首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chen S  Lai C  Wu X  Lu Y  Han D  Guo W  Fu L  Andrieu JM  Lu W 《PloS one》2011,6(8):e23177

Background

Although Chinese-origin Rhesus macaques (Ch RhMs) infected with simian immunodeficiency virus (SIV) have been used for many years to evaluate the efficacy of AIDS vaccines and therapeutics, the bio-clinical variability of such a nonhuman primate AIDS model was so far not established.

Methodology/Principal Findings

By randomizing 150 (78 male and 72 female) Ch RhMs with diverse MHC class I alleles into 3 groups (50 animals per group) challenged with intrarectal (ir) SIVmac239, intravenous (iv) SIVmac239, or iv SIVmac251, we evaluated variability in bio-clinical endpoints for 118 weeks. All SIV-challenged Ch RhMs became seropositive for SIV during 1–2 weeks. Plasma viral load (VL) peaked at weeks 1–2 and then declined to set-point levels as from week 5. The set-point VL was 30 fold higher in SIVmac239 (ir or iv)-infected than in SIVmac251 (iv)-infected animals. This difference in plasma VL increased overtime (>100 fold as from week 68). The rates of progression to AIDS or death were more rapid in SIVmac239 (ir or iv)-infected than in SIVmac251 (iv)-infected animals. No significant difference in bio-clinical endpoints was observed in animals challenged with ir or iv SIVmac239. The variability (standard deviation) in peak/set-point VL was nearly one-half lower in animals infected with SIVmac239 (ir or iv) than in those infected with SIVmac251 (iv), allowing that the same treatment-related difference can be detected with one-half fewer animals using SIVmac239 than using SIVmac251.

Conclusion/Significance

These results provide solid estimates of variability in bio-clinical endpoints needed when designing studies using the Ch RhM SIV model and contribute to the improving quality and standardization of preclinical studies.  相似文献   

2.
Six rhesus macaques were adapted to morphine dependence by injecting three doses of morphine (5 mg/kg of body weight) for a total of 20 weeks. These animals along with six control macaques were infected intravenously with mixture of simian-human immunodeficiency virus KU-1B (SHIV(KU-1B)), SHIV(89.6P), and simian immunodeficiency virus 17E-Fr. Levels of circulating CD4(+) T cells and viral loads in the plasma and the cerebrospinal fluid were monitored in these macaques for a period of 12 weeks. Both morphine and control groups showed precipitous loss of CD4(+) T cells. However this loss was more prominent in the morphine group at week 2 (P = 0.04). Again both morphine and control groups showed comparable peak plasma viral load at week 2, but the viral set points were higher in the morphine group than that in the control group. Likewise, the extent of virus replication in the cerebral compartment was more pronounced in the morphine group. These results provide a definitive evidence for a positive correlation between morphine and levels of viral replication.  相似文献   

3.
In previous experiments, animals infected with SIVmac239 containing a point mutation in the vpr and nef genes developed AIDS-like symptoms after early reversion of the vpr and nef genes. Here we show that two animals in which the nef gene but not the vpr gene had reverted in the first few months did not develop disease during a 3-year observation period even after reversion to a functional vpr gene 70 weeks postinfection. To study the influence of a stable vpr mutation on virus load and pathogenesis, a 43-bp deletion was introduced into the vpr gene of SIVmac239on, a nef-open mutant of SIVmac239. Four rhesus monkeys were inoculated with the vpr deletion mutant (SIV delta vpr), and two control animals were infected with SIVmac239on. Both control animals had persistent antigenemia, high cell-associated virus loads, and elevated neopterin levels. They had to be euthanized 20 and 30 weeks postinfection because of AIDS-related symptoms. However, all four rhesus monkeys inoculated with SIV delta vpr showed only transiently detectable antigenemia. The cell-associated virus loads were high in three of the four animals. Two animals with AIDS-like symptoms had to be euthanized 71 and 73 weeks postinfection. The two remaining monkeys infected with SIV delta vpr were still alive 105 weeks postinfection. In contrast to the SIVmac239on-infected animals, SIV delta vpr-infected animals had strong humoral immune responses and intermittent cellular immune responses to SIV antigens. Our data show that a functional vpr gene is not necessary for pathogenesis. However, vpr-deficient SIVmac239 variants might be slightly attenuated, allowing some animals to resist progression to disease for an extended period of time.  相似文献   

