首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
谷氨酸是介导中枢神经系统快速兴奋性传导的一种重要递质.以往人们仅注意到神经元通过释放谷氨酸来调节其可塑性,而近年来发现脑中远超出神经元10倍的星形胶质细胞同样能释放谷氨酸并参与神经系统的调节及多种脑损伤性疾病的发生发展过程.目前主要包括Ca2 依赖性释放及非Ca2 依赖性释放两大方面,涉及5种机制:(1)Ca2 依赖性胞吐释放;(2)谷氨酸转运体逆向转运假说;(3)膨胀诱导的阴离子通道假说;(4)连接蛋白半通道假说;(5)嘌呤受体假说.  相似文献   

2.
星形胶质细胞和神经元之间谷氨酸-谷氨酰胺的代谢偶联   总被引:16,自引:0,他引:16  
Yang XY  Li Z  Qin LY 《生理科学进展》2003,34(4):350-352
谷氨酸-谷氨酰胺循环是星形胶质细胞和神经元代谢偶联最重要的途径之一。在中枢神经系统中葡萄糖经糖酵解和三羧酸循环,合成三羧酸循环的中间产物。神经元因缺乏丙酮酸羧化酶,不能由葡萄糖直接合成谷氨酸,而必须依赖于星形胶质细胞的三羧酸循环来产生作为谷氨酸前体的三羧酸循环中间代谢产物。星形胶质细胞的谷氨酸载体从突触间隙摄取谷氨酸,在星形胶质细胞中转变成谷氨酰胺并释放到细胞外,然后重新被神经元摄取,转变成谷氨酸进入新一轮的循环。本文介绍了该循环,以及星形胶质细胞谷氨酸载体的功能、特性及调控。  相似文献   

3.
癫痫(Epilepsy)是一种常见的慢性神经系统疾病,长期反复发作会逐渐损害患者的认知功能并且导致多种共患疾病.癫痫发病机制复杂,其中谷氨酸代谢异常与癫痫发病关系密切.谷氨酸-谷氨酰胺循环是调节谷氨酸代谢的主要途径,谷氨酸转运体和星形胶质细胞在其中发挥重要作用.因此,本文主要探讨星形胶质细胞及谷氨酸转运体对癫痫的影响.  相似文献   

4.
为研究金属离子诱导下感受态细胞形成的机理及揭示转化发生的机制,分别用Ca~(2+)和Sr~(2+)(0~140mmol/L)制备大肠埃希菌感受态细胞并转化。研究结果表明,不同浓度的Ca~(2+)和Sr~(2+)诱导的感受态细胞的效价不同,两种金属离子对大肠埃希菌细胞内外膜的通透性均有较大影响,但细胞内外膜的改变程度与转化率无直接关系;电镜结果显示,未处理的细胞呈簇聚集发生粘连现象,感受态细胞整体呈分散状态,局部发生聚集,而转化后的细胞独立存在,边缘异常清晰。  相似文献   

5.
NMDA受体和长时程增强   总被引:1,自引:1,他引:0  
近年来,N-甲基-D-门冬氨酸(NMDA)受体在突触可塑性形式——长时程增强(long-term potentiation,LTP)中的作用及该受体被激活后的细胞内级联反应备受人们的关注.人们利用拮抗剂技术和基因敲除的方法,对其进行了广泛的研究,并且就LTP的诱导和维持方面获得了一些进展.已获得的这些研究结果为LTP的突触前及突触后机制提供了有力的证据.  相似文献   

6.
ATP和ADP能激活多型核白细胞引起细胞内[Ca2+i的明显升高,AMP则无此作用.多型核白细胞对ATP和ADP具有不同的浓度依赖性.当细胞外的钙离子被螯合后,ATP和ADP仍能引起细胞内游离钙浓度的升高.结果表明多形核白细胞存在着对ATP和ADP敏感的P2型嘌呤受体,并且属于P2型受体中的P2Y亚类.  相似文献   

7.
用单细胞阳离子测定系统研究了SeO2-3对巨噬细胞内游离Ca2+和Mg2+的影响.实验结果表明:SeO2-3高于10-4mol/L时,有显著的细胞毒性.SeO2-3对细胞的毒性作用使细胞内游离Ca2+和Mg2+的浓度升高但Ca2+浓度的升高速率比Mg2+快.还有,高于10-4mol/L的SeO2-3对红细胞膜上的Ca2+-ATP酶活性有明显抑制作用.  相似文献   

