首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The driving forces for L-glutamate transport were determined in purified canalicular (cLPM) and basolateral (i.e. sinusoidal and lateral; blLPM) rat liver plasma membrane vesicles. Initial rates of L-glutamate uptake in cLPM vesicles were stimulated by a Na+ gradient (Na+o greater than Na+i), but not by a K+ gradient. Stimulation of L-glutamate uptake was specific for Na+, temperature sensitive, and independent of nonspecific binding. Sodium-dependent L-glutamate uptake into cLPM vesicles exhibited saturation kinetics with an apparent Km of 24 microM, and a Vmax of 21 pmol/mg X min at an extravesicular sodium concentration of 100 mM. Specific anionic amino acids inhibited L-[3H]glutamate uptake and accelerated the exchange diffusion of L-[3H]glutamate. An outwardly directed K+ gradient (K+i greater than K+o) further increased the Na+ gradient (Na+o greater than Na+i)-dependent uptake of L-glutamate in cLPM vesicles, resulting in a transient accumulation of L-glutamate above equilibrium values (overshoot). The K+ effect had an absolute requirement for Na+. In contrast, in blLPM the initial rates of L-glutamate uptake were only minimally stimulated by a Na+ gradient, an effect that could be accounted for by contamination of the blLPM vesicles with cLPM vesicles. These results indicate that hepatic Na+ gradient-dependent transport of L-glutamate occurs at the canalicular domain of the plasma membrane, whereas transport of L-glutamate across sinusoidal membranes results mainly from passive diffusion. These findings provide an explanation for the apparent discrepancy between the ability of various in vitro liver preparations to transport glutamate and suggest that a canalicular glutamate transport system may serve to reabsorb this amino acid from bile.  相似文献   

2.
The driving forces for taurocholate transport were determined in highly purified canalicular (cLPM) and basolateral rat liver plasma membrane (LPM) vesicles. Alanine transport was also examined for comparison. Inwardly directed Na+ but not K+ gradients transiently stimulated [3H]taurocholate (1 microM) and [3H]alanine (0.2 mM) uptake into basolateral LPM 3-4- fold above their respective equilibrium values (overshoots). Na+ also stimulated [3H]taurocholate countertransport and tracer exchange in basolateral LPM whereas valinomycin-induced inside negative K+ diffusion potentials stimulated alanine uptake but had no effect on taurocholate uptake. In contrast, in the "right-side out" oriented cLPM vesicles, [3H]taurocholate countertransport and tracer exchange were not dependent on Na+. Efflux of [3H]taurocholate from cLPM was also independent of Na+ and could be trans-stimulated by extra-vesicular taurocholate. Furthermore, an inside negative valinomycin-mediated K+ diffusion potential inhibited taurocholate uptake into and stimulated taurocholate efflux from the cLPM vesicles. These studies provide direct evidence for a "carrier mediated" and potential-sensitive conductive pathway for the canalicular excretion of taurocholate. In addition, they confirm the presence of a possibly electroneutral Na+-taurocholate cotransport system in basolateral membranes of the hepatocyte.  相似文献   

3.
A method has been developed for routine high yield separation of canalicular (cLPM) from basolateral (blLPM) liver plasma membrane vesicles of rat liver. Using a combination of rate zonal floatation (TZ- 28 zonal rotor, Sorvall) and high speed centrifugation through discontinuous sucrose gradients, 9-16 mg of cLPM and 15-28 mg of blLPM protein can be isolated in 1 d. cLPM are free of the basolateral markers Na+/K+-ATPase and glucagon-stimulatable adenylate cyclase activities, but are highly enriched with respect to homogenate in the "canalicular marker" enzyme activities leucylnaphthylamidase (48-fold), gamma-glutamyl-transpeptidase (60-fold), 5'-nucleotidase (64-fold), alkaline phosphatase (71-fold), Mg++-ATPase (83-fold), and alkaline phosphodiesterase I (116-fold). In contrast, blLPM are 34-fold enriched in Na+/K+-ATPase activity, exhibit considerable glucagon-stimulatable adenylate cyclase activity, and demonstrate a 4- to 15-fold increase over homogenate in the various "canalicular markers." cLPM have a twofold higher content of sialic acids, cholesterol; and sphingomyelin compared with blLPM. At least three canalicular-(130,000, 100,000, and 58,000 mol wt) and several basolateral-specific protein bands have been detected after SDS PAGE of the two LPM subfractions. Specifically, the immunoglobin A-binding secretory component is restricted to blLPM as demonstrated by immunochemical techniques. These data indicate virtually complete separation of basolateral from canalicular LPM and demonstrate multiple functional and compositional polarity between the two surface domains of hepatocytes.  相似文献   

