首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
By inactivation of different concentrations of 3-methylcrotonyl-CoA carboxylase from Achromobacter IVS with a fixed concentration of iodoacetamide, it was demonstrated that the degree of dissociation of the complex is considerably lower in the presence of 3-methylcrotonyl-CoA. ATP did not produce this effect. This property could serve to regulate the intracellular degradation of the enzyme, if the dissociated subunits were attacked preferentially.  相似文献   

2.
  1. Download : Download high-res image (201KB)
  2. Download : Download full-size image
  相似文献   

3.
The biotin enzyme, 3-methylcrotonyl-CoA carboxylase (MCCase) (3-methylcrotonyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1. 4), catalyzes a pivotal reaction required for both leucine catabolism and isoprenoid metabolism. MCCase is a heteromeric enzyme composed of biotin-containing (MCC-A) and non-biotin-containing (MCC-B) subunits. Although the sequence of the MCC-A subunit was previously determined, the primary structure of the MCC-B subunit is unknown. Based upon sequences of biotin enzymes that use substrates structurally related to 3-methylcrotonyl-CoA, we isolated the MCC-B cDNA and gene of Arabidopsis. Antibodies directed against the bacterially produced recombinant protein encoded by the MCC-B cDNA react solely with the MCC-B subunit of the purified MCCase and inhibit MCCase activity. The primary structure of the MCC-B subunit shows the highest similarity to carboxyltransferase domains of biotin enzymes that use methyl-branched thiol esters as substrate or products. The single copy MCC-B gene of Arabidopsis is interrupted by nine introns. MCC-A and MCC-B mRNAs accumulate in all cell types and organs, with the highest accumulation occurring in rapidly growing and metabolically active tissues. In addition, these two mRNAs accumulate coordinately in an approximately equal molar ratio, and they each account for between 0.01 and 0.1 mol % of cellular mRNA. The sequence of the Arabidopsis MCC-B gene has enabled the identification of animal paralogous MCC-B cDNAs and genes, which may have an impact on the molecular understanding of the lethal inherited metabolic disorder methylcrotonylglyciuria.  相似文献   

4.
5.
Inherited deficiency of 3-methylcrotonyl-CoA carboxylase (MCC), an enzyme of leucine degradation, is an organic acidemia detectable by expanded newborn screening with a variable phenotype that ranges from asymptomatic to death in infancy. Here, we show that the two subunits of the enzyme (MCCalpha; MCCbeta) are imported into the mitochondrial matrix by the classical pathway involving cleavable amino-terminal targeting presequences. We identified the cleavage sites (Tyr41/Thr42 and Ala22/Tyr23 for MCCalpha and MCCbeta, respectively) of the targeting signals and the amino-termini of the mature polypeptides of MCC and propionyl-CoA carboxylase, a mitochondrial paralog. The amino-termini containing 39 (MCCalpha) or 20 amino acids (MCCbeta) were both necessary and sufficient for targeting. Structural requirements for mitochondrial import were defined by site-directed mutagenesis. Our studies provide the prerequisite to understand the impact of specific mutations on the clinical phenotype of MCC deficiency.  相似文献   

6.
Acetyl-CoA carboxylase is the sole biotin enzyme previously reported in plants. Western analysis with 125I-streptavidin of proteins extracted from carrot somatic embryos visualized six biotin-containing polypeptides, the relative molecular masses of which are 210,000, 140,000, 73,000, 50,000, 39,000, and 34,000. This multiplicity of the biotin-containing polypeptides can be partly explained by the discovery of 3-methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase, and pyruvate carboxylase in extracts of somatic carrot embryos, biotin enzymes previously unknown in the plant kingdom. These biotin enzymes seem to be widely distributed in the plant kingdom.  相似文献   

7.
The current study reports the use of baculovirus system to express functionally active human recombinant 3-methylcrotonyl-CoA carboxylase (MCCC), a heteromultimeric complex that is composed of alpha and beta subunits which are encoded by distinct genes. Using immuno-affinity purification, an efficient protocol has been developed to purify the active MCCC which appears to reside in a approximately 500-800kDa complex in Superpose-6 gel-filtration chromatography. Consistent with the native enzyme, in the recombinant human MCCC, the stoichiometry of alpha and beta subunits are at a one:one ratio. The k(cat) value of the recombinant enzyme is determined to be approximately 4.0s(-1). It also possesses K(m) values (ATP: 45+/-11microM; 3-methylcrotonyl-CoA: 74+/-7microM) similar to those reported for the native enzyme. The recombinant human MCCC described here may provide a counter-screen enzyme source for testing cross reactivity for inhibitors against acetyl-CoA carboxylases which are designed to treat obesity, type 2 diabetes and other metabolic disorders.  相似文献   

