首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compounds resulting from the reaction of glucose with proteins (advanced glycation products) can be important markers of chronic diabetic complications. To test the possible diagnostic value of advanced glycation products containing the furoyl moiety, collagen samples from diabetic and healthy rats were analyzed by parent ion spectroscopy. In our study, we compared normal collagen, diabetic collagen and normal collagen incubated with different glucose concentrations and we employed different hydrolysis procedures (HCl and proteinase). Mass spectroscopic measurements performed on hydrolyzed samples showed that either different samples or different hydrolysis procedures produce a similar set of furoyl-containing compounds. 2-(2-Furoyl)-4(5)-(2-furanyl)-1H-imidazole (FFI) which has been reported to be one of the advanced glycation products, was never found in any of the samples examined. Hence neither FFI nor furoyl-containing molecules can be considered markers of advanced glycation processes.  相似文献   

2.
高级糖化终末产物(advanced glycation end product,AGE)参与了糖尿病、动脉粥样硬化、癌症等多种疾病的发生和发展,尤其是其导致的糖尿病肾病(diabetic nephropathy,DN)是终末期肾衰竭的主要病因,因此探索以AGEs为靶点的DN治疗手段成为了国内外研究的热点。本文概述了国内外关于AGE参与DN的发病机制,靶向AGE的DN治疗策略,以及天然中药基于AGE为靶点干预DN的研究进展,初步探讨了靶向AGE的DN天然药物的筛选模型。  相似文献   

3.
The reactive advanced glycation end product (AGE) precursor methylglyoxal (MGO) and MGO-derived AGEs are associated with diabetic vascular complications and also with an increase in oxidative stress. Glyoxalase-I (GLO-I) transgenic rats were used to explore whether overexpression of this MGO detoxifying enzyme reduces levels of AGEs and oxidative stress in a rat model of diabetes. Rats were made diabetic with streptozotocin, and after 12 weeks, plasma and multiple tissues were isolated for analysis of AGEs, carbonyl stress, and oxidative stress. GLO-I activity was significantly elevated in multiple tissues of all transgenic rats compared with wild-type (WT) littermates. Streptozotocin treatment resulted in a 5-fold increase in blood glucose concentrations irrespective of GLO-I overexpression. Levels of MGO, glyoxal, 3-deoxyglucosone, AGEs, and oxidative stress markers nitrotyrosine, malondialdehyde, and F2-isoprostane were elevated in the diabetic WT rats. In diabetic GLO-I rats, glyoxal and MGO composite scores were significantly decreased by 81%, and plasma AGEs and oxidative stress markers scores were significantly decreased by ~50%. Hyperglycemia induced a decrease in protein levels of the mitochondrial oxidative phosphorylation complex in the gastrocnemius muscle, which was accompanied by an increase in the lipid peroxidation product 4-hydroxy-2-nonenal, and this was counteracted by GLO-I overexpression. This study shows for the first time in an in vivo model of diabetes that GLO-I overexpression reduces hyperglycemia-induced levels of carbonyl stress, AGEs, and oxidative stress. The reduction of oxidative stress by GLO-I overexpression directly demonstrates the link between glycation and oxidative stress.  相似文献   

4.
Zhou J  Zhang Y  Lu HY 《生理科学进展》2009,40(4):372-374
高糖环境下体内积聚的晚期糖基化终产物(advanced glycation end products,AGEs)是糖尿病慢性并发症的主要致病因素.AGEs可通过对蛋白的修饰直接作用于机体或通过受体介导的作用影响机体.本文就AGEs的来源、病理生理作用,尤其是在糖尿病肾病(diabetic nephropathy,DN)发生发展中的作用及治疗干预作一综述.  相似文献   