8.
用生化测定法首次证实豚鼠精子质膜Ca2+-ATPase活性在精子获能和顶体反应过程中显著下降.Ca2+-ATPase抑制剂利尿酸(ethacrynic acid)抑制质膜Ca2+-ATPase活性,但钙调素(50μg/mL)的拮抗剂三氟拉嗪(TFP,200~500μmol/L)对该酶活性没有影响,说明钙调素不直接参与精子依赖于ATP的Ca2+的主动泵出.但钙调素与精子的Ca2+内流有关,钙调素拮抗剂TFP显著促进精子顶体反应和精子对Ca2+的摄入.Ca2+-ATPase抑制剂栎皮酮(quercetin)、原钒酸钠(sodiumorthovandate)、利尿磺胺(furosemide)和利尿酸均显著促进豚鼠精子的顶体反应,但却抑制精子对Ca2+的摄入,这无法用它们对质膜Ca2+-ATPase活性的抑制作用解释.推测这可能是由于Ca2+-ATPase抑制剂在抑制质膜Ca2+-ATPase活性的同时也抑制了顶体外膜或线粒体外膜上的该酶的活性,导致Ca2+在细胞质内的积累,进而通过负反馈机制抑制Ca2+进一步内流所致.另外,Ca2+-ATPase抑制剂对糖酵解的抑制作用也可能是Ca2+在细胞质中积累和抑制精子Ca2+摄入的原因.  相似文献   

9.
本文以星形神经胶质细胞为对象,用同位素示踪技术较详细地研究了介质中Na、、K~+和CL~-、不同浓度的卡因酸以及几种抑制剂对L-谷氨酸摄取的影响;并观察了L-谷氨酸对星形神经胶质细胞膜运输Na~+、K~+、Cl~-和Ca~(2+)等的作用.结果表明:L-谷氨酸的摄取依赖于介质中是否存在Na~+ ,在缺Na~+介质中对Cl~-的依赖性也较明显,但在正常Na~+浓度下,含Cl~_和缺Cl~_没有明显差别.当增加介质中K~+浓度引起膜的去极化时,则能降低L~_谷氨酸的摄取.反过来,L-谷氨酸的摄取也对Na~+、K~+、Cl~-等的运输起刺激作用.此外,卡因酸及所用的几种抑制剂对谷氨酸的摄取办有明显抑制作用.  相似文献   

10.
川楝素是我国学者从驱蛔中药中分离、鉴定的一个三萜化合物,已证明具选择地影响神经递质释放,有效地对抗肉毒中毒,促进细胞分化、凋亡,抑制肿瘤增殖,抑制昆虫发育和取食,影响K+、Ca2+通道活动等多种生物效应. 综述了证明川楝素抑制多种K+通道,选择地易化L型Ca2+通道和进而升高胞内Ca+浓度的研究资料,并对川楝素产生这些生物效应的机制进行了讨论.  相似文献   

11.
镉胁迫下小麦根尖分生细胞中Ca2+分布的变化   总被引:5,自引:0,他引:5  
运用透射电镜细胞化学方法对镉胁迫下小麦极尖分生细胞中Ca^2 分布的变化进行了观察。在正常生长条件下,Ca^2 广泛分布于细胞质,细胞核,细胞间隙中,特别是液泡中有大量的Ca^2 ;在镉胁迫条件下,细胞质基质内Ca^2 减少,而细胞核,质膜与细胞壁之间,细胞壁中Ca^2 明显增多,细胞液泡化,液泡中仍有较多Ca^2 。结果表明,Cd^2 引起细胞中原有Ca^2 分布发生明显变化。这很可能引起细胞生理功能紊乱。进而影响植物的生长。  相似文献   