4.
Bile acid secretion induced by cAMP and taurocholate is associated with recruitment of several ATP binding cassette (ABC) transporters to the canalicular membrane. Taurocholate-mediated bile acid secretion and recruitment of ABC transporters are phosphatidylinositol 3-kinase (PI3K) dependent and require an intact microtubular apparatus. We examined mechanisms involved in cAMP-mediated bile acid secretion. Bile acid secretion induced by perfusion of rat liver with dibutyryl cAMP was blocked by colchicine and wortmannin, a PI3K inhibitor. Canalicular membrane vesicles isolated from cAMP-treated rats manifested increased ATP-dependent transport of taurocholate and PI3K activity that were reduced by prior in vivo administration of colchicine or wortmannin. Addition of a PI3K lipid product, phosphoinositide 3,4-bisphosphate, but not its isomer, phosphoinositide 4,5-bisphosphate, restored ATP-dependent taurocholate in these vesicles. Addition of a decapeptide that activates PI3K to canalicular membrane vesicles increased ATP-dependent transport above baseline activity. In contrast to effects induced by taurocholate, cAMP-stimulated intracellular trafficking of the canalicular ABC transporters was unaffected by wortmannin, and recruitment of multidrug resistance protein 2, but not bile salt excretory protein (bsep), was partially decreased by colchicine. These studies indicate that trafficking of bsep and other canalicular ABC transporters to the canalicular membrane in response to cAMP is independent of PI3K activity. In addition, PI3K lipid products are required for activation of bsep in the canalicular membrane. These observations prompt revision of current concepts regarding the role of cAMP and PI3K in intracellular trafficking, regulation of canalicular bsep, and bile acid secretion.  相似文献   

5.
We have characterized the transport of GSH and the mechanism for impaired GSH transport in mutant Eisai hyperbilirubinemic rats (EHBR) using isolated canalicular membrane-enriched vesicles (cLPM). In control animals, the transport of GSH is an electrogenic process and is trans-stimulated by preloading the vesicles with GSH and is not enhanced in the presence of ATP. GSH transport in cLPM is saturable with a single component having a Km of approximately 16 mM and a Vmax of 6.7 nmol/mg/15 s. EHBR is a Sprague-Dawley rat with hyperbilirubinemia due to impaired bile secretion of organic anions by the ATP-dependent organic anion/GSH-conjugate transporter. In cLPM from EHBR we confirmed the defective stimulation by ATP of the transport of LTC4 and GSSG. In the mutant cLPM, the characteristics and kinetics of GSH transport were the same as in the controls. 2,4-(dinitrophenyl)-glutathione (DNP-GSH), which is a substrate for the ATP-dependent canalicular organic anion carrier, in the absence of ATP, cis-inhibited the transport of GSH into cLPM vesicles; however, when the vesicles were preloaded with DNP-GSH, there was a dose-dependent trans-stimulation of GSH transport. In contrast, in the presence of ATP, DNP-GSH enhanced GSH transport in cLPM vesicles; at 0.25 mM DNP-GSH, a concentration which did not cis-inhibit GSH, addition of ATP resulted in accelerated GSH transport; at 1.0 mM DNP-GSH, cis-inhibition was completely reversed by the addition of ATP despite a negligible fall in the medium DNP-GSH. Interestingly, sulfobromophthalein-glutathione (BSP-GSH) neither cis-inhibited nor trans-stimulated GSH transport in cLPM. This contrasts with bLPM where BSP-GSH interacts with the GSH carrier. Therefore, GSH is transported into bile by a multispecific low affinity electrogenic carrier which is distinct from the multispecific high affinity ATP-driven organic anion transporter. Although both carriers have overlapping specificities, BSP-GSH and GSH are uniquely specific for only one of the carriers. The near absence of GSH in the bile of mutant rats can be best explained as a secondary defect due to cis-inhibition from retained substrates for the defective carrier and/or loss of trans-stimulation by these same substrates which normally are concentratively transported into the bile. Other possibilities such as change in GSH carrier activity upon isolation or loss of a negative protein regulator during membrane isolation, although theoretical alternatives are less easily reconciled with the defect in the ATP-driven organic anion transporter.  相似文献   