4.
The distribution and levels of simian immunodeficiency virus (SIV) in tissues and plasma were assessed in naturally infected African green monkeys (AGM) of the vervet subspecies (Chlorocebus pygerythrus) by limiting-dilution coculture, quantitative PCR for viral DNA and RNA, and in situ hybridization for SIV expression in tissues. A wide range of SIV RNA levels in plasma was observed among these animals (<1,000 to 800,000 copies per ml), and the levels appeared to be stable over long periods of time. The relative numbers of SIV-expressing cells in tissues of two monkeys correlated with the extent of plasma viremia. SIV expression was observed in lymphoid tissues and was not associated with immunopathology. Virus-expressing cells were observed in the lamina propria and lymphoid tissue of the gastrointestinal tract, as well as within alveolar macrophages in the lung tissue of one AGM. The range of plasma viremia in naturally infected AGM was greater than that reported in naturally infected sooty mangabeys. However, the degree of viremia in some AGM was similar to that observed during progression to AIDS in human immunodeficiency virus-infected individuals. Therefore, containment of viremia is an unlikely explanation for the lack of pathogenicity of SIVagm in its natural host species, AGM.  相似文献   

5.
A highly pathogenic simian/human immunodeficiency virus (SHIV), SHIV(DH12R), isolated from a rhesus macaque that had been treated with anti-human CD8 monoclonal antibody at the time of primary infection with the nonpathogenic, molecularly cloned SHIV(DH12), induced marked and rapid CD4(+) T cell loss in all rhesus macaques intravenously inoculated with 1.0 50% tissue culture infective dose (TCID(50)) to 4.1 x 10(5) TCID(50)s of virus. Animals inoculated with 650 TCID(50)s of SHIV(DH12R) or more experienced irreversible CD4(+) T lymphocyte depletion and developed clinical disease requiring euthanasia between weeks 12 and 23 postinfection. In contrast, the CD4(+) T-cell numbers in four of five monkeys receiving 25 TCID(50)s of SHIV(DH12R) or less stabilized at low levels, and these surviving animals produced antibodies capable of neutralizing SHIV(DH12R). In the fifth monkey, no recovery from the CD4(+) T cell decline occurred, and the animal had to be euthanized. Viral RNA levels, subsequent to the initial peak of infection but not at peak viremia, correlated with the virus inoculum size and the eventual clinical course. Both initial infection rate constants, k, and decay constants, d, were determined, but only the latter were statistically correlated to clinical outcome. The attenuating effects of reduced inoculum size were also observed when virus was inoculated by the mucosal route. Because the uncloned SHIV(DH12R) stock possessed the genetic properties of a lentivirus quasispecies, we were able to assess the evolution of the input virus swarm in animals surviving the acute infection by monitoring the emergence of neutralization escape viral variants.  相似文献   

6.
Abstract: Five hundred fifty persons who worked with nonhuman primates (NHP) or with NHP material in 13 North American research institutions were surveyed for potential occupational exposures and tested for antibodies to simian immunodeficiency virus (SIV). Needlesticks and mucocutaneous exposures were reported more frequently among persons who handled SIV-negative or SIV-status-unknown (SIV-N/U) animals (36% and 35%) or who worked with SIV-N/U material in the laboratory (18% and 17%) than among persons who handled SIV-positive NHP (SIV-P) (9% and 4%) or worked with SIV-P material (6% and 8%). The risk for needlesticks when working with both SIV-N/U and SIV-P animals and the risk for mucocutaneous exposures from SIV-N/U animals increased with the number of years working with NHP. Persons who performed invasive tasks (e.g., obtaining blood samples, performing surgery/autopsies) were more likely than others to sustain needlesticks (adjusted OR = 3.55, 95%CI = 1.40–9.02). Two (0.4%) of 550 persons had antibodies to SIV. One appears to be infected with SIV, as previously reported. These data suggest that persons who work with NHP or with NHP material are at risk for occupational exposure to potentially infectious materials including SIV. Prevention strategies are needed to reduce the risk for needlesticks and mucocutaneous exposures around all NHP, and safety guidelines should emphasize prevention options for invasive tasks performed with animals.  相似文献   

