首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Loading-induced interstitial fluid flow in the microporosities of bone is critical for osteocyte mechanotransduction and for the maintenance of tissue health, enhancing convective transport in the lacunar-canalicular system. In recent studies, our group has reported alterations of bone’s vascular porosity and lacunar-canalicular system microarchitecture in a rat model of postmenopausal osteoporosis. In this work, poroelastic finite element analysis was used to investigate whether these microstructural changes can affect interstitial fluid flow around osteocytes. Animal-specific finite element models were developed combining micro-CT reconstructions of bone microstructure and measures of the poroelastic material properties. These models were used to quantify and compare loading-induced fluid flow in the lacunar-canalicular system of ovariectomized and sham-operated rats. A parametric analysis was also used to quantify the influence of the lacunar-canalicular permeability and vascular porosity on the fluid velocity magnitude. Results show that mechanically-induced interstitial fluid velocity can be significantly reduced in the lacunar-canalicular system of ovariectomized rats. Interestingly, the vascular porosity is shown to have a major influence on interstitial fluid flow, while the lacunar-canalicular permeability influence is limited when larger than 10-20m2. Altogether our results suggest that microstructural changes associated with the osteoporotic condition can negatively affect interstitial fluid flow around osteocytes in the lacunar-canalicular system of cortical bone. This fluid flow reduction could impair mechanosensation of the osteocytic network, possibly playing a role in the initiation and progression of age-related bone loss and postmenopausal osteoporosis.  相似文献   

2.
An analytical model for the determination of the permeability in the lacunar-canalicular porosity of bone using cyclic loading is described in this contribution. The objective of the analysis presented is to relate the lacunar-canalicular permeability to a particular phase angle that is measurable when the bone is subjected to infinitesimal cyclic strain. The phase angle of interest is the lag angle between the applied strain and the resultant stress. Cyclic strain causes the interstitial fluid to move. This movement is essential for the viability of osteocytes and is believed to play a major role in the bone mechanotransduction mechanism. However, certain bone fluid flow properties, notably the permeability of the lacunar-canalicular porosity, are still not accurately determined. In this paper, formulas for the phase angle as a function of permeability for infinitesimal cyclic strain are presented and mathematical expressions for the storage modulus, loss modulus, and loss tangent are obtained. An accurate determination of the PLC permeability will improve our ability to understand mechanotransduction and mechanosensory mechanisms, which are fundamental to the understanding of how to treat osteoporosis, how to cope with microgravity in long-term manned space flights, and how to increase the longevity of prostheses that are implanted in bone tissue.  相似文献   

3.
The underlying mechanisms by which bone cells respond to mechanical stimuli or how mechanical loads act on osteocytes housed in lacunae in bone are not well understood. In this study, a multilevel finite element (FE) approach is applied to predict local cell deformations in bone tissue. The local structure of the matrix dictates the local mechanical environment of an osteocyte. Cell deformations are predicted from detailed linear FE analysis of the microstructure, consisting of an arrangement of cells embedded in bone matrix material. This work has related the loads applied to a whole femur during the stance phase of the gait cycle to the strain of a single lacuna and of canaliculi. The predicted bone matrix strains around osteocyte lacunae and canaliculi were nonuniform and differed significantly from the macroscopically measured strains. Peak stresses and strains in the walls of the lacuna were up to six times those in the bulk extracellular matrix. Significant strain concentrations were observed at sites where the process meets the cell body.  相似文献   

4.
The study was carried out on dinosaur bones nearly 80 million years old. Samples for examination were prepared with specially elaborated methods. The light and transmission electron microscopic images permitted two kinds of bone lacunae and two types of paralacunar canalicular endings to be distinguished. The lacunae of the first kind were characterized by their elongated shape, their length exceeding their width several times, their dimensions being 31.2/9.4 microns. The lacunae of the other kind were not so long, their mean measurements amounting to 21.32/9.7 microns. Among the paralacunar canalicular endings those of small diameter were more numerous. The canaliculi of wider, funnel-shaped endings amounted to two or three, they were usually localized in the polar part of the lacuna, and were defined as the axial canaliculi. These were canaliculi of a large diameter. The canalicular wall was constructed of collagen fibres. The same fibres were found in the lacunar wall. Also a relationship between the structure of the lacunar wall and the localization of an osteocyte in the lacuna was analysed in the light and electron microscopes. In regard to the structure of the bone lacuna and the localization of an osteocyte in it, zones A and B were distinguished. Zone A had a characteristic loose and disorderly system of collagen fibres building the lacunar wall. The fibres in this area were by nature open to view. Besides, this region of the lacunar wall revealed specific terraced hollows. Zone B was distinguished by a compact system of parallelly arranged collagen fibres, which formed characteristic ridges in the lacunar wall. The localization of the osteocyte in the lacuna was irregular, the pericellular space around it being of variable width. This space was shown to contain mucopolysaccharides. The images obtained from dinosaur bone were compared with those already known for modern bone. These comparisons permitted it to be ascertained that zone A corresponds to a spot in the lacuna in which the osteocyte exhibits a decreased activity. Zone B is the area of the actual direction of the osteocyte's activity aiming at the shaping of the wall of its lacuna. It can be supposed that the widened endings of the paralacunar canaliculi perform more important functions in conveyance, this being evident from comparisons of analogous areas in modern bone.  相似文献   