8.
To evaluate the ability of ependymal, microglial and oligodendroglial cells to degrade leucine, the presence of 3-methylcrotonyl-CoA carboxylase (MCC) was investigated in cultures of these cells. MCC is a biotin-containing heterodimeric enzyme that is specific for the irreversible part of the leucine catabolic pathway. It has been reported previously that in cell culture MCC is expressed in astrocytes and a subpopulation of neurones. In the present study ependymal, microglial and oligodendroglial cell cultures, derived from the brains of newborn rats, were examined for the expression of MCC by RT-PCR, western blotting and immunocytochemistry. The results of RT-PCR and western blotting showed the presence of mRNA as well as protein of both subunits of MCC in ependymal, microglial and oligodendroglial cell cultures. Immunocytochemical investigation of the cellular and subcellular distribution of MCC demonstrated a mitochondrial location of MCC in all neuroglial cell types investigated. The ubiquitous expression of MCC in glial cells demonstrates the ability of the cells to engage in the catabolism of leucine transported into the brain, mainly for the generation of energy.  相似文献   

9.
The highly active form of collagenase (EC 3.4.24.3) from Achromobacter iophagus (specific activity 2 microkat/mg) has a molecular weight of 70,000 and the sedimentation coefficient s20,2 = 4.4 S. It is composed of two subunits of molecular weight 35,000 and s20,w of 2.9 S. The dissociation of the dimer under different conditions resulted in the complete and irreversible loss of enzymic activity. A unique N-terminal sequence Thr-Ala-Ala-Asp-Leu-Glu-Ala-Leu-Val- indicates that the two subunits are identical, at least in the N-terminal part of the polypeptide chain. Reduction and pyridylethylation of the subunit change neither molecular weight nor amino acid composition: therefore each subunit of molecular weight 35,000 consists of a single polypeptide chain. Another active and homogeneous form of Achromobacter collagenase (specific activity 1.64 microkat/mg) gives a value for the apparent molecular weight of 80,000 on sodium dodecyl sulphate-polyacrylamide electrophoresis. It is also a dimer in which each of the two subunits of molecular weight 35,000 binds non-covalently a peptide of molecular weight 5000. The dissociation of this form of collagenase is also accompanied by irreversible loss of enzymic activity. The amino acid composition of the subunits which were isolated from both 70,000 and 80,000 collagenases is the same. The role of dimer-monometer equilibrium in the biological function of collagenase is discussed.  相似文献   

10.
11.
ABSTRACT: BACKGROUND: Isolated 3-methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive disorder of leucine metabolism caused by mutations in MCCC1 or MCCC2 encoding the alpha and beta subunit of MCC, respectively. The phenotype is highly variable ranging from acute neonatal onset with fatal outcome to asymptomatic adults. METHODS: We report clinical, biochemical, enzymatic and mutation data of 88 MCC deficient individuals, 53 identified by newborn screening, 26 diagnosed due to clinical symptoms or positive family history and 9 mothers, identified following the positive newborn screening result of their baby. RESULTS: Fifty-seven percent of patients were asymptomatic while 43% showed clinical symptoms, many of which were probably not related to MCC deficiency but due to ascertainment bias. However, 12 patients (5 of 53 identified by newborn screening) presented with acute metabolic decompensations. We identified 15 novel MCCC1 and 16 novel MCCC2 mutant alleles. Additionally, we report expression studies on 3 MCCC1 and 8 MCCC2 mutations and show an overview of all 132 MCCC1 and MCCC2 variants known to date. CONCLUSIONS: Our data confirm that MCC deficiency, despite low penetrance, may lead to a severe clinical phenotype resembling classical organic acidurias. However, neither the genotype nor the biochemical phenotype is helpful in predicting the clinical course.  相似文献   

12.
Physical-chemical studies of pyruvate carboxylase from Pseudomonas citronellolis demonstrate that the enzyme has an alpha 4 beta 4 structure. The individual polypeptides, alpha (Mr = 65,000) and beta (Mr = 54,000), were separated and isolated by preparative gel electrophoresis. Analysis of the relationship between Coomassie blue staining and protein quantity for each polypeptide indicated that the alpha and beta subunits are present in a 1:1 stoichiometry in the native enzyme. Determinations of the molecular weight of the protein by sedimentation equilibrium (Mr = 454,000), gel filtration analysis (Mr = 510,000), disc gel electrophoresis (Mr = 530,000), and mass measurement from the Scanning Transmission Electron Microscope (Mr = 530,000) are consistent with the proposed alpha 4 beta 4 structure. Disc gel electrophoresis studies revealed that under certain circumstances the enzyme may dissociate to a smaller molecular weight species (Mr = 228,000). This dissociation phenomenon could explain the earlier reported observation of Taylor et al. ((1972) J. Biol. Chem 22, 7388-8390) that the enzyme had a molecular weight of 265,000. Evidence from electron microscopic studies shows that the three-dimensional structure of this enzyme is quite distinct from other species of pyruvate carboxylase. The enzyme does not show the typical rhombic appearance which has been noted for chicken liver, sheep liver, and yeast pyruvate carboxylase.  相似文献   