7.
The importance of the vpr gene for simian immunodeficiency virus (SIV) replication, persistence, and disease progression was examined by using the infectious pathogenic molecular clone called SIVmac239. The ATG start codon of the vpr gene was converted to TTG by site-specific mutagenesis. The constructed Vpr- mutant virus is identical with the parental SIVmac239/nef-stop virus with the exception of this one nucleotide. These viruses replicated with similar kinetics and to similar extents in rhesus monkey lymphocyte cultures and in the human CEMX174 cell line. Five rhesus monkeys were inoculated with the Vpr- variant of SIVmac239/nef-stop, and two monkeys received SIVmac239/nef-stop as controls. Both controls showed reversion of the TAA stop signal in nef by 2 weeks postinfection, as has been observed previously. Reversion of the TAA stop codon in nef also occurred in the five monkeys that received the Vpr- variant, but reversion was delayed on average to about 4 weeks. Thus, the mutation in vpr appeared to delay the rapidity with which reversion occurred in the nef gene. Reversion of the TTG sequence in vpr to ATG was observed in three of the five test animals. Reversion in vpr was first observed in these three animals 4 to 8 weeks postinfection. No vpr revertants were found over the entire 66 weeks of observation in the other two test animals that received the vpr mutant. Antibodies to vpr developed in those three animals in which reversion of vpr was documented, but antibodies to vpr were not observed in the two animals in which reversion of vpr was not detected. Antibody responses to gag and to whole virus antigens were of similar strength in all seven animals. Both control animals and two of the test animals in which vpr reverted maintained high virus loads and developed progressive disease. Low virus burden and no disease have been observed in the two animals in which vpr did not revert and in the one animal in which vpr reversion was first detected only at 8 weeks. The reversion of vpr in three of the five test animals indicates that there is significant selective pressure for functional forms of vpr in vivo. Furthermore, the results suggest that both vpr and nef are important for maximal SIV replication and persistence in vivo and for disease progression.  相似文献   

8.
Cytotoxic T-lymphocyte (CTL) responses have been implicated as playing an important role in control of human immunodeficiency virus (HIV) infection. However, it is technically difficult to demonstrate CTL responses consistently in nonhuman primate and human subjects using traditional cytotoxicity assay methods. In this study, we systematically evaluated culture conditions that may affect the proliferation and expansion of CTL effector cells and presented a sensitive method for detection of cytotoxicity responses with bulk CTL cultures. We confirmed the sensitivity and specificity of this method by demonstration of vigorous CTL responses in a simian-HIV (SHIV)-infected rhesus macaque. The expansion of epitope-specific CTL effector cells was also measured quantitatively by CTL epitope-major histocompatibility complex tetramer complex staining. In addition, two new T-cell determinants in the SIV gag region are identified. Last, we showed the utility of this method for studying CTL responses in chimpanzee and human subjects.  相似文献   

9.
One rhesus macaque displayed severe encephalomyelitis and another displayed severe enterocolitis following infection with molecularly cloned simian immunodeficiency virus (SIV) strain SIVmac239. Little or no free anti-SIV antibody developed in these two macaques, and they died relatively quickly (4 to 6 months) after infection. Manifestation of the tissue-specific disease in these macaques was associated with the emergence of variants with high replicative capacity for macrophages and primary infection of tissue macrophages. The nature of sequence variation in the central region (vif, vpr, and vpx), the env gene, and the nef long terminal repeat (LTR) region in brain, colon, and other tissues was examined to see whether specific genetic changes were associated with SIV replication in brain or gut. Sequence analysis revealed strong conservation of the intergenic central region, nef, and the LTR. However, analysis of env sequences in these two macaques and one other revealed significant, interesting patterns of sequence variation. (i) Changes in env that were found previously to contribute to the replicative ability of SIVmac for macrophages in culture were present in the tissues of these animals. (ii) The greatest variability was located in the regions between V1 and V2 and from "V3" through C3 in gp120, which are different in location from the variable regions observed previously in animals with strong antibody responses and long-term persistent infection. (iii) The predominant sequence change of D-->N at position 385 in C3 is most surprising, since this change in both SIV and human immunodeficiency virus type 1 has been associated with dramatically diminished affinity for CD4 and replication in vitro. (iv) The nature of sequence changes at some positions (146, 178, 345, 385, and "V3") suggests that viral replication in brain and gut may be facilitated by specific sequence changes in env in addition to those that impart a general ability to replicate well in macrophages. These results demonstrate that complex selective pressures, including immune responses and varying cell and tissue specificity, can influence the nature of sequence changes in env.  相似文献   

10.

