首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Lee SF  Shah S  Li H  Yu C  Han W  Yu G 《The Journal of biological chemistry》2002,277(47):45013-45019
Presenilin and nicastrin are essential components of the gamma-secretase complex that is required for the intramembrane proteolysis of an increasing number of membrane proteins including the amyloid-beta precursor protein (APP) and Notch. By using co-immunoprecipitation and nickel affinity pull-down approaches, we now show that mammalian APH-1 (mAPH-1), a conserved multipass membrane protein, physically associates with nicastrin and the heterodimers of the presenilin amino- and carboxyl-terminal fragments in human cell lines and in rat brain. Similar to the loss of presenilin or nicastrin, the inactivation of endogenous mAPH-1 using small interfering RNAs results in the decrease of presenilin levels, accumulation of gamma-secretase substrates (APP carboxyl-terminal fragments), and reduction of gamma-secretase products (amyloid-beta peptides and the intracellular domains of APP and Notch). These data indicate that mAPH-1 is probably a functional component of the gamma-secretase complex required for the intramembrane proteolysis of APP and Notch.  相似文献   

2.
Several type I integral membrane proteins, such as the Notch receptor or the amyloid precursor protein, are cleaved in their intramembrane domain by a gamma-secretase enzyme, which is carried within a multiprotein complex. These cleavages generate molecules that are involved in intracellular or extracellular signaling. At least four transmembrane proteins belong to the gamma-secretase complex: presenilin, nicastrin, Aph-1, and Pen-2. It is still unclear whether these proteins are the only components of the complex and whether a unique complex is involved in the different gamma-secretase cleavage events. We have set up a genetic screen based on the permanent acquisition or loss of an antibiotic resistance depending on the presence of an active gamma-secretase able to cleave a Notch-derived substrate. We selected clones deficient in gamma-secretase activity using this screen on mammalian cells after random mutagenesis. We further analyzed two of these clones and identified previously undescribed mutations in the nicastrin gene. The first mutation abolishes nicastrin production, and the second mutation, a point mutation in the ectodomain, abolishes nicastrin maturation. In both cases, gamma-secretase activity on Notch and APP is impaired.  相似文献   

3.
4.
The presenilin/gamma-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-beta protein (Abeta) has made modulation of gamma-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and beta-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of gamma-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by gamma-secretase, we determined that besides a short ectodomain, gamma-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for gamma cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent gamma-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which gamma-secretase contributes.  相似文献   

5.
Gamma-secretase facilitates the regulated intramembrane proteolysis of select type I membrane proteins that play diverse physiological roles in multiple cell types and tissue. In this study, we used biochemical approaches to examine the distribution of amyloid precursor protein (APP) and several additional gamma-secretase substrates in membrane microdomains. We report that APP C-terminal fragments (CTFs) and gamma-secretase reside in Lubrol WX detergent-insoluble membranes (DIM) of cultured cells and adult mouse brain. APP CTFs that accumulate in cells lacking gamma-secretase activity preferentially associate with DIM. Cholesterol depletion and magnetic immunoisolation studies indicate recruitment of APP CTFs into cholesterol- and sphingolipid-rich lipid rafts, and co-residence of APP CTFs, PS1, and syntaxin 6 in DIM patches derived from the trans-Golgi network. Photoaffinity cross-linking studies provided evidence for the preponderance of active gamma-secretase in lipid rafts of cultured cells and adult brain. Remarkably, unlike the case of APP, CTFs derived from Notch1, Jagged2, deleted in colorectal cancer (DCC), and N-cadherin remain largely detergent-soluble, indicative of their spatial segregation in non-raft domains. In embryonic brain, the majority of PS1 and nicastrin is present in Lubrol WX-soluble membranes, wherein the CTFs derived from APP, Notch1, DCC, and N-cadherin also reside. We suggest that gamma-secretase residence in non-raft membranes facilitates proteolysis of diverse substrates during embryonic development but that the translocation of gamma-secretase to lipid rafts in adults ensures processing of certain substrates, including APP CTFs, while limiting processing of other potential substrates.  相似文献   