5.
When bone is mechanically loaded, bone fluid flow induces shear stresses on bone cells that have been proposed to be involved in bone's mechanosensory system. To investigate bone fluid flow and strain-generated potentials, several theoretical models have been proposed to mimic oscillatory four-point bending experiments performed on thin bone specimens. While these previous models assume that the bone fluid relaxes across the specimen thickness, we hypothesize that the bone fluid relaxes primarily through the vascular porosity (osteonal canals) instead and develop a new poroelastic model that integrates the microstructural details of the lacunar-canalicular porosity, osteonal canals, and the osteonal cement lines. Local fluid pressure profiles are obtained from the model, and we find two different fluid relaxation behaviors in the bone specimen, depending on its microstructure: one associated with the connected osteonal canal system, through which bone fluid relaxes to the nearby osteonal canals; and one associated with the thickness of a homogeneous porous bone specimen (approximately 1 mm in our model), through which bone fluid relaxes between the external surfaces of the bone specimen at relatively lower loading frequencies. Our results suggest that in osteonal bone specimens the fluid pressure response to cyclic loading is not sensitive to the permeability of the osteonal cement lines, while it is sensitive to the applied loading frequency. Our results also reveal that the fluid pressure gradients near the osteonal canals (and thus the fluid shear stresses acting on the nearby osteocytes) are significantly amplified at higher loading frequencies.  相似文献   

6.
Petrov N  Pollack SR 《Biorheology》2003,40(1-3):347-353
Marker migration experiments suggest that cyclic mechanical loading of cortical bone in vivo increases marker penetration into bone. Is this a result of stress induced fluid flow or of stress stimulation of active transport processes? Active lacunar-canalicular transport of nutrients was suggested by Ham in 1979 on the basis of the presence of actin filaments in osteocyte processes and their suspected role in cell motility. In addition, Tanaka in 1984 observed active transport of microperoxidase in bone and Tanaka-Kamioka et al. in 1998 observed experimentally that osteocyte processes are able to actively change their form. In this study we performed parametric and comparative analyses of the transport efficiencies of diffusion and stress generated fluid flow of (glucose) nutrients in lacunar-canalicular systems in cortical bone. The result obtained is that neither diffusion nor stress induced fluid flow is capable of sustaining osteocyte viability. It is possible that cyclic stress stimulates an active nutrient transport mechanism to supplement stress flows.  相似文献   

7.

Osteocytes are vital for regulating bone remodeling by sensing the flow-induced mechanical stimuli applied to their cell processes. In this mechanosensing mechanism, tethering elements (TEs) connecting the osteocyte process with the canalicular wall potentially amplify the strain on the osteocyte processes. The ultrastructure of the osteocyte processes and canaliculi can be visualized at a nanometer scale using high-resolution imaging via ultra-high voltage electron microscopy (UHVEM). Moreover, the irregular shapes of the osteocyte processes and the canaliculi, including the TEs in the canalicular space, should considerably influence the mechanical stimuli applied to the osteocytes. This study aims to characterize the roles of the ultrastructure of osteocyte processes and canaliculi in the mechanism of osteocyte mechanosensing. Thus, we constructed a high-resolution image-based model of an osteocyte process and a canaliculus using UHVEM tomography and investigated the distribution and magnitude of flow-induced local strain on the osteocyte process by performing fluid–structure interaction simulation. The analysis results reveal that local strain concentration in the osteocyte process was induced by a small number of TEs with high tension, which were inclined depending on the irregular shapes of osteocyte processes and canaliculi. Therefore, this study could provide meaningful insights into the effect of ultrastructure of osteocyte processes and canaliculi on the osteocyte mechanosensing mechanism.

