首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 324 毫秒
1.
2.
3.
4.
Prevost, C. (University of California, Berkeley), and V. Moses. Action of phenethyl alcohol on the synthesis of macromolecules in Escherichia coli. J. Bacteriol. 91:1446-1452. 1966.-A kinetic study of the effects of various concentrations of phenethyl alcohol on the synthesis of ribonucleic acid (RNA), deoxyribonucleic acid (DNA), protein, and beta-galactosidase in Escherichia coli has confirmed that RNA synthesis, rather than DNA synthesis, is first and most affected by phenethyl alcohol. The presence of inducer did not protect beta-galactosidase synthesis from inhibition by phenethyl alcohol. Little preferential inhibition of beta-galactosidase synthesis was observed; this is in contrast to the severe catabolite repression which results from partial inhibition of total protein synthesis caused by chloramphenicol or starvation for a required amino acid. We found no evidence that messenger RNA synthesis was inhibited to a greater extent than total RNA synthesis.  相似文献   

5.
6.
7.
The rates of elongation of beta-galactosidase and its messenger ribonucleic acid (RNA) were estimated in a polyamine-deficient mutant of Escherichia coli through an analysis of the kinetics of enzyme induction. The chain growth of beta-galactosidase was calculated from the time required after the appearance of an amino terminal fragment of 60 amino acids (auto-alpha) until completed enzyme began to accumulate. The elongation rate of beta-galactosidase messenger RNA was estimated from the time after induction at which streptolydigen-resistant, enzyme-forming capacity first appeared. Upon polyamine starvation, the rate of polypeptide elongation slowed from 17 to 10 amino acids per s and the messenger RNA elongation rate decreased from 47 to 30 nucleotides per s. These reductions in polymerization rates were proportional to the decrease in cellular growth rate produced by polyamine starvation. It was concluded that, although it is quite unlikely that polyamine levels are involved in regulation of cell growth, they may be acting as cofactors in the synthesis of RNA or protein, or both.  相似文献   

8.
Lifetime of bacterial messenger ribonucleic acid   总被引:4,自引:0,他引:4  
Moses, V. (University of California, Berkeley), and M. Calvin. Lifetime of bacterial messenger ribonucleic acid. J. Bacteriol. 90:1205-1217. 1965.-When cells from a stationary culture of Escherichia coli were placed in fresh medium containing inducer for beta-galactosidase, growth, as represented by increase in turbidity and by total protein synthesis, started within 30 sec. By contrast, beta-galactosidase synthesis was greatly delayed compared with induction during exponential growth. Two other inducible enzymes (d-serine deaminase and l-tryptophanase) and one repressible enzyme (alkaline phosphatase) showed similar lags. The lags were not due to catabolite repression. They could not be reduced by pretreatment of the culture with inducer, or by supplementing the fresh medium with amino acids or nucleotides. The lag was also demonstrated by an i(-) mutant constitutive for beta-galactosidase synthesis. An inhibitor of ribonucleic acid (RNA) synthesis, 6-azauracil, preferentially inhibited beta-galactosidase synthesis compared with growth in both inducible and constitutive strains. Puromycin, an inhibitor of protein synthesis, acted as an inhibitor at additional sites during the induction of beta-galactosidase synthesis. No inhibition of the reactions proceeding during the first 20 sec of induction was observed, but puromycin seemed to prevent the accumulation of messenger RNA during the period between 20 sec and the first appearance of enzyme activity after 3 min. It is suggested that these observations, together with many reports in the literature that inducible enzyme synthesis is more sensitive than total growth to some inhibitors and adverse growth conditions, can be explained by supposing that messenger RNA for normally inducible enzymes is biologically more labile than that for some normally constitutive proteins. The possible implications of this hypothesis for the achievement of cell differentiation by genetic regulation of enzyme synthesis are briefly discussed.  相似文献   

9.
A comparative study of the effect of cortisone on the beta-galactosidase synthesis in E. coli K-12 strains with an induced (E. coli 200 PS/Iac), constitutive (E. coli ML-308), and superrepressed (E. coli 200is) type of the enzyme synthesis and in the cells of rat liver demonstrated that the hormone proper had no derepressive effect. An increase of the beta-galactosidase synthesis occurred only in the presence of specific substrate inductors. It is supposed that the principal link in the action mechanism of cortisone on the laclose operon of E. coli and the enzyme production in the cells of the rat liver is preliminary derepression of the genome areas by means of the substrate inductors.  相似文献   