13.
Deficiency of 3-methylcrotonyl-CoA carboxylase (MCC) results in elevated excretion of 3-methylcrotonylglycine (3-MCG) and 3-hydroxyisovaleric acid (3-HIVA). MCC is a heteromeric mitochondrial enzyme comprising biotin-containing alpha subunits and smaller beta subunits, encoded by MCCA and MCCB, respectively. Mutations in these genes cause isolated MCC deficiency, an autosomal recessive disorder with a variable phenotype that ranges from severe neonatal to asymptomatic adult forms. No reported patients have responded to biotin therapy. Here, we describe two patients with a biochemical and, in one case, clinical phenotype of MCC deficiency, both of whom were responsive to biotin. The first patient presented at 3 months with seizures and progressive psychomotor retardation. Metabolic investigation at 2 years revealed elevated excretion of 3-MCG and 3-HIVA, suggesting MCC deficiency. High-dose biotin therapy was associated with a dramatic reduction in seizures, normalization of the electroencephalogram, and correction of the organic aciduria, within 4 weeks. MCC activity in fibroblasts was 25% of normal levels. The second patient, a newborn detected by tandem-mass-spectrometry newborn screening, displayed the same biochemical phenotype and remained asymptomatic with biotin up to the age of 18 months. In both patients, sequence analysis of the complete open reading frames of MCCA and MCCB revealed heterozygosity for MCCA-R385S and for the known polymorphic variant MCCA-P464H but revealed no other coding alterations. MCCA-R385S is unusual, in that it has a normal amount of MCC alpha protein but confers no MCC activity. We show that MCCA-R385S, but not other MCCA missense alleles, reduces the MCC activity of cotransfected MCCA-wild-type allele. Our results suggest that MCCA-R385S is a dominant negative allele and is biotin responsive in vivo.  相似文献   

14.
15.
Monoclinic crystal structure of C-terminal desundecapeptide nitrite reductase (NiRc-11) from Achromobacter cycloclastes was determined at 2.6A. NiRc-11 exists as a loose trimer in the crystal. Deletion of 11 residues eliminates all intersubunit hydrogen bonds mediated by the C-terminal tail. The rigid irregular coil 105-112, which constitutes part of the sidewall of the active site pocket, undergoes conformational changes and becomes highly flexible in NiRc-11. Correspondingly, the linker segments between the two copper sites 95-100 and 135-136 are partly relaxed in conformation, which leads to disrupted active site microenvironments responsible for the activity loss and spectral change of NiRc-11. Comparison with the native structure revealed a bulky residue Met331 fastened by hydrogen bonding, which may play a direct role in keeping the right copper site geometry by protruding its side chain against the irregular coil 105-112. Sequence alignment showed that the bulky residue is conserved at position 331, indicating an equal importance of C-terminal segment in other copper-containing nitrite reductases.  相似文献   

16.
The copper-containing nitrite reductase of Achromobacter cycloclastes has been considered to be a homotrimer with three identical subunits both in the crystal and in solution. In this study, however, the enzyme was found to be a heterotrimer consisting of two subunits with molecular masses of 37 kDa and 36.2 kDa, and the 37 kDa subunit was 6 amino acid residues longer than the smaller subunit. Signal-peptide cleavage sites in its N-terminal region are discussed.  相似文献   

17.
18.
The subunit structure of rat liver acetyl-coenzyme-A carboxylase has been studied by polyacrylamide gel electrophoresis in the presence of dodecylsulfate. A number of individual preparations of the enzyme purified by the same procedures exhibited three different types of electrophoretic patterns as follows: first, a single slow-moving protein bands (Mr 230000); secondly, two adjacent fast-moving protein band (M4 124000 and 118 000); finally, all three protein bands. With the use of the [14C]biotin-labelled enzyme, the biotinyl prosthetic group was shown to be associated with the polypeptide of 230000 Mr as well as with that of 124000 Mr, but not with the polypeptide of 118000 Mr. Studies were next made with the labelled enzyme to examine the possibility that the two light polypeptides might have been formed by proteolytic modification of the heavy polypeptide during the procedures used for the purification of the enzyme. Treatment of the enzyme with trypsin or chymotrypsin resulted in cleavage of the heavy polypeptide into two nonidentical polypeptides with molecular weights of approximately 120000. Incubation of the enzyme with proteases derived from rat liver converted the heavy polypeptide into lighter polypeptides of 80000-130000 Mr. Acetyl-CoA carboxylase isolated from crude rat liver extracts by means of immunoprecipitation with specific antibody invariably showed only the heavy polypeptide. The biotin content of the enzyme was found to be 1 mol per 237000 g protein. These results indicate that rat liver acetyl-CoA carboxylase, unlike bacterial and plant biotin enzymes, has only one kind of subunit, which has a molecular weight of 230000 and contains one molecular of biotin. Thus, the mammalian enzyme exhibits a highly integrated subunit structure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号