首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primacy of Ca2+ in controlling the amount of released neurotransmitter is well established. However, it is not yet clear what controls the time-course (initiation and termination) of release. Various experiments indicated that the time-course is controlled by membrane potential per se. Consequently the phenomenological Ca-Voltage-Hypothesis (CVH) was formulated. The CVH was later embodied in a molecular level mathematical model, whose key predictions were affirmed experimentally. Nonetheless, the single most important basis for the CVH, namely that depolarization per se is needed to induce physiological phasic release, was challenged by two major experimental findings. (i) Release was induced by Ca2+ alone by means of Ca2+-uncaging. (ii) There was at most a small additional effect when depolarization was applied after release was induced by Ca2+-uncaging. Point (i) was dealt with previously, but additional conclusions are drawn here. Here we concentrate on (ii) and show that the experimental results can be fully accounted for by the molecular level CVH model, with essentially the same parameters.Action Editor: G. Bard Ermentrout  相似文献   

2.
3.
A molecular-level theory is constructed for the control of fast neurotransmitter release, based on recent experimental findings that depolarization shifts presynaptic autoreceptors to a low affinity state and that an autoreceptor must be bound to a transmitter before it can become associated with the exocytotic apparatus. It is assumed that such an association blocks release; experimental support for this assumption is cited. The theory provides mechanisms for key experimental results concerning the essence of the matter, what controls the time course of evoked release? The same general model can account for both evoked and spontaneous release. The new theory can be regarded as a molecular implementation of the (phenomenological) calcium-voltage hypothesis that was suggested earlier.  相似文献   

4.
Abstract: The effect of anoxia and ischemia on the release of amino acid transmitters from cerebellar slices induced by veratridine or high [K+] was studied. Synaptic specificity was tested by examining the tetradotoxin (TTX)-sensitive and the Ca2+-dependent components of stimulated release. Evoked release of endogenous amino acids was investigated in addition to more detailed studies on the stimulated efflux of preloaded [14C]GABA and d -[3H]aspartate (a metabolically more stable anologue of acidic amino acids).[14C]GABA release evoked by either method of stimulation was unaffected by periods of up to 35 min of anoxia and declined moderately by 45 min. In contrast, induced release of d -[3H]Asp increased markedly during anoxia to a peak at about 25 min, followed by a decline when anoxia was prolonged to 45 min. Evidence was obtained that the increased evoked efflux of d -[3H]Asp from anoxic slices was not due to impaired reuptake of the released amino acid and that it was completely reversible by reoxygenation of the slices. Results of experiments examining the evoked release of endogenous amino acids in anoxia were consistent with those obtained with the exogenous amino acids. Only 4 of the 10 endogenous amino acids studied exhibited TTX-sensitive veratridine-induced release under aerobic conditions (glutamate, aspartate, GABA, and glycine). Anoxia for 25 min did not affect the stimulated efflux of these amino acids with the exception of glutamate, which showed a significant increase. Compared with anoxia, effects of ischemia on synaptic function appeared to be more severe. Veratridine-evoked release of [14C]GABA was already depressed by 10 min and that of d -[3H]Asp showed a modest elevation only at 5 min. Stimulated release of d -Asp and labelled GABA declined progressively after 5 min. These findings were compared with changes in tissue ATP concentrations and histology. The latter studies indicated that in anoxia the earliest alterations are detectable in glia and that nerve terminals were the structures by far the most resistant to anoxic damage. The results thus indicated that evoked release of amino acid transmitters in the cerebellum is compromised only by prolonged anoxia in vitro. In addition, it would appear that the stimulated release of glutamate is selectively accentuated during anoxia. This effect may have a bearing on some hypoxic behavioral changes and, perhaps, also on the well-known selective vulnerability of certain neurons during hypoxia.  相似文献   

5.
eIF3j is one of the eukaryotic translation factors originally reported as the labile subunit of the eukaryotic translation initiation factor eIF3. The yeast homolog of this protein, Hcr1, has been implicated in stringent AUG recognition as well as in controlling translation termination and stop codon readthrough. Using a reconstituted mammalian in vitro translation system, we showed that the human protein eIF3j is also important for translation termination. We showed that eIF3j stimulates peptidyl-tRNA hydrolysis induced by a complex of eukaryotic release factors, eRF1-eRF3. Moreover, in combination with the initiation factor eIF3, which also stimulates peptide release, eIF3j activity in translation termination increases. We found that eIF3j interacts with the pre-termination ribosomal complex, and eRF3 destabilises this interaction. In the solution, these proteins bind to each other and to other participants of translation termination, eRF1 and PABP, in the presence of GTP. Using a toe-printing assay, we determined the stage at which eIF3j functions – binding of release factors to the A-site of the ribosome before GTP hydrolysis. Based on these data, we assumed that human eIF3j is involved in the regulation of translation termination by loading release factors into the ribosome.  相似文献   