6.
The hepatic transport of the immunosuppressive Cyclosporin A (CyA) was studied using liposomal phospholipid membranes, freshly isolated rat hepatocytes and bile canalicular plasma membrane vesicles from rat liver. The Na(+)-dependent, saturable uptake of the bile acid 3H-taurocholate into isolated rat liver cells was apparently competitively inhibited by CyA. However, the uptake of CyA into the cells was neither saturable, nor temperature-dependent nor Na(+)-dependent, nor could it be inhibited by bile salts or CyA-derivatives, indicating passive diffusion. In steady state depolarization fluorescence studies, CyA caused a concentration-dependent decrease of anisotropy, indicating a membrane fluidizing effect. Ion flux experiments demonstrated that CyA dramatically increases the permeability of Na+ and Ca2+ across phospholipid membranes in a dose- and time-dependent manner, suggesting a iontophoretic activity that might have a direct impact on cellular ion homeostasis and regulation of bile acid uptake. Photoaffinity labeling with a [3H]-labeled photolabile CyA-derivative resulted in the predominant incorporation of radioactivity into a membrane polypeptide with an apparent molecular weight of 160,000 and a minor labeling of polypeptides with molecular weights of 85,000-90,000. In contrast, use of a photolabile bile acid resulted in the labeling of a membrane polypeptide with an apparent molecular weight of 110,000, representing the bile canalicular bile acid carrier. The photoaffinity labeling as well as CyA transport by canalicular membrane vesicles were inhibited by CyA and the p-glycoprotein substrates daunomycin and PSC-833, but not by taurocholate, indicating that CyA is excreted by p-glycoprotein. CyA uptake by bile canalicular membrane vesicles was ATP-dependent and could not be inhibited by taurocholate. CyA caused a decrease in the maximum amount of bile salt accumulated by the vesicles with time. However, initial rates of [3H]-taurocholate uptake within the first 2.5 min remained unchanged at increasing CyA concentrations. In summary, the data indicate that CyA does not directly interact with the hepatic bile acid transport systems. Its cholestatic action may rather be the result of alterations in membrane fluidity, intracellular effects and an interaction with p-glycoprotein.  相似文献   

7.
Troglitazone is an antidiabetic agent that increases the insulin sensitivity of target tissues in non-insulin-dependent diabetes mellitus. It has been reported that troglitazone causes severe hepatic injury in certain individuals. In the present study, the mechanism for the hepatic injury by troglitazone was investigated with human hepatoma cell lines. HepG2 cells were incubated with troglitazone, its metabolites M-1 (sulfate), M-2 (gulucronide), M-3 (quinone), and other thiazolidinediones (pioglitazone and rosiglitazone). Troglitazone exhibited time- and concentration-dependent cytotoxicity and M-3 also exhibited weak cytotoxicity. Troglitazone induced apoptotic cell death characterized by internucleosomal DNA fragmentation and nuclear condensation. As other thiazolidinediones, pioglitazone and rosiglitazone, did not induce cell death and apoptosis in the present study, the affinity to PPARgamma may not affect the induction of apoptosis by troglitazone. These results suggest that troglitazone induces apoptotic hepatocyte death which it may be one of the factors of liver injury in humans.  相似文献   