6.
The p75 neurotrophin receptor (p75(NTR)), a member of the tumor necrosis factor superfamily of receptors, undergoes multiple proteolytic cleavage events. These events are initiated by an alpha-secretase-mediated release of the extracellular domain followed by a gamma-secretase-mediated intramembrane cleavage. However, the specific determinants of p75(NTR) cleavage events are unknown. Many other substrates of gamma-secretase cleavage have been identified, including Notch, amyloid precursor protein, and ErbB4, indicating there is broad substrate recognition by gamma-secretase. Using a series of deletion mutations and chimeric receptors of p75(NTR) and the related Fas receptor, we have identified domains that are essential for p75(NTR) proteolysis. The initial alpha-secretase cleavage was extracellular to the transmembrane domain. Unfortunately, deletion mutants were not capable of defining the requirements of ectodomain shedding. Although this cleavage is promiscuous with respect to amino acid sequence, its position with respect to the transmembrane domain is invariant. The generation of chimeric receptors exchanging different domains of noncleavable Fas receptor with p75(NTR), however, revealed that a discrete domain above the membrane is sufficient for efficient cleavage of p75(NTR). Mass spectrometric analysis confirmed the cleavage can occur with a truncated p75(NTR) displaying only 15 extracellular amino acids in the stalk region.  相似文献   

7.
The generation of biologically active proteins by regulated intramembrane proteolysis is a highly conserved mechanism in cell signaling. Presenilin-dependent gamma-secretase activity is responsible for the intramembrane proteolysis of selected type I membrane proteins, including beta-amyloid precursor protein (APP) and Notch. A small fraction of intracellular domains derived from both APP and Notch translocates to and appears to function in the nucleus, suggesting a generic role for gamma-secretase cleavage in nuclear signaling. Here we show that the p75 neurotrophin receptor (p75NTR) undergoes presenilin-dependent intramembrane proteolysis to yield the soluble p75-intracellular domain. The p75NTR is a multifunctional type I membrane protein that promotes neurotrophin-induced neuronal survival and differentiation by forming a heteromeric co-receptor complex with the Trk receptors. Mass spectrometric analysis revealed that gamma-secretase-mediated cleavage of p75NTR occurs at a position located in the middle of the transmembrane (TM) domain, which is reminiscent of the amyloid beta-peptide 40 (Abeta40) cleavage of APP and is topologically distinct from the major TM cleavage site of Notch 1. Size exclusion chromatography and co-immunoprecipitation analyses revealed that TrkA forms a molecular complex together with either full-length p75 or membrane-tethered C-terminal fragments. The p75-ICD was not recruited into the TrkA-containing high molecular weight complex, indicating that gamma-secretase-mediated removal of the p75 TM domain may perturb the interaction with TrkA. Independent of the possible nuclear function, our studies suggest that gamma-secretase-mediated p75NTR proteolysis plays a role in the formation/disassembly of the p75-TrkA receptor complex by regulating the availability of the p75 TM domain that is required for this interaction.  相似文献   

8.
gamma-Secretase is an unusual protease with an intramembrane catalytic site that cleaves many type I membrane proteins, including the amyloid beta-protein (Abeta) precursor (APP) and the Notch receptor. Genetic and biochemical studies have identified four membrane proteins as components of gamma-secretase: heterodimeric presenilin composed of its N- and C-terminal fragments, nicastrin, Aph-1, and Pen-2. Here we demonstrated that certain compounds, including protein kinase inhibitors and their derivatives, act directly on purified gamma-secretase to selectively block cleavage of APP- but not Notch-based substrates. Moreover, ATP activated the generation of the APP intracellular domain and Abeta, but not the generation of the Notch intracellular domain by the purified protease complex, and was a direct competitor of the APP-selective inhibitors, as were other nucleotides. In accord, purified gamma-secretase bound specifically to an ATP-linked resin. Finally, a photoactivable ATP analog specifically labeled presenilin 1-C-terminal fragments in purified gamma-secretase preparations; the labeling was blocked by ATP itself and APP-selective gamma-secretase inhibitors. We concluded that a nucleotide-binding site exists within gamma-secretase, and certain compounds that bind to this site can specifically modulate the generation of Abeta while sparing Notch. Drugs targeting the gamma-secretase nucleotide-binding site represent an attractive strategy for safely treating Alzheimer disease.  相似文献   

