首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Legionella pneumophila is a Gram-negative pathogen found mainly in water, either in a free-living form or within infected protozoans, where it replicates. This bacterium can also infect humans by inhalation of contaminated aerosols, causing a severe form of pneumonia called legionellosis or Legionnaires'' disease. The involvement of type II and IV secretion systems in the virulence of L. pneumophila is now well documented. Despite bioinformatic studies showing that a type I secretion system (T1SS) could be present in this pathogen, the functionality of this system based on the LssB, LssD, and TolC proteins has never been established. Here, we report the demonstration of the functionality of the T1SS, as well as its role in the infectious cycle of L. pneumophila. Using deletion mutants and fusion proteins, we demonstrated that the repeats-in-toxin protein RtxA is secreted through an LssB-LssD-TolC-dependent mechanism. Moreover, fluorescence monitoring and confocal microscopy showed that this T1SS is required for entry into the host cell, although it seems dispensable to the intracellular cycle. Together, these results underline the active participation of L. pneumophila, via its T1SS, in its internalization into host cells.  相似文献   

3.
In this study, we examined whether virulence conversion occurs in Legionella pneumophila by conjugal transfer of chromosomal DNA. A virulent strain, K6, which has the genes for Kmr and LacZ+ transposed in the chromosome of strain Philadelphia-1, which belongs to serogroup 1, was used as one parent, and an avirulent strain, Chicago-2S, which is a spontaneous streptomycin-resistant derivative of strain Chicago-2 belonging to serogroup 6, was used as the other parent. Experiments in which K6 (approximately 2.6 x 10(9) CFU) and Chicago-2S (approximately 8.9 x 10(9) CFU) were mated typically yielded 10(3) Kmr Smr LacZ+ transconjugants. Thirty-two (about 2.8%) of 1,152 transconjugants belonging to serogroup 6 acquired the ability to grow intracellularly in Acanthamoeba castellanii and guinea pig macrophages. When guinea pigs were infected with sublethal doses of Legionella aerosols generated from one of these transconjugants (HM1011), they developed a severe pneumonia similar to that caused by donor strain K6. These results show that avirulent strain Chicago-2S changed into virulent strain HM1011 through conjugation with virulent strain K6. Furthermore, we showed that Legionella chromosomal virulence genes (icm-dot locus) were horizontally transferred by the conjugation system. The chromosomal conjugation system may play a role(s) in the evolution of L. pneumophila.  相似文献   

4.
Legionella pneumophila (Lp) is the etiological agent responsible for Legionnaires’ disease, a potentially fatal pulmonary infection. Lp lives and multiplies inside protozoa in a variety of natural and man-made water systems prior to human infection. Fraquil, a defined freshwater medium, was used as a highly reproducible medium to study the behaviour of Lp in water. Adopting a reductionist approach, Fraquil was used to study the impact of temperature, pH and trace metal levels on the survival and subsequent intracellular multiplication of Lp in Acanthamoeba castellanii, a freshwater protozoan and a natural host of Legionella. We show that temperature has a significant impact on the short- and long-term survival of Lp, but that the bacterium retains intracellular multiplication potential for over six months in Fraquil. Moreover, incubation in Fraquil at pH 4.0 resulted in a rapid decline in colony forming units, but was not detrimental to intracellular multiplication. In contrast, variations in trace metal concentrations had no impact on either survival or intracellular multiplication in amoeba. Our data show that Lp is a resilient bacterium in the water environment, remaining infectious to host cells after six months under the nutrient-deprived conditions of Fraquil.  相似文献   

5.
The homodimeric 45.6 kDa (total mass) Mip protein, a virulence factor from Legionella pneumophila, was investigated with solution NMR spectroscopy and molecular dynamics (MD) simulations. Two Mip monomers are dimerized via an N-terminal helix bundle that is connected via a long alpha-helix to a C-terminal FKBP domain in each subunit. More than 85% of the amino acids were identified in triple-resonance NMR spectra. (15)N relaxation analysis showed a bimodal distribution of R(1)/R(2) values, with the lower ratio in the N-terminal domain. Relaxation dispersion measurements confirmed that these reduced ratios did not originate from conformational exchange. Thus, two different correlation times (tau(c)) can be deduced, reflecting partly uncoupled motions of both domains. Relaxation data of a Mip(77)(-)(213) monomer mutant were similar to those observed in the dimer, corroborating that the FKBP domain, including part of the connecting helix, behaves as one dynamic entity. MD simulations (18 ns) of the Mip dimer also yielded two different correlation times for the two domains and thus confirm the independence of the domain motions. Principal component analysis of the dihedral space covariance matrix calculated from the MD trajectory suggests a flexible region in the long connecting helix that acts as a hinge between the two domains. Such motion provides a possible explanation of how Mip can bind to complex molecular components of the extracellular matrix and mediate alveolar damage and bacterial spread in the lung.  相似文献   

