny, suggesting frequent interlineage hybridizations. Moreover, the comparison of the ribosomal ITS tree and the 5S RNA spacer tree indicates also possible lineage sorting. Particularly interesting is the finding of two different Ilex lineages in the plastid American clade showing different biogeographic patterns in South America. One of them has a simple North American/South American biogeographical relationship. The other has complex biogeographical relationships, some species showing direct Asian/South American biogeographical relationships. During its history, the genus Ilex probably experienced frequent lineage sorting and interlineage hybridization with subsequent nuclear or cytoplasmic introgression, making the study of its history very complex. Received September 24, 2001; accepted August 19, 2002 Published online: November 28, 2002 Addresses of the authors: Jean-Fran?ois Manen (e-mail: manen@cjb.ville-ge.ch), Yamama Naciri-Graven, Conservatoire et Jardin Botaniques, Impératrice 1, CH-1292 Chambésy/Genève, Switzerland. Michael C. Boulter, Palaeobiology Research Unit, University of East London, Romford Road, London E15 4LZ, UK.  相似文献   

2.
Nuclear DNA sequences from introns of the low-copy nuclear gene family encoding the second largest subunit of RNA polymerases and the ribosomal internal transcribed spacer (ITS) regions, combined with the psbE-petL spacer and the rps16 intron from the chloroplast genome were used to infer origins and phylogenetic relationships of North American polyploid Silene species and their closest relatives. Although the vast majority of North American Silene species are polyploid, which contrasts to the diploid condition dominating in other parts of the world, the phylogenetic analyses rejected a single origin of the North American polyploids. One lineage consists of tetraploid Silene menziesii and its diploid allies. A second lineage, Physolychnis s.l., consists of Arctic, European, Asian, and South American taxa in addition to the majority of the North American polyploids. The hexaploid S. hookeri is derived from an allopolyploidization between these two lineages. The tetraploid S. nivea does not belong to any of these lineages, but is closely related to the European diploid S. baccifera. The poor resolution within Physolychnis s.l. may be attributed to rapid radiation, recombination among homoeologues, homoplasy, or any combination of these factors. No extant diploid donors could be identified in Physolychnis s.l.  相似文献   

3.
The aim of the present work was to clarify the origin and phylogenetic position of the species belonging to the genus Ilex (Aquifoliaceae), especially the South American species. Phylogenetic relationships of the genus Ilex were investigated using the plastid psbA‐trnH intergenic spacer and parsimony and Bayesian analyses. The psbAtrnH intergenic spacer was shown to evolve slowly within Ilex, but a major gap present in this region was useful in the phylogenetic study of the genus. To obtain more potentially parsimonious characters, atpB‐rbcL intergenic spacer data were combined with those for psbA‐trnH. Many gaps present in the psbA‐trnH region were useful in the phylogenetic study of the genus Ilex. The topology of the trees showed that, in general, the clades are strongly related to geographical areas, a fact especially evident in certain different Asian lineages. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 182–193.  相似文献   

4.
The genus Lespedeza (Fabaceae) consists of 40 species disjunctively distributed in East Asia and eastern North America. Phylogenetic relationships of all Lespedeza species and closely related genera were reconstructed using maximum parsimony, maximum likelihood, and Bayesian analyses of sequence data from five chloroplast (rpl16, rpl32-trnL, rps16-trnQ, trnL-F, and trnK/matK) and one nuclear (ITS) DNA regions. All analyses yielded consistent relationships among major lineages. Our results suggested that Campylotropis, Kummerowia, and Lespedeza are monophyletic, respectively. Lespedeza is resolved as sister to Kummerowia and these two together are further sister to Campylotropis. Neither of the two subgenera, subgen. Lespedeza and subgen. Macrolespedeza, in Lespedeza based on morphological characters, is recovered as monophyletic. Within Lespedeza, the North American clade is retrieved as sister to the Asian clade. The nuclear and chloroplast markers showed incongruent phylogenetic signals at shallow-level phylogeny, which may point to either introgression or incomplete lineage sorting in Lespedeza. The divergence times within Lespedeza and among related genera were estimated using Bayesian approach with BEAST. It is assumed that following the divergence between Kummerowia and Lespedeza in Asia in the late Miocene, the ancestor of Lespedeza diverged into the North American and the Asian lineages. The North American ancestor quickly migrated to North America through the Bering land bridge in the late Miocene. The North American and Asian lineages started to diversify almost simultaneously in the late Miocene but resulted in biased numbers of species in two continents.  相似文献   