5.
《Phytomedicine》2014,21(5):734-739
Chronic hyperglycemia leads to the formation of advanced glycation end products (AGEs), which accelerates the development of diabetic complications. Previous studies have shown that extract of Cassiae semen (CS), the seed of Cassia tora, has inhibitory activity on AGEs formation in vitro and reduces transforming growth factor-beta1 (TGF-β1) and extracellular matrix protein expression via inhibition of AGEs-mediated signaling in glomerular mesangial cells. In this study, to examine the preventive effects of CS extract on the development of diabetic nephropathy in vivo, streptozotocin (STZ)-injected diabetic rats were orally administered CS extract (200 mg/kg body weight/day) for 12 weeks. Serum glucose, triglycerides, and total cholesterol in diabetic rats were significantly higher compared to control rats. CS or aminoguanidine (AG) treatment significantly reduced these factors. Proteinuria and creatinine clearance were also significantly decreased in the CS-treated group compared with the untreated diabetic group. The CS-treated group had significantly inhibited COX-2 mRNA and protein, which mediates the symptoms of inflammation in the renal cortex of diabetic rats. Furthermore, histopathological studies of kidney tissue showed that in diabetic rats, AGEs, the receptor for AGEs, TGF-β1, and collagen IV were suppressed by CS treatment. Our data suggest that oral treatment of CS can inhibit the development of diabetic nephropathy via inhibition of AGEs accumulation in STZ-induced diabetic rats.  相似文献   

6.
7.
Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% d-Asp, a measure of the residence time of a protein). AGE (N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(carboxyethyl)lysine, and pentosidine) and % d-Asp concentrations increased linearly with age in both cartilage and skin collagen (p < 0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p < 0.0001). % d-Asp was also higher in cartilage collagen than in skin collagen (p < 0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % d-Asp (p < 0.0005). Interestingly, the slopes of the curves of AGEs versus % d-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % d-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.  相似文献   

8.
The integrity of the collagen network is essential for articular cartilage to fulfill its function in load support and distribution. Damage to the collagen network is one of the first characteristics of osteoarthritis. Since extensive collagen damage is considered irreversible, it is crucial that chondrocytes maintain a functional collagen network. We investigated the effects of advanced glycation end products (AGEs) on the turnover of collagen by articular cartilage chondrocytes. Increased AGE levels (by culturing in the presence of ribose) resulted in decreased collagen synthesis (P < 0.05) and decreased MMP-mediated collagen degradation (P < 0.02). The latter could be attributed to increased resistance of the collagen network to MMPs (P < 0.05) as well as the decreased production of MMPs by chondrocytes (P < 0.02). Turnover of a protein is determined by its synthesis and degradation rates and therefore these data indicate that collagen turnover is decreased at enhanced AGE levels. Since AGE levels in human cartilage increase approximately 50 fold between age 20 and 80, cartilage collagen turnover likely decreases with increasing age. Impaired collagen turnover adversely affects the capacity of chondrocytes to remodel and/or repair its extracellular matrix. Consequently, age-related accumulation of AGE (via decreased collagen turnover) may contribute to the development of cartilage damage in osteoarthritis.  相似文献   

9.
The increase in acid-insoluble collagen (AIC) from tail tendons of streptozotocin-diabetic rats was measured and compared with that for control rats. AIC increased from 10% initially to 75% after 12 weeks of diabetes. It then increased slowly to 85% after 45 weeks. AIC for control rats was constant for the first 12 weeks and then increased slowly to 40% after 45 weeks. These data are consistent with an increase in the number of acid-stable cross-links in the collagen due to diabetes. The quantity of collagen solubilized by pepsin at 4 degrees C was unaltered due to diabetes, strong evidence that formation of diabetes-induced cross-links between helical regions of collagen molecules cannot explain the increase in AIC observed. Non-enzymatic glycation (NEG) increased linearly over 45 weeks, but the rate of NEG was much slower than the rate of increase in AIC observed for diabetics. The level of NEG for diabetics was about three times that for controls at a given time, but there was still less than 1 mol of glucose detected/mol of collagen at near maximum acid insolubility. Fluorescence associated with tail tendons was measured to test the hypothesis that fluorescent cross-links form as a consequence of NEG and result in decreased collagen solubility. Fluorescence (lambda ex 370; lambda em 430) increased slowly with age but was similar for control and diabetic tendons of the same age. Fluorescence was not increased in AIC compared with acid-soluble collagen derived from a given tendon sample. NEG of collagen reached near-diabetic levels in non-diabetic rats whose growth was inhibited by restricted feeding, but there was no associated increase in AIC. These data suggest that NEG and the subsequent formation of fluorescent cross-links do not contribute significantly to the rapid increase in AIC in the streptozotocin-rat model of diabetes.  相似文献   