6.
Multicopper oxidases have been described to have functions in copper tolerance, manganese oxidation, and iron oxidation in a range of bacteria. The putative cytoplasmic membrane multicopper oxidase from Legionella pneumophila was investigated. The mcoL gene was found to be critical for aerobic extracellular growth under either iron-limiting conditions or in the presence of ferrous Fe(II) iron, as a sole source of this essential metal. The mcoL mutants showed minor growth defects when grown in the presence of Fe(III) as the iron source. In contrast, intracellular growth and survival was not affected by the absence of the mcoL gene regardless of available iron concentration. The evidence presented here could indicate a possible role for mcoL in prevention of the toxic effects of ferrous iron during aerobic conditions. However, a function in high-affinity acquisition of iron could also be possible given the inability of the McoL mutants to grow aerobically under iron-limiting conditions.  相似文献   

7.
Legionella pneumophila is an aerobic, Gram-negative bacterium of the genus Legionella, which constitutes the major causative agent of Legionnaires’ disease. Recently a nucleoside triphosphate diphosphohydrolase (NTPDase) from L. pneumophila was identified and termed Lp1NTPDase; it was found to be a structural and functional homolog of mammalian NTPDases catalyzing the hydrolysis of ATP to ADP and ADP to AMP. Its activity is believed to contribute to the virulence of Legionella pneumophila. Therefore Lp1NTPDase inhibitors are considered as novel antibacterial drugs. However, only weakly potent compounds are available so far. In the present study, a capillary electrophoresis (CE)-based enzyme assay for monitoring the Lp1NTPDase activity was established. The enzymatic reaction was performed in a test tube followed by separation of substrate and products by CE and subsequent quantification by UV analysis. After kinetic characterization of the enzyme, a series of 1-amino-4-ar(alk)ylamino-2-sulfoanthraquinone derivatives structurally related to the anthraquinone dye Reactive Blue 2, a non-selective ecto-NTPDase inhibitor, was investigated for inhibitory activity on Lp1NTPDase using the CE-based enzyme assay. Derivatives bearing a large lipophilic substituent (e.g., fused aromatic rings) in the 4-position of the 1-amino-2-sulfoanthraquinone showed the highest inhibitory activity. Compounds with IC50 values in the low micromolar range were identified. The most potent inhibitor was 1-amino-4-[phenanthrene-9-yl-amino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (28, PSB-16131), with an IC50-value of 4.24 μM. It represents the most potent Lp1NTPDase inhibitor described to date. These findings may serve as a starting point for further optimization. Lp1NTPDase inhibition provides a novel approach for the (immuno)therapy of Legionella infections.  相似文献   

8.
Chemical composition of a lipopolysaccharide from Legionella pneumophila   总被引:7,自引:0,他引:7  
Lipopolysaccharide isolated from Legionella pneumophila (Phil. 1) was examined for chemical composition. The polysaccharide split off by mild acid hydrolysis contained rhamnose, mannose, glucose, quinovosamine, glucosamine and 2-keto-3-deoxyoctonate, in molar proportions 1.6:1.8:1.0:1.5:4.1:2.7. Heptoses were absent and glucose was probably mainly phosphorylated. The carbohydrate backbone of the lipid A part consisted of glucosamine, quinovosamine and glycerol, in the molar ratios 3.9:1.0:3.4, with glycerol as a phosphorylated moiety. A complex fatty acid substitution pattern comprising eight O-ester-linked, exclusively nonhydroxylated acids, and nineteen amide-linked, exclusively 3-hydroxylated acids was revealed. Both straight- and branched (iso and anteiso) carbon chains occurred. The major hydroxy fatty acid was 3-hydroxy-12-methyltridecanoic acid and six others were of a chain-length above 20 carbon atoms, with 3-hydroxy-20-methyldocosanoic acid as the longest. Two dihydroxy fatty acids, 2,3-dihydroxy-12-methyltridecanoic and 2,3-dihydroxytetradecanoic acids, were also detected. These results suggest that L. pneumophila contains a rather complex and unusual lipopolysaccharide structure of considerable biological and chemotaxonomic interest.Abbreviations LPS lipopolysaccharide - PS polysaccharide - KDO 2-keto-3-deoxy-octonate - GC gas chromatography - GC-MS gas chromatograph-mass spectrometer combined instrument - CI chemical ionization - EI electron impact - HF hydrofluoric acid - TFA trifluoroacetyl - TMS trimethylsilyl  相似文献   