8.
Direct photoaffinity labeling of liver plasma membrane subfractions enriched in sinusoidal and canalicular membranes using [35S]adenosine 5'-O-(thiotriphosphate) ([35S]ATP gamma S) allows the identification of ATP-binding proteins in these domains. Comparative photoaffinity labeling with [35S]ATP gamma S and with the photolabile bile salt derivative (7,7-azo-3 alpha, 12 alpha-dihydroxy-5 beta-[3 beta-3H]-cholan-24-oyl-2'- aminoethanesulfonate followed by immunoprecipitation with a monoclonal antibody (Be 9.2) revealed the identity of the ATP-binding and the bile salt-binding canalicular membrane glycoprotein with the apparent Mr of 110,000 (gp110). The isoelectric point of this glycoprotein was 3.7. Transport of bile salt was studied in vesicles enriched in canalicular and sinusoidal liver membranes. Incubation of canalicular membrane vesicles with [3H] taurocholate in the presence of ATP resulted in an uptake of the bile salt into the vesicles which was sensitive to vanadate. ATP-dependent taurocholate transport was also observed in membrane vesicles from mutant rats deficient in the ATP-dependent transport of cysteinyl leukotrienes and related amphiphilic anions. Substrates of the P-glycoprotein (gp170), such as verapamil and doxorubicin, did not interfere with the ATP-dependent transport of taurocholate. Reconstitution of purified gp110 into liposomes resulted in an ATP-dependent uptake of [3H]taurocholate. These results demonstrate that gp110 functions as carrier in the ATP-dependent transport of bile salts from the hepatocyte into bile. This export carrier is distinct from hitherto characterized ATP-dependent transport systems.  相似文献   

9.
The Na(+)-dependent uptake system for bile acids in the ileum from rabbit small intestine was characterized using brush-border membrane vesicles. The uptake of [3H]taurocholate into vesicles prepared from the terminal ileum showed an overshoot uptake in the presence of an inwardly-directed Na(+)-gradient ([Na+]out > [Na+]in), in contrast to vesicles prepared from the jejunum. The Na(+)-dependent [3H]taurocholate uptake was cis-inhibited by natural bile acid derivatives, whereas cholephilic organic compounds, such as phalloidin, bromosulphophthalein, bilirubin, indocyanine green or DIDS - all interfering with hepatic bile-acid uptake - did not show a significant inhibitory effect. Photoaffinity labeling of ileal membrane vesicles with 3,3-azo- and 7,7-azo-derivatives of taurocholate resulted in specific labeling of a membrane polypeptide with apparent molecular mass 90 kDa. Bile-acid derivatives inhibiting [3H]taurocholate uptake by ileal vesicles also inhibited labeling of the 90 kDa polypeptide, whereas compounds with no inhibitory effect on ileal bile-acid transport failed to show a significant effect on the labeling of the 90 kDa polypeptide. The involvement of functional amino-acid side-chains in Na(+)-dependent taurocholate uptake was investigated by chemical modification of ileal brush-border membrane vesicles with a variety of group-specific agents. It was found that (vicinal) thiol groups and amino groups are involved in active ileal bile-acid uptake, whereas carboxyl- and hydroxyl-containing amino acids, as well as tyrosine, histidine or arginine are not essential for Na(+)-dependent bile-acid transport activity. The irreversible inhibition of [3H]taurocholate transport by DTNB or NBD-chloride could be partially reversed by thiols like 2-mercaptoethanol or DTT. Furthermore, increasing concentrations of taurocholate during chemical modification with NBD-chloride were able to protect the ileal bile-acid transporter from inactivation. These findings suggest that a membrane polypeptide of apparent M(r) 90,000 is a component of the active Na(+)-dependent bile-acid reabsorption system in the terminal ileum from rabbit small intestine. Vicinal thiol groups and amino groups of the transport system are involved in Na(+)-dependent transport activity, whereas other functional amino acids are not essential for transport activity.  相似文献   

