首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanogram tissue samples from apical meristems of Sinapis alba were assayed for sucrose, total soluble hexosyl equivalents ( glucose and fructose plus hexoses from sucrose hydrolysis), and total soluble glucosyl equivalents ( glucose plus glucose from sucrose hydrolysis). On dry weight basis, sucrose concentration increased by more than 50% within 10 hours after the start of either a long photoperiod or a short photoperiod displaced by 10 hours in the 24-hour cycle (`displaced short day'). (These treatments induce flower initiation) Glucose and fructose concentrations were close to zero in vegetative meristems and remained low compared to sucrose in meristems of induced plants. Within a single meristem, the peripheral and the central zones had similar concentrations of sucrose. Our results indicate that an early physiological event in floral transition is the accumulation of sucrose in the meristem.  相似文献   

2.
The involvement of nitrogenous substances in the transition to flowering was investigated in Sinapis alba and Arabidopsis thaliana (Columbia). Both species grown in short days (SD) are induced to flower by one long day (LD). In S. alba, the phloem sap (leaf and apical exudates) and the xylem sap (root exudate) were analysed in LD versus SD. In A. thaliana, only the leaf exudate could be analysed but an alternative system for inducing flowering without day‐length extension was used: the displaced SD (DSD). Significant results are: (i) in both species, the leaf exudate was enriched in Gln during the inductive LD, at a time compatible with export of the floral stimulus; (ii) in S. alba, the root export of amino acids decreased in LD, whereas the nitrate remained unchanged – thus the extra‐Gln found in the leaf exudate should originate from the leaves; (iii) extra‐Gln was also found very early in the apical exudate of S. alba in LD, together with more Glu; (iv) in A. thaliana induced by one DSD, the leaf export of Asn increased sharply, instead of Gln in LD. This agrees with Asn prevalence in C‐limited plants. The putative role of amino acids in the transition to flowering is discussed.  相似文献   

3.
M. Bodson 《Planta》1977,135(1):19-23
Vegetative plants of Sinapis alba L. were induced to flower by a single long day of 20 h or by a single short day of 8 h starting at an unusual time of the 24-h cycle (displaced short day). The soluble sugar and starch contents of the just-expanded leaf and the apical bud were measured at various times after the start of each of these two photoinductive treatments. Associated with the induction of flowering there were temporary increases in the soluble sugar and starch contents of the leaf and of the bud. These increases were apparent 14 h after the start of the long day and 12 h after the start of the displaced short day. The starch content of the bud increased later. These results indicate that an increase of the soluble sugar content of the bud is required for its transition from the vegetative to the reproductive condition.  相似文献   

4.
In plants of Sinapis alba and Arabidopsis thaliana, leaf exudate (phloem sap) was analysed during and after a single long day inducing flowering and in control short days. The amounts of carbohydrates and amino acids were measured to estimate the organic C : N ratio. In both species, the C : N ratio of the phloem sap increased markedly and early during the inductive treatment, suggesting that an inequality in organic C and N supply to the apical meristem may be important at floral transition.  相似文献   

5.
In Sinapis alba , a long-day plant (LDP) which can be induced by a single long day (LD), it has been suggested that cytokinins may be part of a multicomponent floral stimulus. In order to determine cytokinin fluxes during floral transition, we developed a technique to collect phloem sap reaching the apical part of the shoot, close to the target bud. Exudates collected from roots, leaves, and the apical part of the shoot were analysed by radioimmunoassay for cytokinins. Such analyses confirm previous observations, obtained using the Amaranthus bioassay. indicating thai cytokinin export from the roots and mature leaves is enhanced 2–5 fold during floral transition. The flux of cytokinins directed to the upper part of the shoot through the phloem is also rapidly increased (ca 1.5–2 fold) by the inductive treatment, between 9 and 25 h after start of the LD. We suggested that the shoot apical merislem of 2-month-old Sinapis plants probably has a low cytokinin level. Induced leaves rapidly produce a signal which is transported to the roots where it alters cytokinin production and/or export. In addition, or as a consequence, leaf-cytokinins are exported via the phloem to the apical meristem where they induce a mitotic peak and some other events normally associated with the floral transition.  相似文献   