9.
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   

10.
泛素化是真核细胞特有的蛋白质翻译后修饰方式,调节真核细胞内多种重要生理过程,例如蛋白质稳态、细胞周期、免疫反应、DNA修复以及囊泡转运等。鉴于泛素化对于生命活动的重要性,病原菌在与宿主细胞的长期进化过程中衍生出一系列针对宿主泛素化过程的效应蛋白质,调控宿主体内泛素化过程,从而构建有利于病原菌自身生长繁殖的内环境。嗜肺军团菌是一种革兰氏阴性菌,是军团菌肺炎的致病菌,能够引起发热和肺部感染,重型病死率高达15%~30%。Dot/Icm Ⅳ型分泌系统是嗜肺军团菌侵染过程中最主要的毒力系统。在侵染宿主细胞的过程中,嗜肺军团菌利用该分泌系统,分泌超过330种效应蛋白质,协助细菌在宿主胞内生存、增殖和逃逸。多种嗜肺军团菌效应蛋白质通过直接或者间接的方式对宿主泛素化过程进行调控。近年的研究发现,多种效应蛋白质可以介导不同于真核生物经典泛素化的新型泛素化过程。本文介绍了嗜肺军团菌效应蛋白质介导的新型泛素化过程的最新研究进展,为理解泛素化过程在嗜肺军团菌致病过程中的重要作用提供参考依据。  相似文献   

11.
Lipopolysaccharide isolated from Legionella pneumophila was found to be a potent antigen and inducer of antibody with strong adjuvant activity for related and unrelated antigens such as sheep erythrocytes by in vivo and in vitro systems. The LPS was also a potent stimulator of blastogenic responses by spleen cells from normal mice as well as from mice immunized with inactivated whole cells of Legionella. It strongly stimulated production of interferon and interleukin 1. These results indicate that the LPS of Legionella may be an important immune regulator in the host response.  相似文献   

12.
13.
Although many bacteria are known to be naturally competent for DNA uptake, this ability varies dramatically between species and even within a single species, some isolates display high levels of competence while others seem to be completely nontransformable. Surprisingly, many nontransformable bacterial strains appear to encode components necessary for DNA uptake. We believe that many such strains are actually competent but that this ability has been overlooked because standard laboratory conditions are inappropriate for competence induction. For example, most strains of the gram-negative bacterium Legionella pneumophila are not competent under normal laboratory conditions of aerobic growth at 37 degrees C. However, it was previously reported that microaerophilic growth at 37 degrees C allows L. pneumophila serogroup 1 strain AA100 to be naturally transformed. Here we report that another L. pneumophila serogroup 1 strain, Lp02, can also be transformed under these conditions. Moreover, Lp02 can be induced to high levels of competence by a second set of conditions, aerobic growth at 30 degrees C. In contrast to Lp02, AA100 is only minimally transformable at 30 degrees C, indicating that Lp02 is hypercompetent under these conditions. To identify potential causes of hypercompetence, we isolated mutants of AA100 that exhibited enhanced DNA uptake. Characterization of these mutants revealed two genes, proQ and comR, that are involved in regulating competence in L. pneumophila. This approach, involving the isolation of hypercompetent mutants, shows great promise as a method for identifying natural transformation in bacterial species previously thought to be nontransformable.  相似文献   

14.
A cloned EcoRI fragment from Legionella pneumophila, which includes 16S and 23S rRNA genes, was used to identify bacteria belonging to the genus Legionella by hybridization to a series of species specific restriction fragments. Examination of the type strains of 28 species of legionellae gave different band patterns in every case. When further isolates of these species were tested the patterns obtained were usually either identical, or very similar, to those of the respective type strains. Thirty-one coded isolates were examined and of these 29 were allocated to the correct species. The remaining strains (a non-Legionella and a L. pneumophila) could not be identified using this technique. The rRNA gene probe method should be of great value in the identification of legionellae, particularly for those species which are at present very difficult to distinguish serologically.  相似文献   