5.
The record of the genus Tapirus in South America is associated with the faunistic events of the Great American Biotic Interchange (GABI). The taxon is considered an immigrant of Holarctic origin. Although remains are scarce and incomplete during the Pleistocene, an analysis of these materials allowed us to consider valid seven fossil species : Tapirus tarijensis, T. cristatellus, T. greslebini, T. rioplatensis, T. oliverasi, T. mesopotamicus, and T. rondoniensis. A phylogenetic analysis was carried out in order to elucidate the relationships of the American fossil and extant species. Our result is consistent with a paraphyletic hypothesis for South American tapirs and suggests that a second dispersal event would have occurred from South America to North America, of a form closely related to T. cristatellus, resulting in the derived forms of North America.  相似文献   

6.
The holly genus, Ilex L., in the monogeneric Aquifoliaceae, is the largest woody dioecious genus (>664 spp.), with a near‐cosmopolitan distribution in mesic environments. We constructed a phylogeny based on two nuclear genes, representing 177 species spread across the geographical range, and dated using macrofossil records. The five main clades had a common ancestor in the early Eocene, much earlier than previously suggested. Ilex originated in subtropical Asia and extant clades colonized South America by 30 Ma, North America by 23 Ma, Australia by 8 Ma, Europe by 6 Ma, and Africa by 4 Ma. South and North America were colonized multiple times. Ilex also reached Hawaii (10 Ma) and other oceanic islands. Macrofossil and pollen records show the genus has tracked mesic climates through time and space, and had a wider distribution before late Miocene global cooling. Our phylogeny provides a framework for studies in comparative ecology and evolution.  相似文献   

7.
Leaf beetles of the genus Plateumaris inhabit wetlands across the temperate zone of the Holarctic region. To explore the phylogeographic relationships among North American, East Asian, and European members of this genus and the origin of the species endemic to Japan, we studied the molecular phylogeny of 20 of the 27 species in this genus using partial sequences of mitochondrial cytochrome oxidase subunit I (COI) and the 16S and nuclear 28S rRNA genes. The molecular phylogeny revealed that three species endemic to Europe are monophyletic and sister to the remaining 11 North American and six Asian species. Within the latter clade, North American and Asian species did not show reciprocal monophyly. Dispersal-vicariance analysis and divergence time estimation revealed that the European and North America-Asian lineages diverged during the Eocene. Moreover, subsequent differentiation occurred repeatedly between North American and Asian species, which was facilitated by three dispersal events from North America to Asia and one in the opposite direction during the late Eocene through the late Miocene. Two Japanese endemics originated from different divergence events; one differentiated from the mainland lineage after differentiation from the North American lineage, whereas the other showed a deep coalescence from the North American lineage with no present-day sister species on the East Asian mainland. This study of extant insects provides molecular phylogenetic evidence for ancient vicariance between Europe and East Asia-North America, and for more recent (but pre-Pleistocene) faunal exchanges between East Asia and North America.  相似文献   

8.
The organic chemical profiles of fossil Acer and Quercus leaf tissues are presented and correlated with those of previously described fossil Celtis, Ulmus and Zelkova and interpreted in conjunction with referable extant genera. Intrageneric comparisons among fossil and extant taxa indicate that relatively minor phytochemical differences exist suggesting that little flavonoid and steroid evolution since post-Miocene times has occurred. Biosystematic relationships between living North American and Asian genera indicate that in some cases (Quercus, Zelkova) a greater affinity exists between living Asiatic species and elements of the Succor Creek Flora. The chemical data are proposed as an independent parameter in assessing angiosperm biogeography and proposed migration patterns of the Fagaceae and Ulmaceae. The high chemical fidelity seen between some living and fossil genera preserved in ash-fall deposits is ascribed to the reaction of membrane bound lipids with various organic acids and to subsequent rapid dehydration.  相似文献   