6.
We monitored, for the first time, the activity of two model heterologous promoters, the Agrobacterium rhizogenes rolC and the cauliflower mosaic virus (CaMV) 35S, throughout the annual cycle of growth and dormancy in a perennial species, hybrid aspen. Each promoter was fused to the uidA -glucuronidase (GUS) reporter gene and the constructs were introduced into the hybrid aspen genome by Agrobacterium-mediated transformation. Both wildtype and transgenic plants were cultivated under different regimes of photoperiod and temperature to induce passage through one growth-dormancy-reactivation cycle, and at intervals GUS staining was assessed in stem sections. In rolC::uidA transformants, GUS activity in rapidly growing current-year shoots was not only tissue-specific, being localized to the phloem, but also cell-specific at the shoot base, where it was present only in the companion cells. However, during the onset of dormancy induced by short photoperiod, GUS activity shifted laterally from the phloem to include the cortex and pith. After subsequent exposure to chilling temperatures to induce the transition between the dormancy stages of rest and quiescence, GUS activity almost disappeared from all stem tissues, but regained its original phloem specificity and intensity after the shoots were reactivated by exposing them to long photoperiod and high temperatures. In contrast, GUS activity in the stem of 35S::uidA transformants was strong in all tissues except for the vascular cambium and xylem, and did not vary in intensity during the growth-dormancy-reactivation cycle. The lateral shift and increased intensity of GUS activity in the stem of rolC::uidA transformants during dormancy induction was shown to be associated with the accumulation of starch, and to be mimicked by incubating stem sections in sucrose, as well as glucose and fructose, but not sorbitol, prior to the GUS assay. Our results demonstrate that the activities of the rolC and 35S promoters varied in very different, unpredictable ways during the annual cycle of growth and dormancy in a perennial species, and indicate that the spatial and temporal variation in rolC promoter activity that we observed in the stem of transgenic hybrid aspen plants is attributable to cellular and seasonal changes in sucrose content.  相似文献   

7.
Sinapis alba L. was induced to flower by either a long day or a displaced short day. Following collection of leaf (phloem) and root (xylem) exudates from induced and non-induced plants, polyamines in the exudates were extracted, separated and analyzed quantitatively. The titers of free and conjugated putrescine the major polyamine fractions in all samples, increased early and markedly in leaf exudates during the floral transition, coinciding closely with movement of the floral stimulus out of the induced leaf. By contrast, putrescine titer in the root exudate did not increase. A spray of difluoromethylornithine (DFMO), an irreversible inhibitor of the putrescine-biosynthetic enzyme ornithine decarboxylase, at hour 8 of the long day considerably reduced the titer of free and conjugated putrescine in leaf exudates, and at the same time, markedly decreased the flowering response of induced plants. This effect of DFMO on flowering was substantially reversed by a simultaneous application of putrescine to the roots. DFMO sprayed on induced plants also suppressed early activation of indices of both mitosis and DNA synthesis in the shoot apical meristem. These results support the view that the extra putrescine synthesized in induced leaves is a necessary component of the floral stimulus in Sinapis.  相似文献   

8.
M. Bodson 《Planta》1985,163(1):34-37
The total adenylate pool of the apical buds of vegetative plants of Sinapis alba L. continuously grown in short days fluctuates over a 24-h cycle with the minimum occurring at the end of the dark period. In the buds of plants induced to flower by a single long-day treatment, total adenylate pool increases above the control level 16 h after the start of the long day, resulting mainly from a rise in ATP and ADP contents. This occurs 6 h after the increase in the soluble carbohydrate content previously shown to occur in the apical buds of plants induced to flower (Bodson 1977, Planta 135, 19–23). A transient rise of the energy charge occurs 22 h after the start of the inductive long day.Abbreviations LD long day - SD short day  相似文献   

9.
Unifoliated plants of Lolium temulentum L. Ceres were induced to flower by a unique 24-h long day (LD) consisting of the extension of the regular 8-h short day (SD) (400 mol photons·m–2·s–1, fluorescence + incandescence) with incandescence at 10–15 mol photonsm –2·s–1. The polyadenylated-RNA complement of leaf blade tissues was analysed at 4-h intervals during the photoperiod extension in LD vs. SD, by using two-dimensional polyacrylamide gel electrophoresis to resolve in-vitro-translated products. Of the 991 spots that were analysed, none appeared or disappeared during the inductive cycle, i.e. no qualitative effect of floral induction was detected, at any time. Sixty-eight spots were found whose intensity was influenced by lengthening of the photoperiod; 50 of them, i.e. ca. 5% of the population analysed, were affected before the end of the extension period and were thus potentially related to floral induction. Many of these RNAs were not quantitatively constant during a 24-h cycle in SD. Seven of them oscillated according to the light-on and the light-off signals, among which three seemed to be controlled by phytochrome since their relative amount increased under the standard light conditions but decreased under incandescence even faster than in darkness. The large majority of other RNAs varied with a timing that was not clearly driven by the alternation of light and darkness, indicating that genes related to the biological clock may be especially sensitive to the lengthening of the photoperiod. Furthermore, seven spots were observed that underwent a phase-shift in LD, which consisted, for six of them, of a phase advance of 4–8 h. The steady-state level of CAB mRNA was analysed because the CAB gene family (encoding the chlorophyll a/b-binding proteins of the light-harvesting complexes) is known to be controlled both by the biological clock and phytochrome. In SD, the level was high in the light and low in darkness; the fluctuation was conducted by a circadian rhythm. When plants were exposed to the inductive LD, the peak of mRNA accumulation that was expected according to the endogenous rhythmicity was abolished, possibly because of the change in light quality during the LD extension.Abbreviations CAB chlorophyll a/b-binding proteins of the light-harvesting complexes - 2D two-dimensional - LD(s) longday(s) - LDP(s) long day plant(s) - SD(s) short day(s) - SDP(s) short day plant(s) This work was supported by the University of Liège through the Action de Recherche Concertée (# 88/93-129). Some analyses were performed with the collaboration of Dr. H. Ougham, Institute of Grassland and Environmental Research, Aberystwyth, UK. The authors also want to thank Dr. F. Cremer (Max Planck Institute for Plant Breeding, Köln, Germany) for critical discussion of the results.  相似文献   