15.
Legionella pneumophila, an environmental bacterium that parasitizes protozoa, causes Legionnaires’ disease in humans that is characterized by severe pneumonia. This bacterium adopts a distinct biphasic life cycle consisting of a nonvirulent replicative phase and a virulent transmissive phase in response to different environmental conditions. Hence, the timely and fine-tuned expression of growth and virulence factors in a life cycle–dependent manner is crucial for survival and replication. Here, we report that the completion of the biphasic life cycle and bacterial pathogenesis is greatly dependent on the protein homeostasis regulated by caseinolytic protease P (ClpP)-dependent proteolysis. We characterized the ClpP-dependent dynamic profiles of the regulatory and substrate proteins during the biphasic life cycle of L. pneumophila using proteomic approaches and discovered that ClpP-dependent proteolysis specifically and conditionally degraded the substrate proteins, thereby directly playing a regulatory role or indirectly controlling cellular events via the regulatory proteins. We further observed that ClpP-dependent proteolysis is required to monitor the abundance of fatty acid biosynthesis–related protein Lpg0102/Lpg0361/Lpg0362 and SpoT for the normal regulation of L. pneumophila differentiation. We also found that the control of the biphasic life cycle and bacterial virulence is independent. Furthermore, the ClpP-dependent proteolysis of Dot/Icm (defect in organelle trafficking/intracellular multiplication) type IVB secretion system and effector proteins at a specific phase of the life cycle is essential for bacterial pathogenesis. Therefore, our findings provide novel insights on ClpP-dependent proteolysis, which spans a broad physiological spectrum involving key metabolic pathways that regulate the transition of the biphasic life cycle and bacterial virulence of L. pneumophila, facilitating adaptation to aquatic and intracellular niches.  相似文献   

16.
Characteristics of the cytolysin of Legionella pneumophila   总被引:2,自引:0,他引:2  
A thermolabile cytolysin was purified from liquid culture of L. pneumophila. Its homogenicity was determined by the Ouchterlony double immunodiffusion and SDS-electrophoresis in polyacrylamide gel. The molecular weight of cytolysin was ca. 37 kDa. Analysis of amino acid composition revealed a high proportion of aromatic, dicarbonic amino acids, and methionine. The minimal cytolytic concentration for CHO cells and erythrocytes was ca. 1 microgram/ml: Purified cytolysin in doses of 10-60 micrograms caused haemorrhage and necrosis when injected i. c. into guinea pigs.  相似文献   

17.
18.
Continuous centrifugation of large volumes of water from natural southeastern lakes allowed quantitative detection of Legionella pneumophila by direct immunofluorescent staining. Positive samples were injected intraperitoneally into guinea pigs, and the L. pneumophila were isolated and identified by their morphological, cultural, physiological, and serological characteristics.  相似文献   

19.
The genome of the Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires'' disease, encodes two virulence-associated type 4 secretion systems (T4SSs), the Dot/Icm type 4B (T4BSS) and the Lvh type 4A (T4ASS). Broth stationary-phase cultures of most dot/icm mutants are defective in entry and evasion of phagosome acidification. However, those virulence defects can be reversed by incubating broth cultures of dot/icm mutants in water, termed water stress (WS). WS reversal requires the lvh T4ASS locus, suggesting an interaction between the two T4SSs in producing Legionella virulence phenotypes. In the current work, the loss of WS reversal in a dotA Δlvh mutant of strain JR32 was shown to be attributable to loss of the lvh virD4 gene, encoding the putative coupling protein of the T4ASS. Transformation of a dotA Δlvh mutant with virD4 also reversed entry and phagosome acidification defects in broth cultures. In addition, broth cultures of Δlvh and ΔvirD4 mutants, which were dot/icm+, showed 5-fold and >6-fold increases in translocation of the Dot/Icm translocation substrates, proteins RalF and SidD, respectively. These data demonstrate that the Lvh T4ASS functions in both broth stationary-phase cultures conventionally used for infection and cultures exposed to WS treatment. Our studies in a dotA Δlvh mutant and in a dot/icm+ background establish that VirD4 and the Lvh T4ASS contribute to virulence phenotypes and are consistent with independent functioning of Dot/Icm and Lvh T4SSs or functional substitution of the Lvh VirD4 protein for a component(s) of the Dot/Icm T4BSS.  相似文献   

20.
Continuous centrifugation of large volumes of water from natural southeastern lakes allowed quantitative detection of Legionella pneumophila by direct immunofluorescent staining. Positive samples were injected intraperitoneally into guinea pigs, and the L. pneumophila were isolated and identified by their morphological, cultural, physiological, and serological characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号