10.
Biliary secretion of bile salts in mammals is mediated in part by the liver-specific ATP-dependent canalicular membrane protein Bsep/Spgp, a member of the ATP-binding cassette superfamily. We examined whether a similar transport activity exists in the liver of the evolutionarily primitive marine fish Raja erinacea, the little skate, which synthesizes mainly sulfated bile alcohols rather than bile salts. Western blot analysis of skate liver plasma membranes using antiserum raised against rat liver Bsep/Spgp demonstrated a dominant protein band with an apparent molecular mass of 210 kDa, a size larger than that in rat liver canalicular membranes, approximately 160 kDa. Immunofluorescent localization with anti-Bsep/Spgp in isolated, polarized skate hepatocyte clusters revealed positive staining of the bile canaliculi, consistent with its selective apical localization in mammalian liver. Functional characterization of putative ATP-dependent canalicular bile salt transport activity was assessed in skate liver plasma membrane vesicles, with [(3)H]taurocholate as the substrate. [(3)H]taurocholate uptake into the vesicles was mediated by ATP-dependent and -independent mechanisms. The ATP-dependent component was saturable, with a Michaelis-Menten constant (K(m)) for taurocholate of 40+/-7 microM and a K(m) for ATP of 0.6+/-0.1 mM, and was competitively inhibited by scymnol sulfate (inhibition constant of 23 microM), the major bile salt in skate bile. ATP-dependent uptake of taurocholate into vesicles was inhibited by known substrates and inhibitors of Bsep/Spgp, including other bile salts and bile salt derivatives, but not by inhibitors of the multidrug resistance protein-1 or the canalicular multidrug resistance-associated protein, indicating a distinct transport mechanism. These findings provide functional and structural evidence for a Bsep/Spgp-like protein in the canalicular membrane of the skate liver. This transporter is expressed early in vertebrate evolution and transports both bile salts and bile alcohols.  相似文献   

11.
C57L/J (gallstone-susceptible) and AKR/J (gallstone-resistant) mice have been utilized for quantitative trait loci (QTL) analysis to identify the Lith 1 locus for cholelithiasis. Abcb11 encodes for the liver canalicular membrane bile salt export pump (BSEP), which maps to this QTL and is a candidate gene for Lith 1. We investigated the transmembrane transport of taurocholate in canalicular liver membrane vesicles isolated from these murine strains. Canalicular liver plasma membranes (cLPM) and RNA were isolated from C57L/J and AKR/J mice livers, and were utilized for Northern and Western blot analysis and functional 3H-taurocholate uptake studies. ATP-dependent 3H-taurocholate uptake was significantly higher in AKR/J, compared to C57L/J mice. V max was 127 vs. 42 pmol TC/mg/s in the murine strains, respectively, while K m was unchanged. In contrast, gene and protein expression of hepatic Abcb11 was increased three-fold in C57L/J, compared to AKR/J mice. Thus, Abcb11 bile salt transport activity per unit protein was reduced nine-fold in the C57L/J, compared to AKR/J mice. In contrast, canalicular membrane cholesterol:phospholipid content was also significantly higher in the C57L/J mice. We conclude that gallstone-susceptible C57L/J mice demonstrate increased gene and canalicular membrane expression of Abcb11, however, taurocholate transport is functionally diminished. The latter may be due to the increased cholesterol membrane content of the cLPM in C57L/J mice. These findings may be important for the pathogenesis of gallstone formation.  相似文献   