  相似文献   

8.
The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling.  相似文献   

9.
A parametric finite element model of an osteocyte lacuna was developed to predict the microstructural response of the lacuna to imposed macroscopic strains. The model is composed of an osteocyte lacuna, a region of perilacunar tissue, canaliculi, and the surrounding bone tissue. A total of 45 different simulations were modeled with varying canalicular diameters, perilacunar tissue material moduli, and perilacunar tissue thicknesses. Maximum strain increased with a decrease in perilacunar tissue modulus and decreased with an increase in perilacunar tissue modulus, regardless of the thickness of the perilacunar region. An increase in the predicted maximum strain was observed with an increase in canalicular diameter from 0.362 to 0.421 microm. In response to the macroscopic application of strain, canalicular diameters increased 0.8% to over 1.0% depending on the perilacunar tissue modulus. Strain magnification factors of over 3 were predicted. However, varying the size of the perilacunar tissue region had no effect on the predicted perilacunar tissue strain. These results indicate that the application of average macroscopic strains similar to strain levels measured in vivo can result in significantly greater perilacunar tissue strains and canaliculi deformations. A decrease in the perilacunar tissue modulus amplifies the perilacunar tissue strain and canaliculi deformation while an increase in the local perilacunar tissue modulus attenuates this effect.  相似文献   

10.
Osteocytes, cells embedded within the bone mineral matrix, inform on key aspects of vertebrate biology. In particular, a relationship between volumes of the osteocytes and bone growth and/or genome size has been proposed for several tetrapod lineages. However, the variation in osteocyte volume across different scales is poorly characterized and mostly relies on incomplete, two‐dimensional information. In this study, we characterize the variation of osteocyte volumes in ray‐finned fishes (Actinopterygii), a clade including more than half of modern vertebrate species in which osteocyte biology is poorly known. We use X‐ray synchrotron micro‐computed tomography (SRµCT) to achieve a three‐dimensional visualization of osteocyte lacunae and direct measurement of their size (volumes). Our specimen sample is designed to characterize variation in osteocyte lacuna morphology at three scales: within a bone, among the bones of one individual and among species. At the intra‐bone scale, we find that osteocyte lacunae vary noticeably in size between zones of organized and woven bone (being up to six times larger in woven bone), and across cyclical bone deposition. This is probably explained by differences in bone deposition rate, with larger osteocyte lacunae contained in bone that deposits faster. Osteocyte lacuna volumes vary 3.5‐fold among the bones of an individual, and this cannot readily be explained by variation in bone growth rate or other currently observable factors. Finally, we find that genome size provides the best explanation of variation in osteocyte lacuna volume among species: actinopterygian taxa with larger genomes (polyploid taxa in particular) have larger osteocyte lacunae (with a ninefold variation in median osteocyte volume being measured). Our findings corroborate previous two‐dimensional studies in tetrapods that also observed similar patterns of intra‐individual variation and found a correlation with genome size. This opens new perspectives for further studies on bone evolution, physiology and palaeogenomics in actinopterygians, and vertebrates as a whole.  相似文献   

11.
The maximum pore fluid pressures due to uniaxial compression are determined for both the vascular porosity (Haversian and Volkmann's canals) and the lacunar-canalicular porosity of live cortical bone. It is estimated that the peak pore water pressure will be 19 percent of the applied axial stress in the vascular porosity and 12 percent of the applied axial stress in the lacunar-canalicular porosity for an impulsive step loading. However, the estimated relaxation time for the vascular porosity (1.36 microseconds) is three orders of magnitude faster than that estimated for the lacunar-canalicular porosity (4.9 ms). Thus, under physiological loading, which has a stress rise time generally larger than 1 ms, pressures higher than the vascular pressure cannot be sustained in the vascular porosity due to the swift pressure relaxation in this porosity (unless the fluid drainage through the boundary is obstructed). The model also predicts a slight hydraulic stiffening of the bulk modulus due to longer draining time of the lacunar-canalicular porosity. The undrained bulk modulus is 6 percent higher than the drained bulk modulus in this case.  相似文献   