10.
11.
Of the 30 carbon starvation proteins whose induction has been previously shown to be important for starvation survival of Escherichia coli, two-thirds were not induced in cya or crp deletion mutants of E. coli at the onset of carbon starvation. The rest were induced, although not necessarily with the same temporal pattern as exhibited in the wild type. The starvation proteins that were homologous to previously identified heat shock proteins belonged to the latter class and were hyperinduced in delta cya or delta crp mutants during starvation. Most of the cyclic AMP-dependent proteins were synthesized in the delta cya mutant if exogenous cyclic AMP was added at the onset of starvation. Furthermore, beta-galactosidase induction of several carbon starvation response gene fusions occurred only in a cya+ genetic background. Thus, two-thirds of the carbon starvation proteins of E. coli require cyclic AMP and its receptor protein for induction; the rest do not. The former class evidently has no role in starvation survival, since delta cya or delta crp mutants of either E. coli or Salmonella typhimurium survived starvation as well as their wild-type parents did. The latter class, therefore, is likely to have a direct role in starvation survival. This possibility is strengthened by the finding that nearly all of the cya- and crp-independent proteins were also induced during nitrogen starvation and, as shown previously, during phosphate starvation. Proteins whose synthesis is independent of cya- and crp control are referred to as Pex (postexponential).  相似文献   

12.
The flocculation of cell debris from a beta-galactosidase constitutive E. coli with chitosan as a flocculant was studied to investigate the possibility of obtaining a selective flocculation in cell disintegrates with high product recoveries. The flocculation removed 98% of the cell debris by 30 min sedimentation under gravity, which should be compared to a separation of the cell debris without flocculation of only 70% by centrifugation at 15,000 g. Optimal flocculation dosages varied between 12 and 43 mg chitosan g-1 dry weight of cells, depending on pH. The yield of the product beta-galactosidase reached 60% at optimal pH. Hydrolysis of the nucleic acids by DNAase and RNAase decreased the optimal flocculation dosages considerably. The study showed that the flocculation is somewhat selective, since chitosan also removed 85% of the nucleic acids and 50% of the proteins, which contributed to the purification of the protein solution.  相似文献   

13.
It has been shown previously that Escherichia coli accumulates endogenously synthesized trehalose under osmotic stress. We report here that E. coli contained an osmotically regulated trehalose-phosphate synthase which utilized UDP-glucose and glucose 6-phosphate as substrates. In the wild type, the synthase was induced by growth in glucose-mineral medium of elevated osmotic strength and the synthase itself was strongly stimulated by K+ and other monovalent cations. A laboratory strain which expressed the synthase at a high constitutive level was found. GalU mutants, defective in synthesis of UDP-glucose, did not accumulate trehalose. Two genes governing the synthase were identified and named otsA and otsB (osmoregulatory trehalose synthesis). They mapped near 42 min in the flbB-uvrC region. Mutants with an otsA-lacZ or otsB-lacZ operon fusion displayed osmotically inducible beta-galactosidase activity; i.e., the activity was increased fivefold by growth in medium of elevated osmotic strength. Mutants unable to synthesize trehalose (galU, otsA, and otsB) were osmotically sensitive in glucose-mineral medium. But an osmotically tolerant phenotype was restored in the presence of glycine betaine, which also partially repressed the synthesis of synthase in the wild type and of beta-galactosidase in ots-lacZ fusion mutants.  相似文献   