6.
Abstract— In the present experiments, the resting and stimulus evoked release of newly synthesized [3H]acetylcholine from the caudate nucleus, the cerebral cortex and the cerebellar cortex into the perfusate of the push-pull cannula was studied in the unanesthetized, midpontine, pretrigeminally transected cat following infusion at the push-pull site of [3H]choline. Separation of the metabolites in the perfusate revealed that after 20 min, approximately 20% of the recovered radioactivity in the sample was in a lipid fraction, about 10% was found to be phosphorylcholine and around 3% was observed to be incorporated into acetylcholine. The rest of the recovered radioactivity remained as choline. Electrical stimulation applied directly to the caudate nucleus, local potassium depolarization, atropine and pentylenetetrazol were all observed to result in a significant and stimulus dependent increase in the levels of [3H]acetyIchoIine, but not [3H]choline or [14C]urea in the effluent of the push-pull cannula located in the caudate nucleus. A similar release of newly synthesized [3H]acetylcholine was observed following atropine and potassium stimulation in the cerebral but not the cerebellar cortex. The specificity of this evoked increase in the levels of [3H]acetylchoiine is substantiated by obtaining the release with stimuli having different modes of action, by the absence of stimulus evoked changes in the levels of other water-soluble elements found in the perfusate and by the absence of an observable release of [3H]acetylcholine in perfusion experiments involving the cerebellum, a tissue not thought to have strong cholinergic innervation. The percentage increases in release of [3H] acetylcholine over baseline levels evoked by the various methods closely corresponded to those reported in the literature for authentic acetylcholine. This was taken to suggest that the neuronal pools containing endogenous acetylcholine and those containing newly synthesized acetylcholine, if not identical, were disposed to behave in the same manner following the activation of the synapse.  相似文献   

7.
An enhancement of glutamate release from hippocampal neurons has been implicated in long-term potentiation, which is thought to be a cellular correlate of learning and memory. This phenomenom appears to be involved the activation of protein kinase C and lipid second messengers have been implicated in this process. The purpose of this study was to examine how lipid-derived second messengers, which are known to potentiate glutamate release, influence the accumulation of intraterminal free Ca2+, since exocytosis requires Ca2+ and a potentiation of Ca2+ accumulation may provide a molecular mechanism for enhancing glutamate release. The activation of protein kinase C with phorbol esters potentiates the depolarization-evoked release of glutamate from mossy fiber and other hippocampal nerve terminals. Here we show that the activation of protein kinase C also enhances evoked presynaptic Ca2+ accumulation and this effect is attenuated by the protein kinase C inhibitor staurosporine. In addition, the protein kinase C-dependent increase in evoked Ca2+ accumulation was reduced by inhibitors of phospholipase A2 and voltage-sensitive Ca2+ channels, as well as by a lipoxygenase product of arachidonic acid metabolism. That some of the effects of protein kinase C activation were mediated through phospholipase A2 was also indicated by the ability of staurosporine to reduce the Ca2+ accumulation induced by arachidonic acid or the phospholipase A2 activator melittin. Similarly, the synergistic facilitation of evoked Ca2+ accumulation induced by a combination of arachidonic acid and diacylglycerol analogs was attenuated by staurosporine. We suggest, therefore, that the protein kinase C-dependent potentiation of evoked glutamate release is reflected by increases in presynaptic Ca2+ and that the lipid second messengers play a central role in this enhancement of chemical transmission processes.  相似文献   

8.
Thin basal dendrites can strongly influence neuronal output via generation of dendritic spikes. It was recently postulated that glial processes actively support dendritic spikes by either ceasing glutamate uptake or by actively releasing glutamate and adenosine triphosphate (ATP). We used calcium imaging to study the role of NR2C/D-containing N-methyl-d-aspartate (NMDA) receptors and adenosine A1 receptors in the generation of dendritic NMDA spikes and plateau potentials in basal dendrites of layer 5 pyramidal neurons in the mouse prefrontal cortex. We found that NR2C/D glutamate receptor subunits contribute to the amplitude of synaptically evoked NMDA spikes. Dendritic calcium signals associated with glutamate-evoked dendritic plateau potentials were significantly shortened upon application of the NR2C/D receptor antagonist PPDA, suggesting that NR2C/D receptors prolong the duration of calcium influx during dendritic spiking. In contrast to NR2C/D receptors, adenosine A1 receptors act to abbreviate dendritic and somatic signals via the activation of dendritic K+ current. This current is characterized as a slow-activating outward-rectifying voltage- and adenosine-gated current, insensitive to 4-aminopyridine but sensitive to TEA. Our data support the hypothesis that the release of glutamate and ATP from neurons or glia contribute to initiation, maintenance and termination of local dendritic glutamate-mediated regenerative potentials.  相似文献   