9.
Nuclear and chloroplast DNA sequence variation was used to infer evolutionary relationships within and among members of Houstonia (Rubiaceae) and other closely related genera in North America. Sequences from the internal transcribed spacer (ITS) of the nrDNA and a cpDNA intron in the trnL gene were used to reconstruct phylogenetic relationships of 30 species of Houstonia and closely related genera. The data suggest that the North American species of Houstonia are not monophyletic, but belong to the same lineage as Stenaria. The radiation of this lineage has been accompanied by changes in the basic chromosome number of the major clades through descending aneuploidy. This loss of chromosomes was also associated with northward colonization of North America. However, other characters, such as an annual versus perennial habit, heterostylous and homostylous breeding systems, and the evolution of self fertilization, seem to be labile throughout the lineage, originating multiple times throughout the evolutionary history of the lineage.  相似文献   

10.
We used cladistic analysis of chloroplast gene sequences (ndhF and rpl16) to test biogeographic hypotheses in the woody genus Gleditsia. Previous morphological comparisons suggested the presence of two eastern Asian-eastern North American species pairs among the 13 known species, as well as other intra- and inter-continental disjunctions. Results from phylogenetic analyses, interpreted in light of the amount of sequence divergence observed, led to the following conclusions. First, there is a fundamental division of the genus into three clades, only one of which contains both Asian and North American species. Second, the widespread and polymorphic Asian species, G. japonica, is sister to the two North American species, G. triacanthos and G. aquatica, which themselves are closely related inter se, but are both polymorphic and paraphyletic. Third, the lone South American Gleditsia species, G. amorphoides, forms a clade with two eastern Asian species. Gleditsia thus appears to have only one Asian-North American disjunction and no intercontinental species pairs. Low sequence divergence between G. amorphoides and its closest Asian relatives implicates long-distance dispersal in the origin of this unusual disjunction. Sequence divergence between Asian and North American Gleditsia is much lower than between Asian and North American species of its closest relative, Gymnocladus. Estimates of Asian-North American divergence times for Gymnocladus are in general accordance with fossil data, but estimates for Gleditsia suggest recent divergences that conflict with ages of known North American Gleditsia fossils.  相似文献   

11.
Change in body size within an evolutionary lineage over time has been under investigation since the synthesis of Cope's rule, which suggested that there is a tendency for mammals to evolve larger body size. Data from the fossil record have subsequently been examined for several other taxonomic groups to determine whether they also displayed an evolutionary increase in body size. However, we are not aware of any species-level study that has investigated the evolution of body size within an extant continental group. Data acquired from the fossil record and data derived from the evolutionary relationships of extant species are not similar, with each set exhibiting both strengths and weaknesses related to inferring evolutionary patterns. Consequently, expectation that general trends exhibited in the fossil record will correspond to patterns in extant groups is not necessarily warranted. Using phylogenetic relationships of extant species, we show that five of nine families of North American freshwater fishes exhibit an evolutionary trend of decreasing body size. These trends result from the basal position of large species and the more derived position of small species within families. Such trends may be caused by the invasion of small streams and subsequent isolation and speciation. This pattern, potentially influenced by size-biased dispersal rates and the high percentage of small streams in North America, suggests a scenario that could result in the generation of the size-frequency distribution of North American freshwater fishes.  相似文献   