Background

The non-pathogenic course of SIV infection in its natural host is characterized by robust viral replication in the absence of chronic immune activation and T cell proliferation. In contrast, acutely lethal enteropathic SIVsmm strain PBj induces a strong immune activation and causes a severe acute and lethal disease in pig-tailed macaques after cross-species transmission. One important pathogenicity factor of the PBj virus is the PBj-Nef protein, which contains a conserved diacidic motif and, unusually, an immunoreceptor tyrosine-based activation motif (ITAM).

Results

Mutation of the diacidic motif in the Nef protein of the SIVsmmPBj abolishes the acute phenotype of this virus. In vitro, wild-type and mutant PBj (PBj-Nef202/203GG) viruses replicated to similar levels in macaque PBMCs, but PBj-Nef202/203GG no longer triggers ERK mitogen-activated protein (MAP) kinase pathway including an alteration of a Nef-associated Raf-1/ERK-2 multiprotein signaling complex. Moreover, stimulation of IL-2 and down-modulation of CD4 and CD28 were impaired in the mutant virus. Pig-tailed macaques infected with PBj-Nef202/203GG did not show enteropathic complications and lethality as observed with wild-type PBj virus, despite efficient replication of both viruses in vivo. Furthermore, PBj-Nef202/203GG infected animals revealed reduced T-cell activation in periphery lymphoid organs and no detectable induction of IL-2 and IL-6.

Conclusions

In sum, we report here that mutation of the diacidic motif in the PBj-Nef protein abolishes disease progression in pig-tailed macaques despite efficient replication. These data suggest that alterations in the ability of a lentivirus to promote T cell activation and proliferation can have a dramatic impact on its pathogenic potential.  相似文献   

11.
A reliable method for the quantitation of plasma viremia in nonhuman primates infected with simian immunodeficiency virus (SIV) and related viruses is described. This method is based on an established quantitative-competitive PCR format and includes a truncated control for internal assay calibration. Optimization of assay conditions has significantly improved amplification specificity, and interassay variability is comparable to that of commercially available assays for human immunodeficiency virus (HIV) quantitation. This procedure was used to monitor viral loads in a group of Macaca mulatta animals that were infected with SIVsmE660 for over 2 years. Highly diverse profiles of plasma viremia were observed among animals, and high viral loads were associated with more rapid disease progression. Spearman rank correlation analyses were done for survival versus three parameters of viral load: plasma viremia, p27 core antigen, and frequency of infected peripheral blood mononuclear cells. Plasma viremia had the strongest overall correlation and was significantly (P < 0.05 to P < 0.01) associated with survival at 10 of the 13 time points examined. Plasma viremia did not correlate with survival during the primary viremia phase; however, the strength of this correlation increased with time postinfection and, remarkably, viremia levels as early as week 6 postinfection were highly predictive (P < 0.01) of relative survival. These findings are consistent with the available clinical data concerning viral load correlates early in HIV infection, and they provide further support for the view that disease outcome in lentiviral infection may be largely determined by events that occur shortly after infection.  相似文献   