9.
Activation of mammalian Notch receptor by its ligands induces TNFalpha-converting enzyme-dependent ectodomain shedding, followed by intramembrane proteolysis due to presenilin (PS)-dependent gamma-secretase activity. Here, we demonstrate that a new modification, a monoubiquitination, as well as clathrin-dependent endocytosis, is required for gamma-secretase processing of a constitutively active Notch derivative, DeltaE, which mimics the TNFalpha-converting enzyme-processing product. PS interacts with this modified form of DeltaE, DeltaEu. We identified the lysine residue targeted by the monoubiquitination event and confirmed its importance for activation of Notch receptor by its ligand, Delta-like 1. We propose a new model where monoubiquitination and endocytosis of Notch are a prerequisite for its PS-dependent cleavage, and discuss its relevance for other gamma-secretase substrates.  相似文献   

10.
Several type-1 membrane proteins undergo regulated intramembrane proteolysis resulting in the generation of biologically active protein fragments. Presenilin-dependant gamma-secretase activity is central to this event and includes amyloid precursor protein (APP), Notch and ErbB4 as substrates. Here we show that the insulin-like growth factor 1 receptor (IGF-IR) undergoes regulated intramembrane proteolysis. A metalloprotease-dependant ectodomain-shedding event generates a approximately 52 kDa IGF-IR-carboxyl terminal domain (CTD). The IGF-IR-CTD is consequentially a substrate for gamma-secretase cleavage, liberating a approximately 50 kDa intracellular domain (ICD) that can be inhibited by a specific gamma-secretase inhibitor. This study suggests that the IGF-IR is a substrate for gamma-secretase and may mediate a function independent of its role as a receptor tyrosine kinase.  相似文献   

11.
The catalytic subunit of gamma-secretase is thought to be Presenilin, which is required for both the cleavage of APP and in the processing of Notch. Presenilin is found in a multisubunit complex that also contains Nicastrin. Nicastrin has been implicated in APP processing, but its role in Notch signaling remains unclear. Here we show that Drosophila Nicastrin is required for Notch signaling, and acts specifically at the S3 cleavage step. Partially processed Notch accumulates apically in nicastrin and presenilin mutant follicle cells. nicastrin and presenilin mutations also disrupt the spectrin cytoskeleton, suggesting that the gamma-secretase complex has another function in Drosophila in addition to its role in processing Notch and APP.  相似文献   

12.
Presenilin, the catalytic component of the gamma-secretase complex, type IV prepilin peptidases, and signal peptide peptidase (SPP) are the founding members of the family of intramembrane-cleaving GXGD aspartyl proteases. SPP-like (SPPL) proteases, such as SPPL2a, SPPL2b, SPPL2c, and SPPL3, also belong to the GXGD family. In contrast to gamma-secretase, for which numerous substrates have been identified, very few in vivo substrates are known for SPP and SPPLs. Here we demonstrate that Bri2 (Itm2b), a type II-oriented transmembrane protein associated with familial British and Danish dementia, undergoes regulated intramembrane proteolysis. In addition to the previously described ectodomain processing by furin and related proteases, we now describe that the Bri2 protein, similar to gamma-secretase substrates, undergoes an additional cleavage by ADAM10 in its ectodomain. This cleavage releases a soluble variant of Bri2, the BRICHOS domain, which is secreted into the extracellular space. Upon this shedding event, a membrane-bound Bri2 N-terminal fragment remains, which undergoes intramembrane proteolysis to produce an intracellular domain as well as a secreted low molecular weight C-terminal peptide. By expressing all known SPP/SPPL family members as well as their loss of function variants, we demonstrate that selectively SPPL2a and SPPL2b mediate the intramembrane cleavage, whereas neither SPP nor SPPL3 is capable of processing the Bri2 N-terminal fragment.  相似文献   