12.
The genus Ilex to which mate (Ilex paraguariensis) belongs, consists of more than 500 species. A wide range of metabolites including saponins and phenylpropanoids has been reported from Ilex species. However, despite the previous works on the Ilex metabolites, the metabolic similarities between species which can be used for chemotaxonomy of the species are not clear yet. In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomics was applied to the classification of 11 South American Ilex species, namely, Ilex argentina, Ilex brasiliensis, Ilex brevicuspis, Ilex dumosa var. dumosa, I. dumosa var. guaranina, Ilex integerrima, Ilex microdonta, I. paraguariensis var. paraguariensis, Ilex pseudobuxus, Ilex taubertiana, and Ilex theezans. 1H NMR combined with principal component analysis (PCA), partial least square-discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) showed a clear separation between species and resulted in four groups based on metabolomic similarities. The signal congestion of 1H NMR spectra was overcome by the implementation of two-dimensional (2D)-J-resolved and heteronuclear single quantum coherence (HSQC). From the results obtained by 1D- and 2D-NMR-based metabolomics it was concluded that species included in group A (I. paraguariensis) were metabolically characterized by a higher amount of xanthines, and phenolics including phenylpropanoids and flavonoids; group B (I. dumosa var. dumosa and I. dumosa var. guaranina) with oleanane type saponins; group C (I. brasiliensis, I. integerrima, I. pseudobuxus and I. theezans) with arbutin and dicaffeoylquinic acids, and group D (I. argentina, I. brevicuspis, I. microdonta and I. taubertiana) with the highest level of ursane-type saponins. Clear metabolomic discrimination of Ilex species and varieties in this study makes the chemotaxonomic classification of Ilex species possible.  相似文献   

13.
Aim Relationships of eastern Asian and eastern North American populations of legumes in the genus Amphicarpaea Elliot ex. Nuttall (Phaseoleae–Glycininae) and their root nodule bacteria (Bradyrhizobium Jordan) were analysed to test whether both organisms share an identical biogeographic history. Location Japan and eastern North America (New York and Illinois). Methods Sequences of three plant genes (chloroplast trnL region, nuclear ribosomal ITS, and histone H3‐D) and a segment of the bacterial ribosomal region (partial 16S rRNA and 23S rRNA genes, and the 16S rRNA–23S rRNA ITS) were used to analyse phylogenetic relationships. Results For plants, Japanese populations formed a sister group to a well‐supported clade of all North American genotypes. For nodule bacteria associated with Amphicarpaea, isolates from North America did not form a single clade relative to Asian genotypes. Japanese Bradyrhizobium isolates were closely related to particular sub‐groups of North American bacteria (lineages ‘B’ and ‘C’), with other American bacteria branching earlier. Main conclusions Plants and bacteria showed clear deviations from a pattern of parallel cladogenesis. The most basal Amphicarpaea lineage was associated with a recently‐diverged bacterial group, while one recently‐diverged plant lineage had symbionts that branched in a basal position relative to the other Amphicarpaea bacteria. When analysed with data on symbiotic compatibility from inoculation experiments, the molecular phylogenies suggested that for plants, at least one transition has occurred toward more promiscuous nodulation behaviour. Among bacteria, strains with narrow host range on Amphicarpaea appear to be ancestral to symbiotic generalists.  相似文献   

14.
Nyssa (Nyssaceae, Cornales) represents a classical example of the well‐known eastern Asian–eastern North American floristic disjunction. The genus consists of three species in eastern Asia, four species in eastern North America, and one species in Central America. Species of the genus are ecologically important trees in eastern North American and eastern Asian forests. The distribution of living species and a rich fossil record of the genus make it an excellent model for understanding the origin and evolution of the eastern Asian–eastern North American floristic disjunction. However, despite the small number of species, relationships within the genus have remained unclear and have not been elucidated using a molecular approach. Here, we integrate data from 48 nuclear genes, fossils, morphology, and ecological niche to resolve species relationships, elucidate its biogeographical history, and investigate the evolution of morphology and ecological niches, aiming at a better understanding of the well‐known EA–ENA floristic disjunction. Results showed that the Central American (CAM) Nyssa talamancana was sister to the remaining species, which were divided among three, rapidly diversified subclades. Estimated divergence times and biogeographical history suggested that Nyssa had an ancestral range in Eurasia and western North America in the late Paleocene. The rapid diversification occurred in the early Eocene, followed by multiple dispersals between and within the Erasian and North American continents. The genus experienced two major episodes of extinction in the early Oligocene and end of Neogene, respectively. The Central American N. talamancana represents a relic lineage of the boreotropical flora in the Paleocene/Eocene boundary that once diversified in western North America. The results supported the importance of both the North Atlantic land bridge and the Bering land bridge (BLB) for the Paleogene dispersals of Nyssa and the Neogene dispersals, respectively, as well as the role of Central America as refugia of the Paleogene flora. The total‐evidence‐based dated phylogeny suggested that the pattern of macroevolution of Nyssa coincided with paleoclimatic changes. We found a number of evolutionary changes in morphology (including wood anatomy and leaf traits) and ecological niches (precipitation and temperature) between the EA–ENA disjunct, supporting the ecological selection driving trait evolutions after geographic isolation. We also demonstrated challenges in phylogenomic studies of lineages with rapid diversification histories. The concatenation of gene data can lead to inference of strongly supported relationships incongruent with the species tree. However, conflicts in gene genealogies did not seem to impose a strong effect on divergence time dating in our case. Furthermore, we demonstrated that rapid diversification events may not be recovered in the divergence time dating analysis using BEAST if critical fossil constraints of the relevant nodes are not available. Our study provides an example of complex bidirectional exchanges of plants between Eurasia and North America in the Paleogene, but “out of Asia” migrations in the Neogene, to explain the present disjunct distribution of Nyssa in EA and ENA.  相似文献   