14.
During growth of Bdellovibrio bacteriovorus on (2-14C)uracil-labeled Escherichia coli approximately 50% of the radioactivity is incorporated by the bdellovibrio and most of the remainder is released as free nucleic acid bases. Kinetic studies showed that 50 and 30S ribosomal particles and 23 and 16S ribosomal ribonucleic acid (RNA) of E. coli are almost completely degraded by the first 90 min in a 210- to 240-min bdellovibrio developmental cycle. Synthesis of bdellovibrio ribosomal RNA was first detected after 90 min. The specific activity and the ratio of radioactivity in the bases of the synthesized bdellovibrio RNA was essentially the same as those of the substrate E. coli. The total radioactivity of the bdellovibrio deoxyribonucleic acid (DNA) exceeded that in the DNA of the substrate E. coli cell, and the ratio of radioactivity of cytosine to thymine residues differed. Intraperiplasmic growth of B. bacteriovorus in the presence of added nucleoside monophosphates (singly or in combination) significantly decreased the uptake of radioactivity from (2-14C)uracil-labeled E. coli; nucleosides or nucleic acid bases did not. It is concluded that the RNA of the substrate cell, in the form of nucleoside monophosphates, is the major or exclusive precursor of the bdellovirbrio RNA and also serves as a precursor for some of the bdellovibrio DNA.  相似文献   

15.
C A Reeve  P S Amy    A Matin 《Journal of bacteriology》1984,160(3):1041-1046
In a typical Escherichia coli K-12 culture starved for glucose, 50% of the cells lose viability in ca. 6 days (Reeve et al., J. Bacteriol. 157:758-763, 1984). Inhibition of protein synthesis by chloramphenicol resulted in a more rapid loss of viability in glucose-starved E. coli K-12 cultures. The more chloramphenicol added (i.e., the more protein synthesis was inhibited) and the earlier during starvation it was added, the greater was its effect on culture viability. Chloramphenicol was found to have the same effect on a relA strain as on an isogenic relA+ strain of E. coli. Addition of the amino acid analogs S-2-aminoethylcysteine, 7-azatryptophan, and p-fluorophenylalanine to carbon-starved cultures to induce synthesis of abnormal proteins had an effect on viability similar to that observed when 50 micrograms of chloramphenicol per ml was added at zero time for starvation. Both chloramphenicol and the amino acid analogs had delayed effects on viability, compared with their effects on synthesis of normal proteins. The need for protein synthesis did not arise from cryptic growth, since no cryptic growth of the starving cells was observed under the conditions used. From these and previous results obtained from work with peptidase-deficient mutants of E. coli K-12 and Salmonella typhimurium LT2 (Reeve et al., J. Bacteriol. 157:758-763, 1984), we concluded that a number of survival-related proteins are synthesized by E. coli K-12 cells as a response to carbon starvation. These proteins are largely synthesized during the early hours of starvation, but their continued activity is required for long-term survival.  相似文献   

16.
17.
Bacteria that accumulate RNA in the course of inhibition of protein synthesis are impaired in their ability to synthesize beta-galactosidase during subsequent recovery. By contrast, constitutive enzyme synthesis in recovering cells is normal. Even though no beta-galactosidase is made during recovery from this inhibition, a substantial quantity of beta-galactosidase mRNA (as determined by DNA-RNA hybridization) is made. The beta-galactosidase mRNA made in vivo is functional in vitro. It is capable of directing the in vitro synthesis of a portion of the NH2-terminal beta-galactosidase molecule (in the alpha portion of the molecule). However, this protein is not made in vitro. It is concluded that the beta-galactosidase mRNA that is made during recovery from protein synthesis inhibition, although apparently at least partly normally transcribed in vivo and functional in vitro cannot be translated under these conditions in vivo.  相似文献   

18.
19.
Pyridoxineless mutants of Escherichia coli B stopped incorporation of nucleosides into trichloroacetic acid-insoluble material about 40 to 60 min after pyridoxine starvation was initiated, whereas incorporation of amino acids (measured the same way) slowed but did not stop for several hours. Both these incorporations and cell density were increased most effectively by the presence of either threonine or isoleucine. Arginine, glutamate, histidine, methionine, tryptophan, and tyrosine also caused significant but less dramatic increases. Inducibility of beta-galactosidase continued beyond the point where nucleic acids appeared to stop their synthesis, suggesting that messenger ribonucleic acid synthesis continued beyond ribosomal ribonucleic acid synthesis. This inducibility was also increased by isoleucine and threonine. The overall results suggest that the threonine-isoleucine biosynthetic pathway is the most sensitive to starvation for pyridoxine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号