9.
Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by the chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca2+ concentration. Involvement of the Cav2.1 (P/Q-type) channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type) channel blocker ω-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK) inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK/synapsin I signaling cascade. This finding may provide further understanding of the mode of berberine action in the brain and highlights the therapeutic potential of this compound in the treatment of a wide range of neurological disorders.  相似文献   

10.
Translational termination comes of age   总被引:19,自引:0,他引:19  
Translational termination has been a largely ignored aspect of protein synthesis for many years. However, the recent identification of new release-factor genes, the mapping of release-factor functional sites and in vitro reconstitution experiments have provided a deeper understanding of the termination mechanism. In addition, protein-protein interactions among release factors and with other proteins have been revealed. The three-dimensional structures of a prokaryotic ribosome recycling factor and eukaryotic release factor 1 (eRF1) mimic the shape of transfer RNA, indicating that they bind to the same ribosomal site. Post-termination events in bacteria have been clarified, linking termination, ribosomal recycling and translation initiation.  相似文献   

11.
Summary The bag cell neurons of Aplysia provide a model system in which to investigate the effects of hyperosmolality on the electrical and secretory properties of neurons. Brief stimulation of these neurons triggers an afterdischarge of action potentials that lasts approximately 20–30 min, during which time they release several neuroactive peptides. We have found that pre-incubation of intact clusters of bag cell neurons in hyperosmotic media prior to stimulation prevents the initiation of afterdischarges. Furthermore, an increase in osmolality of the external medium during an ongoing afterdischarge causes its premature termination. Hyperosmotic media attenuate the release of peptide evoked by both electrically stimulated afterdischarges and potassium-induced depolarization. The ability of high potassium to depolarize the bag cell neurons is, however, not impaired. Exposure of isolated bag cell neurons to hyperosmotic media also inhibits the amplitude of action potentials evoked by depolarizing current injection and attenuates the voltage-dependent calcium current. In isolated bag cell neurons loaded with the calcium indicator dye, fura-2, hyperosmotic media reduced the rise in intracellular calcium levels that normally occurs in response to depolarization. Our results suggest that the effects of hyperosmotic media on peptide secretion in bag cell neurons can largely be attributed to their effects on calcium entry.This work was supported by NIH Grant NS-18492 to L.K. Kaczmarek.  相似文献   

12.
During of protein synthesis, or translation, four stages are usually recognized: initiation, elongation, termination, and recycling. Translation termination involves two protein types, the factors of termination of the first class participate in recognition of stop-codons and the termination factors of the second class are GTP-ases, which stimulate activity of the first class factors. Bacteria have two proteins of class 1, RF1 and RF2 (release factor), with overlapping codon specificity; both factors are capable to recognize the codon UAA, while the codons UAG and UGA are only decoded by RF1 and RF2, respectively. In addition, bacteria contain one factor of class 2, RF3, which not only stimulates activity of RF1 and RF2, but also promotes release of the first class factors after completion of termination. In contrast to prokaryotes, eukaryotic organisms have only one termination factor of class 1, eRF1. This protein recognizes each of the three stop-codons, which results in hydrolysis of peptidyl-tRNA. Eukaryotic cells also have only one factor of class 2, eRF3.  相似文献   

13.
14.
Effect of benzodiazepines on evoked catecholamine (CA) release from a primary culture of bovine adrenal medullary cells was investigated. Midazolam at high doses (> 10 μ M) inhibited CA release evoked by acetylcholine (ACh), excess K+ and veratridine but not by A23187 or caffeine in Ca2+ -free media. Other benzodiazepines, diazepam, clonazepam, nitrazepam and R05-4864, as well as 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195) and ethyl-β-carboline-3-carboxylate (βCCE) also inhibited ACh-evoked CA release but only at high concentrations. The inhibitory effect of midazolam on ACh-evoked CA release was not affected by R015-1788, a central-type benzodiazepine receptor antagonist which itself had no effect on basal and ACh-evoked CA release. Facilitatory action of Bay K 8644 on CA release evoked by 20 mM K+ was reduced by midazolam, PK11195 and R05-4864. Further, ACh-evoked 45Ca uptake was markedly reduced by midazolam and R05-4864 in association with the inhibition of CA release. These results suggest that benzodiazepines at high doses, inhibit the evoked CA release from adrenal chromaffin cells possibly through the blockade of Ca2+ influx. Possible involvement of receptor subtypes of benzodiazepines in regulating CA secretion is discussed.  相似文献   