12.
Trabecula, an anatomical unit of the cancellous bone, is a porous material that consists of a lamellar bone matrix and interstitial fluid in a lacuno-canalicular porosity. The flow of interstitial fluid caused by deformation of the bone matrix is believed to initiate a mechanical response in osteocytes for bone remodeling. In order to clarify the effect of the lamellar structure of the bone matrix—i.e., variations in material properties—on the fluid flow stimuli to osteocytes embedded in trabeculae, we investigated the mechanical behavior of an individual trabecula subjected to cyclic loading based on poroelasticity. We focused on variations in the trabecular permeability and developed an analytical solution containing both transient and steady-state responses for interstitial fluid pressure in a single trabecular model represented by a multilayered two-dimensional poroelastic slab. Based on the obtained solution, we calculated the pressure and seepage velocity of the interstitial fluid in lacuno-canalicular porosity, within the single trabecula, under various permeability distributions. Poroelastic analysis showed that a heterogeneous distribution of permeability produces remarkable variations in the fluid pressure and seepage velocity in the cross section of the individual trabecula, and suggests that fluid flow stimuli to osteocytes are mostly governed by the value of permeability in the neighborhood of the trabecular surfaces if there is no difference in the average permeability in a single trabecula.  相似文献   

13.
R Pawlicki 《Acta anatomica》1975,91(2):292-304
Light- and electron-microscopic studies were carried out on the bone canaliculi and their endings in the wall fo the osteocyte lacuna. Two types of canalicular endings were distinguished in the lacuna wall. Those of the first type, fairly numerous, are the endings of small diameter, which do not branch off in the immediate proximity of the lacuna. The other type, occurring in twos or threes, are large in diameter and branch off in the close vicinity of the lacuna, invariably possessing two or three processes which run up to the point of branching of the canaliculus. The images obtained made it possible to demonstrate that the collagen fibrils in both types of endings in the lacuna wall are, in principle, arranged in a similar manner. Nonethless, the type of end formation found where the fibrils run along the axis of the lacuna differs from that for the fibrils in a plexus.  相似文献   

14.
Estimation of the poroelastic parameters of cortical bone   总被引:3,自引:0,他引:3  
  相似文献   

15.
The proportion of woven bone (WB) to parallel-fibered bone has been extensively used to infer bone growth rates and resting metabolic rates of extinct organisms. The aim of this study is to test in a variety of amniotes how reliably WB content can be measured using transverse sections. For this, we analyzed femoral transverse mid-diaphyseal thin sections of 14 extant and extinct taxa and the corresponding longitudinal sections for comparative purposes. We used the following characters to identify WB in transverse sections because they are known to be distinct from those observed in parallel-fibered bone: an isotropic bone matrix at tissue scale; an anisotropic microlamellar arrangement in former osteoblast secretory territories at cellular scale; no alignment between osteocytes; and canaliculi running radially from large irregular osteocyte lacunae. Our null hypothesis predicts no differences between the amount of WB quantified in the transverse and longitudinal sections of a given long bone. Qualitatively, when a stripe or a patch of WB was identified in a transverse section, the corresponding stripe or patch of WB was always found at the same location in the corresponding longitudinal section. Quantitatively, a Wilcoxon signed-rank nonparametric paired test did not detect a significant difference in the WB content of the two section planes. Thus, the null hypothesis is not rejected. Considering that paleohistology is a destructive method, we recommend a workflow to efficiently establishing the proportion of WB: quantifying it in transverse sections; preparing and analyzing longitudinal sections only in cases where an ambiguity remains; reanalyzing the corresponding transverse sections.  相似文献   

16.
Current theories suggest that bone modeling and remodeling are controlled at the cellular level through signals mediated by osteocytes. However, the specific signals to which bone cells respond are still unknown. Two primary theories are: (1) osteocytes are stimulated via the mechanical deformation of the perilacunar bone matrix and (2) osteocytes are stimulated via fluid flow generated shear stresses acting on osteocyte cell processes within canaliculi. Recently, much focus has been placed on fluid flow theories since in vitro experiments have shown that bone cells are more responsive to analytically estimated levels of fluid shear stress than to direct mechanical stretching using macroscopic strain levels measured on bone in vivo. However, due to the complex microstructural organization of bone, local perilacunar bone tissue strains potentially acting on osteocytes cannot be reliably estimated from macroscopic bone strain measurements. Thus, the objective of this study was to quantify local perilacunar bone matrix strains due to macroscopically applied bone strains similar in magnitude to those that occur in vivo. Using a digital image correlation strain measurement technique, experimentally measured bone matrix strains around osteocyte lacunae resulting from macroscopic strains of approximately 2000 microstrain are significantly greater than macroscopic strain on average and can reach peak levels of over 30,000 microstrain locally. Average strain concentration factors ranged from 1.1 to 3.8, which is consistent with analytical and numerical estimates. This information should lead to a better understanding of how bone cells are affected by whole bone functional loading.  相似文献   