10.
Hyperglycemia-related advanced glycation end product (AGE) formation is a key mechanism in diabetic nephropathy. Since methylglyoxal (MG) is a potent AGE precursor, we aimed to assess the role of MG-related AGE formation in the progression of renal damages. A comparative study between Wistar (W, normal) and Goto-Kakizaki (GK, nonobese type 2 diabetic) rats was performed at 6 and 14 months old and after 14 weeks of MG administration to 6-month-old rats. Diabetic rats showed progressive structural, biochemical, and functional alterations, including AGE, albuminuria, and tissue hypoxia, which were partially mimicked by MG administration to young GK rats. Aged Wistar rats had an impairment of some parameters, whereas MG administration caused a phenotype similar to young GK rats, including oxidative stress, impaired apoptotic and angiogenic markers, and structural lesions. MG accumulation specifically impaired several of the renal disease markers progressively observed in diabetic rats, and thus, it contributes to the progression of diabetic nephropathy.  相似文献   

11.
目的:研究晚期糖基化终末产物(advanced glycation end products,AGE)、一氧化氮(nitric oxide,NO)在糖尿病神经病变中的作用.方法:选择69名糖尿病患者,通过是否合并周围神经病变,分为糖尿病无神经病变组39例,糖尿病合并有神经病变组30例,另外设正常对照组30例,分别测血清AGE、NO水平、胆固醇、空腹血糖、糖化血红蛋白等三组间进行比较.结果:糖尿病患者血清AGE高于正常对照组(P<0.05),糖尿病患者血清NO低于正常对照组(P<0.05).结论:AGE表达的上调可能与糖尿病神经病变的发生、发展关系密切;NO表达的下调可能与糖尿病神经病变的发生、发展关系密切.  相似文献   

12.
GLAP, glyceraldehyde-derived pyridinium-type advanced glycation end product (AGE), formed by glyceraldehyde-related glycation, was identified in the plasma protein and the tail tendon collagen of streptozotocin (STZ)-induced diabetic rats. It was detected in the plasma protein and the collagen in diabetic rats by LC-MS and LC-MS/MS analysis, but was not detected in normal rats. In addition, GLAP was formed from glyceraldehyde-3-phosphate (GA3P) with lysine as well as glyceraldehyde (GLA) with lysine in vitro. Accordingly, it is suggested that an increase in the GLAP level reflects an increase in the GLA level and the GA3P level. GLAP might be a biomarker for reduced activity of the glyceraldehyde-related enzymes in the metabolic diseases such as diabetic complications.  相似文献   

13.
14.
Studies have established hyperglycemia as the most important factor in the progress of vascular complications. Formation of advanced glycation end products (AGEs) correlates with glycemic control. The AGE hypothesis proposes that hyperglycemia contributes to the pathogenesis of diabetic complications including retinopathy. However, their role in diabetic retinopathy remains largely unknown. This review discusses the chemistry of AGEs formation and their patho-biochemistry particularly in relation to diabetic retinopathy. AGEs exert deleterious effects by acting directly to induce cross-linking of long-lived proteins to promote vascular stiffness, altering vascular structure and function and interacting with receptor for AGE, to induce intracellular signaling leading to enhanced oxidative stress and elaboration of key proinflammatory and prosclerotic cytokines. Novel anti-AGE strategies are being developed hoping that in next few years, some of these promising therapies will be successfully evaluated in clinical context aiming to reduce the major economical and medical burden caused by diabetic retinopathy.  相似文献   