15.
The first scolopocryptopid centipede known from the fossil record is a specimen of the subfamily Scolopocryptopinae in Miocene amber from Chiapas, southern Mexico. It is described here as Scolopocryptops simojovelensis sp. nov. , displaying a distinct combination of morphological characters compared to extant congeners. Anatomical details of the fossil specimen were acquired by non‐invasive 3D synchrotron microtomography using X‐ray phase contrast. The phylogenetic position of the new species is inferred based on a combination of morphological data with sequences for six genes (nuclear 18S and 28S rRNA, nuclear protein‐coding histone H3, and mitochondrial 12S rRNA, 16S rRNA, and protein‐coding cytochrome c oxidase subunit I) for extant Scolopendromorpha. The data set includes eight extant species of Scolopocryptops and Dinocryptops from North America, east Asia, and the Pacific, rooted with novel sequence data for other blind scolopendromorphs. The molecular and combined data sets, analysed in a parsimony/direct optimization framework, identified a stable pattern of two main clades within Scolopocryptopinae. North American and Asian species of Scolopocryptops are united as a clade supported by both morphological and molecular characters. Its sister group is a Neotropical clade in which the type species of Dinocryptops is nested within a paraphyletic assemblage of Scolopocryptops species; Dinocryptops is placed in synonymy with Scolopocryptops. The strength of support for the relationships of extant taxa from the molecular data allow the Chiapas fossil to be assigned with precision, despite ambiguity in the morphological data; the fossil is resolved as sister species to the extant Laurasian clade. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 768–786.  相似文献   

16.
From the Oligocene Los Ahuehuetes locality, near Tepexi de Rodríguez, Puebla, Mexico, five new plant species are described based on their leaf architecture. The presence of brochidodromous or acrodromous venation, and secondary veins forming angular (versus rounded) arcs, are well defined characters in the fossil material that relate it to Berberidaceae. Comparison with the leaves and leaflets of extant and fossil plants allow the recognition of one Mahonia and four Berberis new species. The lack of detailed information on leaf architecture in Berberidaceae limits the evaluation of the taxonomic relationships that can be suggested between fossil and extant plants. However, from a biogeographic point of view the presence of these new fossil plants supports the hypothesis of a North American origin of the Orientalis Groups of Mahonia, to which a lineage of Berberis may be added. Furthermore, two of the new species suggest the dispersal, some time during the Tertiary, of a lineage that today forms the Australis Group of Berberis from low latitude North America to South America. The movement of the Chortis Block is proposed as an alternative to explain the dispersal of a growing list of plants from north to south in the Americas. Only through future geological and palaeobotanical work can this hypothesis be corroborated.  相似文献   

17.
Flavonoids of seven extant Platanus species and a fossil Platanus species from the Miocene Clarkia Flora of northern Idaho were compared. Sixteen flavonoids were isolated of which 15 were either wholly or partially identified. Flavonoids of Platanus are based on kaempferol and quercetin and most glycosides are linked at position 3. Because of an extremely high degree of overall chemical similarity and the presence of minor variation within some species, flavonoid data were of limited value in clarifying relationships among extant species. Flavonoid data suggest a closer chemical similarity of the fossil Platanus species to the Asiatic P. orientalis, rather than to the six investigated North American species. Morphologically, however, the fossil Platanus is very similar to P.occidentalis from eastern North America. These findings are similar to those reported in a paleobiochemical study of a fossil Liriodendron species from the same Miocene Flora.  相似文献   