10.
In plants of Sinapis alba L. induced to flower by one long day (LD), previous work showed that the phloem sap feeding the shoot apex is enriched in cytokinins of the isopentenyladenine (iP)-type between 9 and 25 h after start of the LD [P. Lejeune et al. (1994) Physiol Plant 90:522-528]. We have checked the hypothesis that the cytokinin content of the shoot apical meristem (SAM) should increase in response to floral induction by one LD using histoimmunolocalisation techniques and rabbit antiserum against isopentenyladenosine or zeatin riboside. The free bases iP and zeatin are present only in apical tissues containing dividing cells. At 30 h after the start of an inductive LD, a markedly increased iP immune reaction is observed in SAM tissues while the level of zeatin is not modified. Our results are in line with the data obtained by analysis of phloem sap.  相似文献   

11.
12.
In order to test whether an increased export of carbohydrates by leaves and starch mobilization are critical for floral transition in Arabidopsis thaliana, the Columbia ecotype as well as its starchless mutant pgm and starch-in-excess mutant sex1 were investigated. Induction of flowering was achieved by exposure of plants to either one long day (LD) or one displaced short day (DSD). The following conclusions were drawn: (i) Both the pgm and sex1 mutants have a late-flowering phenotype in days shorter than 16 h. (ii) When inductive treatments cause a large percentage of induced plants, there is always a large, early and transient increase in carbohydrate export from leaves. By contrast, when an inductive treatment results in only a low percentage of induced plants (pgm plants exposed to one DSD), the export of carbohydrates from leaves is not increased, supporting the idea that phloem carbohydrates have a critical function in floral transition. (iii) Starch mobilization is not required to obtain an increased carbohydrate export when induction is by one LD (extended period of photosynthesis), but is absolutely essential when induction is by one DSD (period of photosynthesis unaffected). (iv) Floral induction apparently increases the capability of the leaf phloem-loading system. Received: 27 August 1997 / Accepted: 6 March 1998  相似文献   

13.
Understanding the complete picture of floral transition is still impaired by the fact that physiological studies mainly concern plant species whose genetics is poorly known, and vice versa. Arabidopsis thaliana has been successfully used to unravel signalling pathways by genetic and molecular approaches, but analyses are still required to determine the physiological signals involved in the control of floral transition. In this work, the putative role of cytokinins was investigated using vegetative plants of Arabidopsis (Columbia) induced to flower synchronously by a single 22 h long day. Cytokinins were analysed in leaf extracts, leaf phloem exudate and in the shoot apical meristem at different times during floral transition. It was found that, in both the leaf tissues and leaf exudate, isopentenyladenine forms of cytokinins increased from 16 h after the start of the long day. At 30 h, the shoot apical meristem of induced plants contained more isopentenyladenine and zeatin than vegetative controls. These cytokinin increases correlate well with the early events of floral transition.  相似文献   

14.
Shoot apices of Spinacia oleracea plants have been induced toflower either by: (a) subjecting leaves to 24 h long day, or(b) exposure to a short photoperiod but displaced by 8 h (displacedshort day) in the usual 24 h short-day cycle, or (c) exposureto low temperature (5 °C) during the dark period of thenormal short day. A quantitative cytochemical assay of pentosephosphate pathway activity during floral induction indicatesan approximate doubling of the rate of activity when comparedto that of vegetative apices (short day) (21 °C). Exposure to either low temperature, or a displaced short photoperiodstimulates pentose phosphate pathway activity in the shoot apexin a manner similar to that seen by long-day induction. Thischange in metabolic activity is accompanied by changes in theshape of the shoot apex which resembles that seen at an earlystage during floral induction. Spinacia oleracea, pentose phosphate pathway, shoot apex, glucose-6-phosphate dehydrogenase, floral induction, chilling, displaced short day  相似文献   