12.
4,4-Di-isothiocyanostilbene-2,2'-disulphonic acid inhibition of taurocholate efflux from canalicular vesicles was used to demonstrate that potential driven and 'carrier'-mediated canalicular excretion of taurocholate occur via a common, rather than two separate, pathways. This electrogenic canalicular bile acid 'carrier' preferentially transports trihydroxylated and conjugated dihydroxylated bile acids, but not the unphysiological oxo bile acids, and possibly extends its substrate specificity to other amphipathic molecules such as sulphobromophthalein.  相似文献   

13.
Activation of peroxisome proliferator-activated receptor γ (PPARγ) by ligands is associated with beneficial health effects, including anti-inflammatory and insulin-sensitizing effects. The aim of the current study was to develop luciferase reporter gene assays to enable fast and low-cost measurement of PPARγ agonist and antagonist activity. Two reporter gene assays, PPARγ1 CALUX and PPARγ2 CALUX, were developed by stable transfection of U2OS cells with an expression vector for PPARγ1 or PPARγ2 and a pGL3–3xPPRE–tata-luc or pGL4–3xPPRE–tata-luc reporter construct, respectively. PPARγ1 CALUX and PPARγ2 CALUX cells showed similar concentration-dependent luciferase induction upon exposure to the PPARγ agonists rosiglitazone, troglitazone, pioglitazone, ciglitazone, netoglitazone, and 15-deoxy-Δ12,14-prostaglandin J2. The potency to induce luciferase decreased in the following order: rosiglitazone > troglitazone = pioglitazone > netoglitazone > ciglitazone. A concentration-dependent decrease in the response to 50 nM rosiglitazone was observed on the addition of PPARγ antagonist GW9662 or T0070907 in both PPARγ1 CALUX and PPARγ2 CALUX cells. The PPARα agonists WY14643 and fenofibrate failed to induce luciferase activity, confirming the specificity of these cell lines for PPARγ agonists. In conclusion, PPARγ1 CALUX and PPARγ2 CALUX cells provide a reliable and useful tool to screen (bio)chemicals for PPARγ agonist or antagonist activity.  相似文献   

14.
To elucidate the mechanism of biliary occurrence of gamma-glutamyl transferase [EC 2.3.2.2] and alkaline phosphatase [EC 3.1.3.1], the effect of bile acids on the biliary level of these enzymes was studied in vivo and in vitro. Following intravenous administration of taurocholate, the activities of both enzymes in rat bile increased markedly with a concomitant increase in the excretion of the bile acid. The biliary levels of these enzymes increased to reach a maximum at 10-20 min after administration of the bile acid and decreased thereafter. Right-side-out oriented rat liver canalicular membrane vesicles which localize gamma-glutamyltransferase, aminopeptidase M and alkaline phosphatase on their outer surface (Inoue, M., Kinne, R., Tran, T., Biempica, L., & Arias, I.M. (1983) J. Biol. Chem. 258, 5183-5188) were prepared. Upon incubation of the vesicles with either intact or heat-treated bile samples, the membranous enzymes were released from the vesicles in a time-dependent manner. Incubation of these vesicles with physiological concentrations of taurocholate also solubilized these enzymes from the membranes. Affinity chromatographic analysis on concanavalin A-Sepharose revealed that the transferase thus solubilized retained the hydrophobic domain responsible for anchoring the enzyme to membrane/lipid bilayers. These results indicate that bile acid(s) excreted into the bile canalicular lumen solubilized these enzymes from the apical membrane surface of the biliary tract cells by their detergent action.  相似文献   