12.
The CTL response was characterized during primary SIV/macaque (SIVmac) infection of rhesus monkeys to assess its role in containing early viral replication using both an epitope-specific functional and an MHC class I/peptide tetramer-binding assay. The rapid expansion of a single dominant viral epitope-specific CTL population to 1.3-8.3% of circulating CD8+ peripheral blood and 0. 3-1.3% of lymph node CD8+ T cells was observed, peaking at day 13 following infection. A subsequent decrease in number of these cells was then demonstrated. Interestingly, the percent of tetramer-binding CD8+ T cells detected in the lymph nodes of all evaluated animals was smaller than the percent detected in PBL. These epitope-specific CD8+ T cells expressed cell surface molecules associated with memory and activation. Early clearance of SIVmac occurred coincident with the emergence of the CTL response, suggesting that CTL may be important in containing virus replication. A higher percent of annexin V-binding cells was detected in the tetramer+ CD8+ T cells (range, from 33% to 75%) than in the remaining CD8+ T cells (range, from 3.3% to 15%) at the time of maximum CTL expansion in all evaluated animals. This finding indicates that the decrease of CTL occurred as a result of the death of these cells rather than their anatomic redistribution. These studies provide strong evidence for the importance of CTL in containing AIDS virus replication.  相似文献   

13.
We studied the capacity of active immunization of rhesus monkeys with HIV-1 envelope protein (Env) to induce primary virus cross-reactive neutralizing antibodies to prevent infection following intravenous challenge with simian-human immunodeficiency virus (SHIV). Monkeys were immunized with the human immunodeficiency type 1 (HIV-1) strain R2 Env. Initially, the Env was expressed in vivo by an alphavirus replicon particle system, and then it was administered as soluble oligomeric gp140. Concurrently, groups of monkeys received expression vectors that encoded either simian immunodeficiency virus (SIV) gag/pol genes or no SIV genes in vivo to test the additional protective benefit of concurrent induction of virus-specific cell-mediated immune (CMI) responses. Groups of control monkeys received either the gag/pol regimen or sham immunizations. The antibodies induced by the Env immunization regimen neutralized diverse primary HIV-1 strains. Similarly, potent CMI responses were induced by the gag/pol regimen, as measured by gamma interferon enzyme-linked immunospot assays. Differences in the responses among groups of monkeys strongly suggested that there was interference between the Env and gag/pol immunization regimens. Complete protection of some of the monkeys against infection after intravenous challenge with the partially pathogenic SHIV(DH12R (Clone 7)) was associated independently with both neutralizing antibody and CMI responses. Protection was associated with SHIV(DH12 (Clone 7)) serum neutralizing antibody titers of > or =1:80 or with cellular immune responses corresponding to >2,000 spot forming cells per 10(6) peripheral blood mononuclear cells. Immunization was also associated with a reduction in the magnitude and duration of virus load. Induction of cross-reactive, primary HIV-1-neutralizing antibodies is feasible and, when potent, may result in complete protection against infection with a heterologous challenge virus strain.  相似文献   

14.
Although gamma interferon (IFN-gamma) is a key mediator of antiviral defenses, it is also a mediator of inflammation. As inflammation can drive lentiviral replication, we sought to determine the relationship between IFN-gamma-related host immune responses and challenge virus replication in lymphoid tissues of simian-human immunodeficiency virus 89.6 (SHIV89.6)-vaccinated and unvaccinated rhesus macaques 6 months after challenge with simian immunodeficiency virus SIVmac239. Vaccinated-protected monkeys had low tissue viral RNA (vRNA) levels, vaccinated-unprotected animals had moderate tissue vRNA levels, and unvaccinated animals had high tissue vRNA levels. The long-term challenge outcome in vaccinated monkeys was correlated with the relative balance between SIV-specific IFN-gamma T-cell responses and nonspecific IFN-gamma-driven inflammation. Vaccinated-protected monkeys had slightly increased tissue IFN-gamma mRNA levels and a high frequency of IFN-gamma-secreting T cells responding to in vitro SIVgag peptide stimulation; thus, it is likely that they could develop effective anti-SIV cytotoxic T lymphocytes in vivo. In contrast, both high tissue IFN-gamma mRNA levels and strong in vitro SIV-specific IFN-gamma T-cell responses were detected in lymphoid tissues of vaccinated-unprotected monkeys. Unvaccinated monkeys had increased tissue IFN-gamma mRNA levels but weak in vitro anti-SIV IFN-gamma T-cell responses. In addition, in lymphoid tissues of vaccinated-unprotected and unvaccinated monkeys, the increased IFN-gamma mRNA levels were associated with increased Mig/CXCL9, IP-10/CXCL10, and CXCR3 mRNA levels, suggesting that increased Mig/CXCL9 and IP-10/CXCL10 expression resulted in recruitment of CXCR3(+) activated T cells. Thus, IFN-gamma-driven inflammation promotes SIV replication in vaccinated-unprotected and unvaccinated monkeys. Unlike all unvaccinated monkeys, most monkeys vaccinated with SHIV89.6 did not develop IFN-gamma-driven inflammation, but they did develop effective antiviral CD8(+)-T-cell responses.  相似文献   