13.
Presenilin 1 (PS1) is a critical component of the gamma-secretase complex, which is involved in the cleavage of several substrates including the amyloid precursor protein (APP) and Notch1. Based on the fact that APP and Notch are processed by the same gamma-secretase, we postulated that APP and Notch compete for the enzyme activity. In this report, we examined the interactions between APP, Notch, and PS1 using the direct gamma-secretase substrates, Notch 1 Delta extracellular domain (N1DeltaEC) and APP carboxyl-terminal fragment of 99 amino acids, and measured the effects on amyloid-beta protein production and Notch signaling, respectively. Additionally, we tested the hypothesis that downstream effects on PS1 expression may coexist with the competition phenomenon. We observed significant competition between Notch and APP for gamma-secretase activity; transfection with either of two direct substrates of gamma-secretase led to a reduction in the gamma-cleaved products, Notch intracellular domain or amyloid-beta protein. In addition, however, we found that activation of the Notch signaling pathway, by either N1 Delta EC or Notch intracellular domain, induced down-regulation of PS1 gene expression. This finding suggests that Notch activation directly engages gamma-secretase and subsequently leads to diminished PS1 expression, suggesting a complex set of feedback interactions following Notch activation.  相似文献   

14.
De Strooper B 《Cell》2005,122(3):318-320
The gamma-secretase intramembrane protease cleaves many type I membrane proteins including amyloid precursor protein and Notch, generating peptide fragments that are important signaling components. In this issue of Cell, Shah et al. (2005) reveal the function of nicastrin, the largest member of the gamma-secretase complex. They show that the nicastrin extracellular domain is essential for recognition of substrate by the gamma-secretase.  相似文献   

15.
The multipass membrane protein APH-1, found in the gamma-secretase complex together with presenilin, nicastrin, and PEN-2, is essential for Notch signaling in Caenorhabditis elegans embryos and is required for intramembrane proteolysis of Notch and beta-amyloid precursor protein in mammalian and Drosophila cells. In C. elegans, a mutation of the conserved transmembrane Gly123 in APH-1 (mutant or28) leads to a notch/glp-1 loss-of-function phenotype. In this study, we show that the corresponding mutation in mammalian APH-1aL (G122D) disrupts the physical interaction of APH-1aL with hypoglycosylated immature nicastrin and the presenilin holoprotein as well as with mature nicastrin, presenilin, and PEN-2. The G122D mutation also reduced gamma-secretase activity in intramembrane proteolysis of membrane-tethered Notch. Moreover, we found that the conserved transmembrane Gly122, Gly126, and Gly130 in the fourth transmembrane region of mammalian APH-1aL are part of the membrane helix-helix interaction GXXXG motif and are essential for the stable association of APH-1aL with presenilin, nicastrin, and PEN-2. These findings suggest that APH-1 plays a GXXXG-dependent scaffolding role in both the initial assembly and subsequent maturation and maintenance of the active gamma-secretase complex.  相似文献   

16.
The presenilins and nicastrin, a type 1 transmembrane glycoprotein, form high molecular weight complexes that are involved in cleaving the beta-amyloid precursor protein (betaAPP) and Notch in their transmembrane domains. The former process (termed gamma-secretase cleavage) generates amyloid beta-peptide (Abeta), which is involved in the pathogenesis of Alzheimer's disease. The latter process (termed S3-site cleavage) generates Notch intracellular domain (NICD), which is involved in intercellular signalling. Nicastrin binds both full-length betaAPP and the substrates of gamma-secretase (C99- and C83-betaAPP fragments), and modulates the activity of gamma-secretase. Although absence of the Caenorhabditis elegans nicastrin homologue (aph-2) is known to cause an embryonic-lethal glp-1 phenotype, the role of nicastrin in this process has not been explored. Here we report that nicastrin binds to membrane-tethered forms of Notch (substrates for S3-site cleavage of Notch), and that, although mutations in the conserved 312-369 domain of nicastrin strongly modulate gamma-secretase, they only weakly modulate the S3-site cleavage of Notch. Thus, nicastrin has a similar role in processing Notch and betaAPP, but the 312-369 domain may have differential effects on these activities. In addition, we report that the Notch and betaAPP pathways do not significantly compete with each other.  相似文献   