15.
Reconstitution, using phosphatidylcholine liposomes in conjugation with immunological purification procedures, has been used to establish directly the identity of the hepatocyte Na(+)-dependent bile acid transport protein. Octyl glucoside-solubilized sinusoidal plasma membranes were shown to form proteoliposomes exhibiting taurocholate transport properties which were similar to those of plasma membrane vesicles, namely, Na(+)-dependence and marked inhibition by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and by taurochenodeoxycholate. Proteoliposomes formed from plasma membrane proteins depleted of the putative 49-kDa bile acid transport protein by immunoprecipitation with monoclonal antibody 25D-1, which specifically recognizes this protein (Ananthanarayanan, M., von Dippe, P., and Levy, D. (1988) J. Biol. Chem. 263, 8338-8343), showed a 94% reduction in mediated transport capacity. Proteoliposomes containing total membrane protein also demonstrated Na(+)-dependent alanine transport. The addition of taurochenodeoxycholate or the removal of the 49-kDa protein by monoclonal antibody 25D-1 immunoprecipitation had no effect on the uptake of alanine, thus confirming the specificity of these procedures. When only the immunoprecipitated 48-kDa protein was used in the reconstitution system, a 2200% increase of taurocholate uptake was observed. These results definitively establish that this 49-kDa sinusoidal membrane protein is the sole essential component of the Na(+)-dependent bile acid transport system.  相似文献   

16.
Basolateral plasma membrane vesicles were prepared from rat liver by a new technique using self-generating Percoll gradients. The method is rapid (total spin time of 2.5 h) and protein yields were high (0.64 mg/g of liver). Transmission electron microscopy studies and measurements of marker enzyme activities indicated that the preparation was highly enriched in basolateral membranes and substantially free of contamination by canalicular membranes or subcellular organelles. High total recoveries for protein yield and marker enzyme activities during the fractionation procedure indicated that enzymatic activity was neither lost (inactivation) nor increased (activation). Thus, the pattern of marker enzyme activities found in the membrane preparation truly reflected substantial enrichment in membranes from the basolateral surface. Analysis of freeze-fracture electron micrographs suggested that approximately 75% of the vesicles were oriented "right-side-out." In order to assess the functional properties of the vesicles, the uptake of [3H]taurocholate was studied. In the presence of a Na+ gradient, taurocholate uptake was markedly stimulated and the bile acid was transiently accumulated at a concentration 1.5- to 2-fold higher than that at equilibrium ("overshoot"). In the absence of a gradient but in the presence of equimolar Na+ inside and outside of the vesicle, taurocholate uptake was faster than in the absence of Na+. These findings support a direct co-transport mechanism for the uptake of taurocholate and Na+. Kinetic studies demonstrated that Na+-dependent taurocholate uptake was saturable with a Km of 36.5 microM and a Vmax of 5.36 nmol mg-1 protein min-1. The high yield, enzymatic profile and retention of transport properties suggest that this membrane preparation is well suited for studies of basolateral transport.  相似文献   

17.
Uptake of the thioether S-(2,4-dinitrophenyl)glutathione (DNPSG) in canalicular plasma membrane vesicles from rat liver is enhanced in the presence of ATP and exhibits an overshoot with a transient 5.5-fold accumulation of DNPSG. Stimulation by ATP is not caused by the generation of a membrane potential, based on responses of the indicator dye oxonol V. ATP-dependent uptake has an apparent Km of 71 microM for DNPSG and a Vmax of 0.34 nmol.min-1.mg of vesicle protein-1. Protein thiol groups are essential for transport activity as indicated by the sensitivity of DNPSG transport to sulfhydryl reagents. There is competitive inhibition with other thioethers, S-hexylglutathione (Ki = 66 microM), the photoaffinity label S-(4-azidophenacyl)glutathione (Ki = 56 microM), as well as with glutathione disulfide (Ki = 0.44 mM) and with the bile acid taurocholate (Ki = 0.61 mM). GSH (2 mM) or cholate (0.4 mM) does not inhibit. Both glutathione disulfide and taurocholate show ATP-dependent transport in the canalicular membrane vesicles which is inhibited by DNPSG. No ATP-dependent transport is found for GSH. Transport of DNPSG is also inhibited competitively by alpha-naphthyl-beta-D-glucuronide (Ki = 0.42 mM) but not by alpha-naphthylsulfate (2 mM), and there is substantial inhibition with the glucuronides from ebselen and p-nitrophenol. The results indicate that the canalicular transport system for DNPSG is directly driven by ATP and that the biliary transport of other classes of compounds may also proceed via this system.  相似文献   