15.
The simian immunodeficiency virus of macaques (SIVmac) is a lentivirus which induces an AIDS-like disease in rhesus monkeys. We have explored the virus-specific cellular immune response in SIVmac-infected rhesus monkeys. Con A-activated, IL-2 expanded PBL of some SIVmac-infected rhesus monkeys lyse autologous B lymphoblastoid cell lines infected with a recombinant vaccinia virus that carries the SIVmac gag gene. This lysis is mediated by CD8+ lymphocytes and is MHC class I restricted. Moreover, these effector lymphocytes do not express the NK cell-associated molecules NKH1 or CD16. These cells are, therefore, CTL. In a limited prospective study of SIVmac-infected rhesus monkeys, the presence of the SIVmac gag-specific CTL activity in PBL correlated with both a reduced efficiency in isolating SIVmac from PBL of these monkeys and their extended survival. This method for assessing SIVmac gag-specific cellular immunity in rhesus monkeys will be important not only in investigating the immunopathogenesis of SIVmac-induced disease, but also in evaluating the capacity of candidate AIDS vaccines to elicit a cell-mediated immune response in this animal model.  相似文献   

16.
17.
Human cytomegalovirus (HCMV) possesses low pathogenic potential in an immunocompetent host. In the immunosuppressed host, however, a wide spectrum of infection outcomes, ranging from asymptomatic to life threatening, can follow either primary or nonprimary infection. The variability in the manifestations of HCMV infection in immunosuppressed individuals implies that there is a threshold of host antiviral immunity that can effectively limit disease potential. We used a nonhuman primate model of CMV infection to assess the relationship between CMV disease and the levels of developing anti-CMV immunity. Naive rhesus macaques were inoculated with rhesus cytomegalovirus (RhCMV) followed 2 or 11 weeks later by inoculation with pathogenic simian immunodeficiency virus SIVmac239. Two of four monkeys inoculated with SIV at 2 weeks after inoculation with RhCMV died within 11 weeks with simian AIDS (SAIDS), including activated RhCMV infection. Neither animal had detectable anti-SIV antibodies. The other two animals died 17 and 27 weeks after SIV inoculation with either SAIDS or early lymphoid depletion, although no histological evidence of activated RhCMV was observed. Both had weak anti-SIV antibody titers. RhCMV antibody responses for this group of monkeys were significantly below those of control animals inoculated with only RhCMV. In addition, all animals of this group had persistent RhCMV DNA in plasma and high copy numbers of RhCMV in tissues. In contrast, animals that were inoculated with SIV at 11 weeks after RhCMV infection rarely exhibited RhCMV DNA in plasma, had low copy numbers of RhCMV DNA in most tissues, and did not develop early onset of SAIDS or activated RhCMV. SIV antibody titers were mostly robust and sustained in these monkeys. SIV inoculation blunted further development of RhCMV humoral responses, unlike the normal pattern of development in control monkeys following RhCMV inoculation. Anti-RhCMV immunoglobulin G levels and avidity were slightly below control values, but levels maintained were higher than those observed following SIV infection at 2 weeks after RhCMV inoculation. These findings demonstrate that SIV produces long-lasting insults to the humoral immune system beginning very early after SIV infection. The results also indicate that anti-RhCMV immune development at 11 weeks after infection was sufficient to protect the host from acute RhCMV sequelae following SIV infection, in contrast to the lack of protection afforded by only 2 weeks of immune response to RhCMV. As previously observed, monkeys that were not able to mount a significant immune response to SIV were the most susceptible to SAIDS, including activated RhCMV infection. Rapid development of SAIDS in animals inoculated with SIV 2 weeks after RhCMV inoculation suggests that RhCMV can augment SIV pathogenesis, particularly during primary infection by both viruses.  相似文献   