15.
The deleterious effects of glycoxidation are dependent on the half-life of proteins. Collagen, the main component of extracellular matrices, is a long live protein and thus may be sensitive to the glycoxidation process. We incubated calf skin fibrous type I collagen in PBS at 37 degrees C with glucose. The fibrous type I collagen was solubilized and an increase in the amount of advanced glycation end products of the solubilized fraction was observed. As there was no bacterial contamination and no proteolytic activities in the incubation medium, the solubilization of fibrous type I collagen is probably due to the speculative production of the free radicals in our experimental conditions. To test this hypothesis, fibrous type I collagen was incubated in PBS with AAPH (2,2'azo-bis 2-aminodinopropane) a free radicals generator. AAPH induced a dramatic and dose dependent solubilization of fibrous type I collagen.  相似文献   

16.
Advanced glycation end products (AGEs) have been implicated in diabetic complications. To measure AGEs, especially N-(carboxymethyl)lysine (CML), in sera from Zucker diabetic fatty rats (ZDF) and Zucker lean rats (ZL), we used a novel method of protein chip and surface plasmon resonance imaging (SPRI). Serum samples were obtained from male ZDF and ZL rats at 20 weeks of age. Antibodies to AGEs or CML were immobilized on a gold surface, which was modified by cysteine-tagged, protein-G constructs. The gold chip upon which the serum was spotted was optically coupled with a prism coupler. The reflected images from the gold chip were obtained using a charge-coupled device (CCD) camera. The direct analysis of the glycated proteins and products using SPRI showed that AGEs and CML levels were elevated in ZDF serum, compared with ZL serum. The lowest detection limit of AGEs was 10 ng/ml, with a working range covering the physiological range. These results indicate that the protein chip and SPRI system is very suitable for the measurement of glycated proteins and end products in serum samples. This system offers high sensitivity without any fluorescent or other labeling of the components and saves a substantial amount of time, resources, and labor. Our results suggest that SPRI systems can be used as a tool to diagnose diabetic complications.  相似文献   

17.
The effects of three-month dietary xylitol supplementation on the amounts and hexose contents of acid-soluble collagen as well as on the amounts and fluorescence of collagenase-soluble collagen were studied in healthy and streptozotocin-diabetic male rats. Collagen was extracted from skin samples. In the healthy rats, supplementation with xylitol (10%) increased the hydroxyproline content of the acid-soluble fraction and skin thickness. In diabetic rats receiving and not receiving xylitol, the acid-soluble collagen fraction was markedly lower than in healthy rats. However, its amount was significantly elevated when xylitol had been added to the diet. Supplementation with xylitol caused no changes in the amounts of collagenase-soluble fraction in either healthy or diabetic rats. Supplementation with xylitol (10%) significantly decreased the hexose content of acid-soluble collagen and the fluorescence of the collagenase-soluble fraction in both healthy and diabetic rats. The results indicate that dietary xylitol affects collagen synthesis and collagen glycosylation.  相似文献   