15.
Developmental changes in the function of adrenergic axons within the right ventricle of the chick embryo were assessed by measuring the ability of these axons (1) to release endogenous transmitter, and (2) to transport, retain, and release tritiated norepinephrine ([3H]NE). The release of endogenous catecholamines was assayed indirectly by measuring the increase in the twitch tension of ventricular muscle evoked by electrical stimulation of intramural nerves. The release of endogenous transmitter, which acted via β-adrenergic receptors, was first detected by this method on the 16th embryonic day. A cocaine-sensitive uptake of [3H]NE was first observed on the 12th embryonic day. At this time, elevated potassium first evoked a calcium-sensitive release of [3H]NE. Electrical stimulation of intramural axons first evoked a tetrodotoxin-sensitive release of [3H]NE on the 14th embryonic day. It is concluded that the axons of developing adrenergic neurons are capable of releasing transmitter soon after they contact their target tissue.  相似文献   

16.
17.
Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. Whereas eRF1 recognizes all three termination codons and induces hydrolysis of peptidyl tRNA, eRF3's function remains obscure. Here, we reconstituted all steps of eukaryotic translation in vitro using purified ribosomal subunits; initiation, elongation, and termination factors; and aminoacyl tRNAs. This allowed us to investigate termination using pretermination complexes assembled on mRNA encoding a tetrapeptide and to propose a model for translation termination that accounts for the cooperative action of eRF1 and eRF3 in ensuring fast release of nascent polypeptide. In this model, binding of eRF1, eRF3, and GTP to pretermination complexes first induces a structural rearrangement that is manifested as a 2 nucleotide forward shift of the toeprint attributed to pretermination complexes that leads to GTP hydrolysis followed by rapid hydrolysis of peptidyl tRNA. Cooperativity between eRF1 and eRF3 required the eRF3 binding C-terminal domain of eRF1.  相似文献   

18.
Contemporary models for protein translocation in the mammalian endoplasmic reticulum (ER) identify the termination of protein synthesis as the signal for ribosome release from the ER membrane. We have utilized morphometric and biochemical methods to assess directly the fate of membrane-bound ribosomes following the termination of protein synthesis. In these studies, tissue culture cells were treated with cycloheximide to inhibit elongation, with pactamycin to inhibit initiation, or with puromycin to induce premature chain termination, and ribosome-membrane interactions were subsequently analyzed. It was found that following the termination of protein synthesis, the majority of ribosomal particles remained membrane-associated. Analysis of the subunit structure of the membrane-bound ribosomal particles remaining after termination was conducted by negative stain electron microscopy and sucrose gradient sedimentation. By both methods of analysis, the termination of protein synthesis on membrane-bound ribosomes was accompanied by the release of small ribosomal subunits from the ER membrane; the majority of the large subunits remained membrane-bound. On the basis of these results, we propose that large ribosomal subunit release from the ER membrane is regulated independently of protein translocation.  相似文献   

19.
Evoked synaptic potential were recorded extracellularly in experiments on a nervemuscle preparation of the frog sartorius muscle. A decrease in evoked transmitter release was found from the proximal to the distal parts of the nerve ending, due to a decrease in the probability of transmitter quantum release. The terminal portions of the synapse are less sensitive than the proximal parts to changes in Ca++ concentration, they show less marked facilitation of transmitter release during paired and repetitive stimulation, and exhibit deeper and more rapidly developing depression. It is concluded that differences in transmitter release in the terminal parts of the synapse are due to the low reserves of transmitter and the lower premeability of the presynaptic membrane to Ca++.  相似文献   

20.
RNA phage GA coat and lysis protein expression are translationally coupled through an overlapping termination and initiation codon UAAUG. Essential for this coupling are the proximity of the termination codon of the upstream coat gene to the initiation codon of the lysis gene (either a <3 nucleotide separation or physical closeness through a possible hairpin structure) but not the Shine-Dalgarno sequence. This suggests that the ribosomes completing the coat gene translation are exclusively responsible for translation of the lysis gene. Inactivation of ribosome recycling factor (RRF), which normally releases ribosomes at the termination codon, did not influence the expression of the reporter gene fused to the lysis gene. This suggests the possibility that RRF may not release ribosomes from the junction UAAUG. However, RRF is essential for correct ribosomal recognition of the AUG codon as the initiation site for the lysis gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号