18.
ABSTRACT: BACKGROUND: An effective AIDS vaccine remains one of the highest priorities in HIV-research. Our recent study showed that vaccination of rhesus macaques with recombinant simian varicella virus (rSVV) vector -- simian immunodeficiency virus (SIV) envelope and gag genes, induced neutralizing antibodies and cellular immune responses to SIV and also significantly reduced plasma viral loads following intravenous pathogenic challenge with SIVMAC251/CX1. FINDINGS: The purpose of this study was to define cellular immunological correlates of protection in rSVV-SIV vaccinated and SIV challenged animals. Immunofluorescent staining and multifunctional assessment of SIV-specific T-cell responses were evaluated in both Experimental and Control vaccinated animal groups. Significant increases in the proliferating CD4+ T-cell population and polyfunctional T-cell responses were observed in all Experimental-vaccinated animals compared with the Control-vaccinated animals. CONCLUSIONS: Increased CD4+ T-cell proliferation was significantly and inversely correlated with plasma viral load. Increased SIV-specific polyfunctional cytokine responses and increased proliferation of CD4+ T-cell may be crucial to control plasma viral loads in vaccinated and SIVMAC251/CX1 challenged macaques.  相似文献   

19.
Newborn rhesus macaques were infected with two chimeric simian-human immunodeficiency virus (SHIV) strains which contain unique human immunodeficiency virus type 1 (HIV-1) env genes and exhibit distinct phenotypes. Infection with either the CCR5-specific SHIV(SF162P3) or the CXCR4-utilizing SHIV(SF33A) resulted in clinical manifestations consistent with simian AIDS. Most prominent in this study was the detection of severe thymic involution in all SHIV(SF33A)-infected infants, which is very similar to HIV-1-induced thymic dysfunction in children who exhibit a rapid pattern of disease progression. In contrast, SHIV(SF162P3) induced only a minor disruption in thymic morphology. Consistent with the distribution of the coreceptors CXCR4 and CCR5 within the thymus, the expression of SHIV(SF162P3) was restricted to the thymic medulla, whereas SHIV(SF33A) was preferentially detected in the cortex. This dichotomy of tissue tropism is similar to the differential tropism of HIV-1 isolates observed in the reconstituted human thymus in SCID-hu mice. Accordingly, our results show that the SHIV-monkey model can be used for the molecular dissection of cell and tissue tropisms controlled by the HIV-1 env gene and for the analysis of mechanisms of viral immunopathogenesis in AIDS. Furthermore, these findings could help explain the rapid progression of disease observed in some HIV-1-infected children.  相似文献   

20.
Most rhesus macaques infected with simian immunodeficiency virus SIVmac239 with nef deleted (either Delta nef or Delta nef Delta vpr Delta US [Delta 3]) control viral replication and do not progress to AIDS. Some monkeys, however, develop moderate viral load set points and progress to AIDS. When simian immunodeficiency viruses (SIVs) recovered from two such animals (one Delta nef and the other Delta 3) were serially passaged in rhesus monkeys, the SIVs derived from both lineages were found to consistently induce moderate viral loads and disease progression. Analysis of viral sequences in the serially passaged derivatives revealed interesting changes in three regions: (i) an unusually high number of predicted amino acid changes (12 to 14) in the cytoplasmic domain of gp41, most of which were in regions that are usually conserved; these changes were observed in both lineages; (ii) an extreme shortening of nef sequences in the region of overlap with U3; these changes were observed in both lineages; and (iii) duplication of the NF-kappa B binding site in one lineage only. Neither the polymorphic gp41 changes alone nor the U3 deletion alone appeared to be responsible for increased replicative capacity because recombinant SIVmac239 Delta nef, engineered to contain either of these changes, induced moderate viral loads in only one of six monkeys. However, five of six monkeys infected with recombinant SIVmac239 Delta nef containing both TM and U3 changes did develop persisting moderate viral loads. These genetic changes did not increase lymphoid cell-activating properties in the monkey interleukin-2-dependent T-cell line 221, but the gp41 changes did increase the fusogenic activity of the SIV envelope two- to threefold. These results delineate sequence changes in SIV that can compensate for the loss of the nef gene to partially restore replicative and pathogenic potential in rhesus monkeys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号