18.
BACKGROUND: The advanced stage of the Maillard reaction, which leads to the formation of advanced glycation end products (AGE), plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. N(epsilon)-(carboxymethyl)lysine (CML) is thought to be an important epitope for many of currently available AGE antibodies. However, recent findings have indicated that a major source of CML may be by pathways other than glycation. A distinction between CML and non-CML AGE may increase our understanding of AGE formation in vivo. In the present study, we prepared antibodies directed against CML and non-CML AGE. MATERIALS AND METHODS: AGE-rabbit serum albumin prepared by 4, 8, and 12 weeks of incubation with glucose was used to immunize rabbits, and a high-titer AGE-specific antiserum was obtained without affinity for the carrier protein. To separate CML and non-CML AGE antibodies, the anti-AGE antiserum was subjected to affinity chromatography on a column coupled with AGE-BSA and CML-BSA. Two different antibodies were obtained, one reacting specifically with CML and the other reacting with non-CML AGE. Circulating levels of CML and non-CML AGE were measured in 66 type 2 diabetic patients without uremia by means of the competitive ELISA. Size distribution and clearance by hemodialysis detected by non-CML AGE and CML were assessed in serum from diabetic patients on hemodialysis. RESULTS: The serum non-CML AGE level in type 2 diabetic patients was significantly correlated with the mean fasting blood glucose level over the previous 2 months (r = 0.498, p < 0.0001) or the previous 1 month (r = 0.446, p = 0. 0002) and with HbA(1c) (r = 0.375, p = 0.0019), but the CML AGE level was not correlated with these clinical parameters. The CML and non-CML AGE were detected as four peaks with apparent molecular weights of 200, 65, 1.15, and 0.85 kD. The hemodialysis treatment did not affect the high-molecular-weight protein fractions. Although the low-molecular-weight peptide fractions (absorbance at 280 nm and fluorescence) were decreased by hemodialysis, there was no difference before and after dialysis in the non-CML AGE- and CML-peptide fractions (1.15 and 0.85 kD fractions). CONCLUSIONS: We propose that both CML and non-CML AGE are present in the blood and that non-CML AGE rather than CML AGE should be more closely evaluated when investigating the pathophysiology of AGE-related diseases.  相似文献   

19.
Advanced glycation end products (AGEs) are implicated in the development of diabetic complications via the receptor for AGEs (RAGE). We have reported that the 3-hydroxypyridinium (3HP)-containing AGEs derived from α-hydroxyaldehydes physically interact with RAGE and show cytotoxicity. Lactaldehyde (LA) is formed from a reaction between threonine and myeloperoxidase, but no LA-derived AGEs have been characterized. Here, we identify the structure and physiological effects of an AGE derived from LA. We isolated a novel 3HP derivative, 2-acetamido-6-(3-hydroxy-5-methyl-pyridin-1-ium-1-yl)hexanoate, named as N-acetyl-LAPL (lactaldehyde-derived pyridinium-type lysine adduct), from a mixture of LA with Nα-acetyl-L-lysine. LAPL was also detected in the LA-modified protein. LAPL elicited toxicity in PC12 neuronal cells, but the effect was suppressed by the soluble form of RAGE as a decoy receptor. Moreover, surface plasmon resonance-based analysis revealed that LAPL specifically binds to recombinant RAGE. These results indicate that LA generates an AGE containing the 3HP moiety and contributes to RAGE-dependent cytotoxicity.

Abbreviations: AGEs: advanced glycation end products; RAGE: receptor for advanced glycation end products; 3HP: 3-hydroxypyridinium; LA: lactaldehyde; LAPL: lactaldehyde-derived pyridinium-type lysine adduct; BSA: bovine serum albumin; GLAP: glyceraldehyde-derived pyridinium; MPO: myeloperoxidase; HFBA: heptafluorobutyric acid; TFA: trifluoroacetic acid; HPLC: high performance liquid chromatography; LC-ESI-QTOF-MS: liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry; NMR: nuclear magnetic resonance; LA-BSA: lactaldehyde-modified bovine serum albumin; PBS: phosphate buffered saline, GST, glutathione S-transferase; SPR: surface plasmon resonance; OP-lysine: 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate; GLO1: glyoxalase 1; MG, methylglyoxal  相似文献   


20.
Collagen content (mg/dl of dry weight) was measured biochemically in the extensor digitorum longus and the soleus muscle in rats. Comparison of muscles from diabetic (induced by intraperitoneal streptozotocin injection /60 mg/kg body weight/) and non diabetic controls showed an increase in the collagen content of the extensor digitorum longus, and little change in the soleus. The differences did not attain statistical significance indicating that the accelerated collagen ageing attributed to diabetes may not necessarily be true in all tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号