18.
We studied the effect of the antihyperglycemic glitazones, ciglitazone, troglitazone, and rosiglitazone, on glutamine metabolism in renal tubule-derived Madin-Darby canine kidney (MDCK) cells. Troglitazone (25 microM) enhanced glucose uptake and lactate production by 108 and 92% (both P < 0.001). Glutamine utilization was not inhibited, but alanine formation decreased and ammonium formation increased (both P < 0.005). The decrease in net alanine formation occurred with a change in alanine aminotransferase (ALT) reactants, from close to equilibrium to away from equilibrium, consistent with inhibition of ALT activity. A shift of glutamine's amino nitrogen from alanine into ammonium was confirmed by using L-[2-(15)N]glutamine and measuring the [(15)N]alanine and [(15)N]ammonium production. The glitazone-induced shift from alanine to ammonium in glutamate metabolism was dose dependent, with troglitazone being twofold more potent than rosiglitazone and ciglitazone. All three glitazones induced a spontaneous cellular acidosis, reflecting impaired acid extrusion in responding to both an exogenous (NH) and an endogenous (lactic acid) load. Our findings are consistent with glitazones inducing a spontaneous cellular acidosis associated with a shift in glutamine amino nitrogen metabolism from predominantly anabolic into a catabolic pathway.  相似文献   

19.
Through labeling with the sodium salt of the photolabile bile salt derivative (7,7-azo-3 alpha,12 alpha-dihydroxy-5 beta-[3 beta-3H]cholan-24-oyl)- 2-aminoethanesulfonic acid, a bile salt-binding polypeptide with an apparent molecular weight of 100,000 was identified in isolated canalicular but not basolateral (sinusoidal) rat liver plasma membranes. This labeled polypeptide was isolated from octyl glucoside-solubilized canalicular membranes by DEAE-cellulose and subsequent wheat germ lectin Sepharose chromatography. The purified protein still contained covalently incorporated radioactive bile salt derivative and exhibited a single band with an apparent molecular weight of 100,000 on sodium dodecyl sulfate-gels. Antibodies were raised in rabbits and their monospecificity toward this canalicular polypeptide demonstrated by immunoblot analysis. No cross-reactivity was found with basolateral membrane proteins. The antibodies inhibited taurocholate uptake into isolated canalicular but not basolateral membrane vesicles. In addition, the antibodies also decreased efflux of taurocholate from canalicular vesicles. If the canalicular bile salt-binding polypeptide was immunoprecipitated from Triton X-100-solubilized canalicular membranes and subsequently deglycosylated with trifluoromethanesulfonic acid, the apparent molecular weight was decreased from 100,000 to 48,000 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). These studies confirm previous results in intact liver tissue and strongly indicate that a canalicular specific glycoprotein with an apparent molecular weight of 100,000 is directly involved in canalicular excretion of bile salts.  相似文献   

20.
The expression of the basolateral Na+/bile acid (taurocholate) cotransport system of rat hepatocytes has been studied in Xenopus laevis oocytes. Injection of rat liver poly(A)+ RNA into the oocytes resulted in the functional expression of Na+ gradient stimulated taurocholate uptake within 3-5 days. This Na(+)-dependent portion of taurocholate uptake exhibited saturation kinetics (apparent Km approximately 91 microM) and could be inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene. Furthermore, the expressed taurocholate transport activity demonstrated similar substrate inhibition and stimulation by low concentrations of bovine serum albumin as the basolateral Na+/bile acid cotransport system previously characterized in intact liver, isolated hepatocytes, and isolated plasma membrane vesicles. Finally, a 1.5- to 3.0-kilobase size-class of mRNA could be identified that was sufficient to express the basolateral Na+/taurocholate uptake system in oocytes. These results demonstrate that "expression cloning" represents a promising approach to ultimately clone the gene and to further characterize the molecular properties of this important hepatocellular membrane transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号