12.
为探讨星形胶质细胞在癫痫发作中的作用,用肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)刺激纯化培养的海马星形胶持细胞,将此条件培养基(astrocytic conditioned medium,ACM)10μl注入大鼠侧脑室,观察动物的行为,脑电图及杏仁核内谷氨酸(glutamic acid,Glu)免疫组织化学反应。结果表明,侧脑室注射ACM可引起大鼠癫痫样发作,脑电图出现阵发性痫样放电;杏仁核内Glu免疫阳性反应增强,经多媒体彩色病理图分析系统(MPIAS)检测。阳性细胞面密度和平均光密度高于对照组,本实验为星形胶质细胞在癫痫复发中的作用机理提供了直接的依据。  相似文献   

13.
钙和钙离子载体A23187对水稻早期胚胎离体发育的影响   总被引:4,自引:0,他引:4  
研究了不同浓度的钙(Ca^2 )和钙离子载体A23187对水稻早期胚胎离体发育的影响。结果表明:(1)Ca^2 对授粉后3~5d水稻胚胎离体发育的调控具有时间和浓度效应。培养基中不含Ca^2 或Ca^2 浓度较高(10^-1mol/L)时,3d原胚离体分裂和生长完全受到抑制;4~5d早期分化胚受到一定程度的影响;而Ca^2 浓度为10^-3mol/L时,不同时期的水稻胚胎均表现出最佳的生长速度和最高的离体胚胎发生频率;在相同的钙浓度条件下,胚龄越大,胚胎发生频率及总诱导频率越大。(2)A23187影响水稻胚胎的离体生长和形态发生:胚胎越小,影响越大;浓度越高,抑制作用越强。  相似文献   

14.
采用正交实验研究了外加Ca2+和La3+对酿酒酵母生长的影响。结果表明:外加Ca2+和La3+对酿酒酵母的生长均有显著的影响,都呈现出低浓度时正效应和高浓度时负效应,当Ca2+浓度为1mmol/L及La3+浓度为15μmol/L时酿酒酵母生长最好。  相似文献   

15.
李坤  王永章  屈海泳 《西北植物学报》2018,38(11):2138-2147
该研究采用负压渗透技术,以正常培养2 h的丰水梨花粉为实验材料,探索负压渗透条件下,花粉管中加载Ca2+荧光探针(Fluo 4/AM)的方法。结果显示:(1)将花粉及花粉管进行负压处理2 h,花粉萌发率及花粉管的活性没有受到影响。(2)对培养2 h后的花粉管进行不同条件下的负压渗透处理,辅助荧光探针Fluo 4/AM进入花粉管;激光共聚焦显微镜观察发现,在低温(4 ℃)条件下,负压(-80 kPa)渗透加载荧光探针30 min,花粉管尖端可以观察到明显的Ca2+梯度。(3)抑制花粉管外Ca2+内流或降低花粉管外Ca2+浓度,花粉管中荧光密度也显著降低。研究认为,负压渗透辅助加载的方法可以有效促进荧光探针进入花粉管细胞内与Ca2+结合。  相似文献   

16.
目的探讨星形胶质细胞对大鼠脑内谷氨酸(Glu)和γ-氨基丁酸(GABA)的影响及其在癫痫发病中的作用。方法将马桑内酯激活的星形胶质细胞条件培养液(astrocyte-conditioned medium,ACM)注射入正常SD大鼠侧脑室,观察大鼠的行为变化,运用免疫组织化学及HPLC的方法,观察大鼠大脑皮质、海马内Glu和GABA免疫反应的变化及脑组织匀浆、脑脊液内Glu和GABA含量的变化。结果ACM组大鼠在注射ACM后30min出现癫痫行为,2h恢复正常。免疫组织化学显示:ACM作用后2h,大鼠大脑皮质及海马内Glu免疫反应阳性神经元数和平均光密度值明显增高,4h达高峰(P<0.05),12h恢复正常水平;ACM作用后2h,大鼠大脑皮质及海马GABA免疫反应阳性神经元数和平均光密度值明显减弱(P<0.05),12h恢复正常水平。HPLC方法显示:ACM作用后2h大鼠大脑皮质、海马及脑脊液中Glu含量均开始增加,4h达高峰(P<0.05);ACM作用后2h大脑皮质、海马及脑脊液中GABA含量均开始降低,4h达最低(P<0.05)。结论马桑内酯激活的星形胶质细胞条件培养液可影响大鼠脑内Glu和GABA的表达,并导致动物痫性发作。  相似文献   