17.
Osteocytes have been hypothesized to control the amount and location of bone tissue which is resorbed or formed, based on the strain magnitude they perceive, and therefore may play a role in the bone loss of osteoporosis. The shape of osteocyte lacunae influences the mechanical strain applied to the osteocyte; thus, it is important to quantify their shape to further understand the mechanical environment of this cell. Previous studies of the size and shape of lacunae have been contradictory and limited to two-dimensional measurements on iliac crest biopsies. This investigation measured the size and shape of osteocyte lacunae in trabecular bone near a typical fracture site from three-dimensional image sets obtained by confocal microscopy. Bone tissue specimens were obtained from individuals undergoing hip replacement subsequent to fracture, and matched cadaveric specimens without fracture. After extensive image processing to differentiate the lacunae from the matrix, the volume and anisotropy of the lacuna were determined. No significant difference was found in the size (volume) or shape (anisotropy) of the lacunae between women with and without osteoporotic fracture, although there was a large range of sizes and shapes in both groups. These results suggest that the size or shape of the lacunae, which influences the strain in osteocytes, does not play a role in osteoporotic fracture. In addition, this study provides geometric measures of lacunae that are important in computational modeling of the mechanical environment of osteocytes.  相似文献   

18.
The osteocyte resides in the lacuna/canalicular system in bone and has been hypothesized to orchestrate local bone remodeling. Certainly the identification of the osteocyte as the source of Sclerostin, a molecule that regulates osteoblast function, has supported this possibility. As our understanding of this cell increases it has become clear that it has more far reaching influence than simply local bone turnover activity. The osteocyte is also the source of DMP-1 and FGF-23, the later being a hormone that regulates kidney function in terms of phosphate uptake. We now see the osteocyte as having important roles both locally in the skeleton and also in other distant tissues. The study of osteocyte biology has reached a particularly exiting level of maturity and illustrates the value of this cell type as a drug discovery target.  相似文献   

19.
Canalicular fluid flow is acknowledged to play a major role in bone functioning, allowing bone cells’ metabolism and activity and providing an efficient way for cell-to-cell communication. Bone canaliculi are small canals running through the bone solid matrix, hosting osteocyte’s dendrites, and saturated by an interstitial fluid rich in ions. Because of the small size of these canals (few hundred nanometers in diameter), fluid flow is coupled with electrochemical phenomena. In our previous works, we developed a multi-scale model accounting for coupled hydraulic and chemical transport in the canalicular network. Unfortunately, most of the physical and geometrical information required by the model is hardly accessible by nowadays experimental techniques. The goal of this study was to numerically assess the influence of the physical and material parameters involved in the canalicular fluid flow. The focus was set on the electro-chemo-mechanical features of the canalicular milieu, hopefully covering any in vivo scenario. Two main results were obtained. First, the most relevant parameters affecting the canalicular fluid flow were identified and their effects quantified. Second, these findings were given a larger scope to cover also scenarios not considered in this study. Therefore, this study gives insight into the potential interactions between electrochemistry and mechanics in bone and provides the rational for further theoretical and experimental investigations.  相似文献   

20.
The strong correlation between a bone's architectural properties and the mechanical forces that it experiences has long been attributed to the existence of a cell that not only detects mechanical load but also structurally adapts the bone matrix to counter it. One of the most likely cellular candidates for such a "mechanostat" is the osteocyte, which resides within the mineralized bone matrix and is perfectly situated to detect mechanically induced signals. However, as osteocytes can neither form nor resorb bone, it has been hypothesized that they orchestrate mechanically induced bone remodeling by coordinating the actions of cells residing on the bone surface, such as osteoblasts. To investigate this hypothesis, we developed a novel osteocyte-osteoblast coculture model that mimics in vivo systems by permitting us to expose osteocytes to physiological levels of fluid shear while shielding osteoblasts from it. Our results show that osteocytes exposed to a fluid shear rate of 4.4 dyn/cm2 rapidly increase the alkaline phosphatase activity of the shielded osteoblasts and that osteocytic-osteoblastic physical contact is a prerequisite. Furthermore, both functional gap junctional intercellular communication and the mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2 signaling pathway are essential components in the osteoblastic response to osteocyte communicated mechanical signals. By utilizing other nonosteocytic coculture models, we also show that the ability to mediate osteoblastic alkaline phosphatase levels in response to the application of fluid shear is a phenomena unique to osteocytes and is not reproduced by other mesenchymal cell types. osteocyte; osteoblast; fluid-flow; coculture; mechanical stimulation; gap junction; intercellular communication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号