18.
We fit a molecular data set, consisting of the rpL16 cpDNA marker and eight microsatellite loci, to the isolation-with-migration model as implemented in IM a to test a well-supported phylogenetic hypothesis of relationships within the Carex macrocephala species complex (Cyperaceae). The phylogenetic hypothesis suggests C. macrocephala from North America is reciprocally monophyletic and is sister to a reciprocally monophyletic clade of C. kobomugi . The North American C. macrocephala and C. kobomugi clade form a sister clade with a lineage of Asian C. macrocephala , thereby forming a paraphyletic C. macrocephala species. Not only does the phylogenetic hypothesis suggest C. macrocephala is paraphyletic, but it also suggests that the two lineages which share a partially overlapping distribution, Asian C. macrocephala and C. kobomugi , are not the most closely related. To test these relationships, we used coalescent-based population genetic models to infer divergence time for each lineage pair within the species complex. The coalescent-based models account for the stochastic forces which drive population divergence, and can account for the lineage sorting that occurs prior to lineage divergence. A drawback to phylogenetic-based phylogeographical analyses is that they do not account for stochastic lineage sorting that occurs between gene divergence and lineage divergence. By comparing the relative divergence time of the three main lineages within this group, Asian C. macrocephala , North American C. macrocephala , and C. kobomugi , we concluded that the phylogenetic hypothesis is incorrect, and the divergence between these lineages occurred during the Late Pleistocene epoch.  相似文献   

19.
A Fagus-like leaf fossil (cuticular compression) with an attached fruit, differing from any known Fagus species (fossil or extant) or other fagoid taxa, has been discovered from the Miocene Clarkia Lake deposits of northern Idaho. Because of its unusual morphology (especially the fruit) the fossil taxon has been described as a new genus and species, Pseudofagus idahoensis Smiley and Huggins. The successful previous use of paleobiochemistry in studies of fossil taxa from the Miocene Succor Creek Flora of Oregon suggested that chemical data might help clarify the taxonomic affinities of Pseudofagus. Indeed, examination of the chemistry of the fossil, Pseudofagus idahoensis, and comparison with extant Fagus species and related fagoid genera indicate that: 1) based on steroid chemistry, Pseudofagus idahonesis does belong in the Fagaceae; 2) like all extant species of Fagus, the fossil lacks the tannin component, ellagic acid, which separates it from other extant fagoid genera, and 3) its simple flavonoid pigment profile places it closest to the extant North American Fagus grandifolia or the European/Eurasian Fagus sylvatica. However, the exclusive presence of an isorhamnetin (3'-methoxyquercetin) 3-0-glycoside, onocerane, and 5α-cholestane imparts a species-specific chemical character to Pseudofagus idahoensis, which also sets it apart from extant species of Fagus. While the chemistry does not decide the taxonomic level to be accorded to the fossil, it certainly supports, along with morphology and anatomy, the distinctness of Pseudofagus and its proposed relationships within the Fagaceae.  相似文献   

20.
Abstract Pachysandra is an eastern Asian–North American disjunct genus with three species, two in eastern Asia (Pachysandra axillaris and Pachysandra terminalis) and one in eastern North America (Pachysandra procumbens). Although morphological and cytological studies suggest a close affinity of P. procumbens with P. axillaris, molecular data from nuclear and chloroplast DNA regions have provided conflicting signals. In this study, we tested previous phylogenetic hypotheses using sequences of nuclear ribosomal DNA internal transcribed spacers and chloroplast ndhF gene from multiple individuals of each of the three species. We also estimated the time of divergence between eastern Asia and eastern North America. Our results support the morphological and cytological conclusion that P. procumbens is more closely related to P. axillaris than to P. terminalis. The estimated time of divergence of P. axillaris and P. procumbens was 14.6±5.5 mya, consistent with estimates from many other eastern Asian–North American disjunct genera. The migration of Pachysandra populations from eastern Asia to North America might have occurred by way of the North Atlantic land bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号