15.
Levels of free tryptophan in the leaves, phloem and xylem saps of Ricinus communis L. were determined by colorimetric assay. Values of 0.38 g ml-1 in root pressure sap and 96.0 g ml-1 in phloem sap were recorded. Tryptophan levels were highest in mature and senescing leaves. Levels of indoleacetic acid (IAA) in the phloem sap and leaves were determined by gas chromatography—mass spectrometry using a deuterated internal standard. A mean value of 13.0 ng ml-1 was recorded in phloem sap. The distribution in the leaves showed an inverse relationship to that of tryptophan, being highest in young leaves.Abbreviations IAA indoleacetic acid - GC-MS Gas chromatography-mass spectrometry - PFP-derivative pentafluoropropionyl-derivative - TLC thin layer chromatography  相似文献   

16.
Vegetative plants of Sinapis alba L. grown under short days were induced to flower by exposure to one long day or continuous long days. Irrespective of the number of long days, the first flower primordia were initiated by the shoot apical meristem 60 h after the start of the inductive treatment. An indirect histoimmunofluorescence technique was used to search in the apical meristem for three antigenic proteins which had been previously detected by immunodiffusion tests in the whole apical bud (Pierard et al. (1977) Physiol. Plant. 41, 254–258). One protein called protein A, present in the vegetative meristem, increased in concentration during the first 48 h following the start of the inductive treatment. It stayed constant up to 96 h and disappeared completely at a later time. Two other proteins called B and C, absent in the vegetative meristem, appeared in the meristem of induced plants between 30 and 36 h after the start of the inductive treatment and progressively accumulated at later times up to 240 h. These proteins appeared 8 h before the irreversible commitment of the meristem to produce flower primordia (point of no return) was reached and 24 h before start of flower production. These observations support an interpretation of floral evocation as consisting, at least partially, of an early and qualitative change in gene expression.Abbreviations AVB anti-vegetative-bud antiserum - ARB antireproductive-bud antiserum - IgG immunoglobulins G - TRITC tetramethylrhodamine isothiocyanate - GAR IgG goat antirabbit IgG - S0 IgG non-immune rabbit IgG  相似文献   

17.
Ormenese S  Bernier G  Périlleux C 《Planta》2006,224(6):1481-1484
A single application of cytokinin benzyladenine causes a threefold increase in the frequency of plasmodesmata in the vegetative shoot apical meristem (SAM) of Sinapis alba plants. This increase is observed 20 h after application within all cell layers (L1, L2, L3) as well as at the interfaces between these layers. Evidence is presented indicating that cytokinin promotes mainly the formation of new secondary plasmodesmata. A similar increase in the frequency of secondary plasmodesmata was observed in the Sinapis SAM during the floral transition induced by a single long day, suggesting that this effect of the long day is mediated by cytokinin.  相似文献   

18.
In many plants the transition from vegetative growth to flowering is controlled by environmental cues. One of these cues is day length or photoperiod, which synchronizes flowering of many species with the changing seasons. Recently, advances have been made in understanding the molecular mechanisms that confer photoperiodic control of flowering and, in particular, how inductive events occurring in the leaf, where photoperiod is perceived, are linked to floral evocation that takes place at the shoot apical meristem. We discuss recent data obtained using molecular genetic approaches on the function of regulatory proteins that control flowering time in Arabidopsis thaliana. These data are compared with the results of physiological analyses of the floral transition, which were performed in a range of species and directed towards identification of the transmitted floral singals.  相似文献   

19.
Flower bud initiation in seedlings and vegetatively propagated plants of Salix pentandra from different locations has been studied under controlled conditions. In mature plants flower bud formation was induced by 2-chloroethyltrimethylammoniumchloride (CCC) and by short day treatment. The effect of CCC was antagonized by GA3. The critical photoperiod for flower bud formation was about 18 h for a southern clone (from 49°48'N), but cuttings of a northern ecotype (from 69°39'N) formed flower buds even at 24 h photoperiod. Generally, flower bud formation occurred simultaneously with apical growth cessation. However, apical growth cessation was not a prerequisite for floral initiation and flower buds were also found in elongating plants. Seedlings up to 60 days old did not form flower buds in growth chamber studies. The length of the juvenile phase has not been studied in detail, but cuttings taken from seedlings approximately 20 cm high and 60 days old were able to develop flower buds when treated with CCC. A gradual transition from the juvenile to the mature phase was obtained by repeated pruning of seedlings grown at 18°C and 24 h photoperiod.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号