17.
肌浆网钙泵蛋白的结构和功能及其蛋白单体的特性   总被引:1,自引:0,他引:1  
肌浆网是细胞钙平衡的主要调节单位之一,是胞浆钙离子浓度异常的重要研究对象。肌浆网结构组成简单,便于分离纯化,是理想的生物膜研究模型。本文介绍了肌浆网钙泵蛋白的分子结构、钙转运分子机制和钙泵蛋白的聚集状态及磷脂结构与钙转运的关系。  相似文献   

18.
Ca2+循环的变化是心肌线粒体受损伤的敏感指标   总被引:1,自引:0,他引:1  
在氧自由基的作用下,心肌线粒体Ca2+循环、膜脂的物理状态、氧化磷酸化效率(ADP/O)、呼吸控制率(RCR)值及跨膜电位差都发生了明显的变化.如果将体系中氧自由基的强度减弱到一定程度,心肌线粒体膜脂物理状态与能量转换功能的改变已不显著,但其Ca2+循环的变化仍很明显.此外,在解偶联或呼吸抑制条件下,心肌线粒体Ca2+转运功能仍未完全消失;此时,Ca2+循环的幅值约为对照的60%~70%,表明线粒体 Ca2+转运并非完全依赖于其呼吸链的功能,而可能与非H~+梯度所形成的膜电位差有关.氧自由基对这部分Ca2+转运仍有明显影响的结果提示,后者可能是线粒体结构与功能损伤更为敏感的指标.  相似文献   

19.
以‘博辣红牛’辣椒为材料,研究外源Ca~(2+)连续喷施不同天数对淹水胁迫下辣椒幼苗农艺性状和生理指标的影响,探讨Ca~(2+)对辣椒淹水胁迫伤害的缓解作用和适宜的喷施处理天数。结果显示:(1)辣椒幼苗生物量、壮苗指数、叶绿素、根系活力、脯氨酸、可溶性糖以及CAT和SOD活性随施Ca~(2+)天数的增加呈先升高后下降的趋势,MDA含量随施Ca~(2+)天数的增加呈先下降后上升的趋势。(2)施Ca~(2+)1d(T1d)处理对辣椒淹水胁迫伤害无明显缓解作用,连续施Ca~(2+)3d(T3d)和6d(T6d)处理的缓解效果不断增强,至连续施Ca~(2+)9d(T9d)时缓解效果达到最佳,随后连续施Ca~(2+)12d(T12d)和20d(T20d)处理的缓解效果又逐渐减弱,但仍显著优于T1d处理。研究表明,外源Ca~(2+)可以诱导增加淹水胁迫下辣椒幼苗渗透调节物质含量,上调抗氧化酶活性,降低叶绿素的降解,大幅提高根系活力,从而缓解淹水胁迫所造成的各种伤害,增强其忍耐淹水胁迫能力,并以连续施钙9d对淹水胁迫的缓解效果最佳。  相似文献   

20.
利用脱硫废弃物改良盐碱地对于确保国家粮食安全和生态安全,发展循环经济具有重要意义。为了探索脱硫废弃物提高植物抗盐碱机理,采用盆栽试验法, 研究了施入不同量脱硫废弃物和CaSO4对碱胁迫下油葵叶片细胞钙分布、总钙含量以及质膜和液泡膜Ca2+-ATPase活性的影响。结果表明:在碱胁迫下(CK),Ca2+与焦锑酸钾结合成黑色颗粒成团零星分布于叶绿体和液泡中,叶绿体超微结构受到不同程度的破坏。施入脱硫废弃物和CaSO4,叶绿体结构完整,细胞间隙、细胞壁和液泡中的钙颗粒逐渐增多,同时,质膜和液泡膜Ca2+-ATPase活性随脱硫废弃物和纯品硫酸钙施量的增加而增加,其中液泡膜Ca2+-ATPase活性无论是对照(CK)还是处理的活性均高于质膜Ca2+-ATPase活性。叶片细胞内总钙含量也随脱硫废弃物和CaSO4施用量的增加呈升高趋势。说明脱硫废弃物和CaSO4通过增加Ca2+-ATPase活性,有利于钙通过质膜和液泡膜进入细胞内,维持膜结构的稳定性,缓解碱对油葵的胁迫。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号