17.
Gamma-secretase is an intramembrane-cleaving protease whose substrates include Notch and the amyloid precursor protein (APP). On the basis of initial genetic and pharmacologic data, the gamma-secretase activity responsible for cleavage of both proteins appears to be identical. However, apparent differences in the cleavage site and in sequence specificity raise questions about the degree of similarity between Notch and APP gamma-like proteolysis. In an effort to resolve this issue directly, we established an in vitro gamma-secretase activity assay that cleaves both APP- and Notch-based substrates, C100Flag and N100Flag. Analysis with specific gamma-secretase inhibitors, dominant-negative gamma-secretase preparations, and antibody co-immunoprecipitations all demonstrated identical cleavage of these substrates. Most importantly, we found that these substrates prevented cleavage of each other, indicating that the same gamma-secretase complex can cleave either protein. Finally, we provide evidence that both substrates are cut at two distinct regions in the transmembrane domain. These data resolve some of the apparent conflicts and strongly indicate that Notch and APP are proteolyzed by the same enzyme(s).  相似文献   

18.
The gamma-secretase complex is required for intramembrane cleavage of several integral membrane proteins, including the Notch receptor, where it generates an active signaling fragment. Four putative gamma-secretase components have been identified-presenilin (Psn), nicastrin (Nct), Aph-1, and Pen-2. Here, we use a stepwise coexpression approach to investigate the role of each new component in gamma-secretase assembly and activation. Coexpression of all four proteins leads to high level accumulation of mature Psn and increased proteolysis of Notch. Aph-1 and Nct may form a subcomplex that stabilizes the Psn holoprotein at an early step in gamma-secretase assembly. Subcomplex levels of Aph-1 are down-regulated by stepwise addition of Psn, suggesting that Aph-1 might not enter the mature complex. In contrast, Pen-2 accumulates proportionally with Psn, and is associated with Psn endoproteolysis during gamma-secretase assembly. These results demonstrate that Aph-1 and Pen-2 are essential cofactors for Psn, but that they play different roles in gamma-secretase assembly and activation.  相似文献   

19.
APH-1, presenilin, nicastrin, and Pen-2 are proteins with varying membrane topologies that compose the gamma-secretase complex, which is responsible for the intramembrane proteolysis of several substrates including the amyloid precursor protein. APH-1 is known to be necessary for gamma-secretase activity, but its precise function in the complex is not fully understood, and its membrane topology has not been described, although it is predicted to traverse the membrane seven times. To investigate this, we used selective permeabilization of the plasma membrane and immunofluorescence microscopy to show that the C terminus of the APH-1 resides in the cytosolic space. Insertion of N-linked glycosylation sites into each of the hydrophilic loop domains and the N terminus of APH-1 showed that the N-terminal domain as well as loops 2, 4, and 6 could be glycosylated, whereas loops 1, 3, and 5 were not. Thus, APH-1 topologically resembles a seven-transmembrane domain receptor with the N terminus and even-numbered loops facing the endoplasmic reticulum lumen, and the C terminus and odd-numbered loops reside in the cytosolic space. By using these glycosylation mutants, we provide evidence that the association between nicastrin and APH-1 may occur very soon after APH-1 synthesis and that the interaction between these two proteins may rely more heavily on the transmembrane domains of APH-1 than on the loop domains. Furthermore, we found that APH-1 can be processed by several endoproteolytic events. One of these cleavages is strongly up-regulated by co-expression of nicastrin and generates a stable C-terminal fragment that associates with nicastrin.  相似文献   

20.
Gamma-secretase is a membrane protease complex that possesses presenilin as a catalytic subunit. Presenilin generates amyloid beta peptides in the brains of Alzheimer's patients and is indispensable to Notch signaling in tissue development and renewal. Recent studies have revealed how presenilin is assembled with its cofactor proteins and acquires the gamma-secretase activity: Aph-1 and nicastrin initially form a subcomplex to bind and stabilize presenilin, and then Pen-2 confers the gamma-secretase activity and facilitates endoproteolysis of presenilin. Understanding the mechanism of gamma-secretase cleavage will help to clarify how intercellular cell signaling through transmembrane proteins is regulated by intramembrane proteolysis, and will hopefully eventually lead to a cure for Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号