首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pseudonaja textilis, an Australian Elapid, is known to produce a highly toxic venom. Both protein profiling and N-terminal sequence analysis showed the presence of four new phospholipases A(2) in this venom. Besides being non-lethal, the phospholipase A(2) proteins were found to be moderately active enzymes and they showed procoagulant property. cDNA cloning and characterization indicated the presence of two isoforms of PLA(2) proteins in a single snake, each containing the "pancreatic loop," characteristic of group IB phospholipase A(2). The genomic cloning also confirmed the presence of two genes each containing four exons that are interrupted by three introns. Phylogenetic analysis showed that the venom group IB PLA(2) gene is primitive and could have evolved from the same ancestor as the mammalian and venom group IA PLA(2) genes. In the present study, we report that the Pt-PLA2 gene could be responsible for the production of PL1, 2, and 3 possibly via RNA editing process.  相似文献   

2.
The full-length cDNAs encoding two toxic phospholipases A2 (AP-PLA2-I and -II) from the crown-of-thorns starfish Acanthaster planci venom were individually cloned by RT-PCR, 3'RACE and 5'RACE. In common with both AP-PLA2s, the precursor protein is composed of a signal peptide, a propeptide and a mature protein (136 and 135 residues for AP-PLA2-I and -II, respectively). The four motifs (Ca2+-binding loop, Ca2+-binding site, active site and catalytic network) characteristic of groups I and II PLA2s are well conserved in both AP-PLA2s. In addition to this, the presence of the elapid and pancreatic loops and the involvement of a propeptide in the precursors suggested that AP-PLA2s are highly analogous to the group IB PLA2s. However, when compared to the amino acid sequence of bovine pancreatic PLA2, the representative group IB PLA2, AP-PLA2s require some amino acid insertions and deletions in the region 76-100, as previously observed for the starfish Asterina pectinifera PLA2s. Furthermore, the phylogenetic tree made clearly demonstrated that AP-PLA2s and A. pectinifera PLA2s are distinguishable from the group IB PLA2s as well as other PLA2s, being classified into a new group.  相似文献   

3.
To determine whether the ability to induce neurite outgrowth in rat pheochromocytoma cell line PC12 is characteristic of phospholipases of different types, we have studied the influence of phospholipase A(2) (PLA2) from cobra Naja kaouthia venom and two PLA2s from viper Vipera nikolskii venom on PC12 cells. Phospholipases from the viper venom are heterodimers in which only one of the subunits is enzymatically active, while PLA2 from the cobra venom is a monomer. It was found that all three PLA2s induce neurite outgrowth in PC12. The PLA2 from cobra venom exhibits this effect at higher concentrations as compared to the viper enzymes. We have not observed such an activity for isolated subunits of viper PLA2s, since the enzymatically active subunits have very high cytotoxicity, while the other subunits are not active at all. However, co-incubation of active and inactive subunits before addition to the cells leads to a marked decrease in cytotoxicity and to restoration of the neurite-inducing activity. It has also been shown that all enzymatically active PLA2s are cytotoxic, the PLA2 from cobra venom being the least active. Thus, for the first time we have shown that PLA2s from snake venoms can induce neurite outgrowth in PC12 cells.  相似文献   

4.
To investigate the geographic variations in venoms of two medically important pitvipers, we have purified and characterized the phospholipases A2 (PLA2s) from the pooled venoms of Calloselasma rhodostoma from Malaysia, Thailand, Indonesia, and Vietnam, as well as the individual venom of Trimeresurus mucrosquamatus collected from both North and South Taiwan. Enzymatic and pharmacological activities of the purified PLA2s were also investigated. The complete amino acid sequences of the purified PLA2s were determined by sequencing the corresponding cDNAs from the venom gland and shown to be consistent with their molecular weight data and the N-terminal sequences. All the geographic venom samples of C. rhodostoma contain a major noncatalytic basic PLA2-homolog and two or three acidic PLA2s in different proportions. These acidic PLA2s contain Glu6-substitutions and show distinct inhibiting specificities toward the platelets from human and rabbit. We also found that the T. mucrosquamatus venoms from North Taiwan but not those from South Taiwan contain an Arg6-PLA2 designated as TmPL-III. Its amino acid sequence is reported for the first time. This enzyme is structurally almost identical to the low- or nonexpressed Arg6-PLA2 from C. rhodostoma venom gland, and thus appears to be a regressing venom component in both of the Asian pitvipers.  相似文献   

5.
We described previously the cloning and DNA sequence of the human gene encoding pancreatic phospholipase A2 [DNA 5, 519]. When pancreatic phospholipase A2 (PLA2) cDNA was used to screen a human genomic library, two classes of clones were obtained. One class encoded the pancreatic enzyme, and a second class encoded one exon of an apparently related PLA2. No additional PLA2 gene exons displayed sufficient homology to be detected by the probe. A homologous sequence in both rat and porcine genomic DNA was detected by DNA blot hybridization, and the corresponding gene fragments were cloned and sequenced. Within the deduced amino acid sequences, the presence of known functional residues along with the high degree of interspecies conservation suggests the genes encode a functional PLA2 enzyme form. The encoded sequence lacks Cys11, as do the "type II" viperid venom and other nonpancreatic mammalian PLA2 enzymes. The sequence is distinct from porcine intestinal PLA2 and appears not to be a direct homolog of the recently published rabbit ascites and rat platelet enzymes. Hybridization of DNA probes containing sequences from these genes to genomic DNA blots of mouse/human somatic cell hybrids permitted chromosomal assignment for both. The pancreatic gene mapped to human chromosome 12, and the homologous gene mapped to chromosome 1.  相似文献   

6.
Geographic venom samples of Crotalus viridis viridis were obtained from South Dakota, Wyoming, Colorado, Oklahoma, Texas, New Mexico, and Arizona. From these samples, the phospholipases A(2) (PLA(2)s) were purified and their N-terminal sequences, precise masses, and in vitro enzymatic activities were determined. We purified two to four distinct acidic PLA(2)s from each sample; some of them displayed different inhibition specificities toward mammalian platelets. One of the acidic PLA(2)s induced edema, but had no anti-platelet activity. There was also a common basic PLA(2) myotoxin in all the samples. We have cloned five acidic PLA(2)s and several hybrid-like nonexpressing PLA(2)s. Molecular masses and N-terminal sequences of the purified PLA(2)s were matched with those deduced from the cDNA sequences, and the complete amino acid sequences of five novel acidic PLA(2)s were thus solved. They share 78% or greater sequence identity, and a cladogram based on the sequences of many venom acidic PLA(2)s of New World pit vipers revealed at least two subtypes. The results contribute to a better understanding of the ecogenetic adaptation of rattlesnakes and the structure-activity relationships and evolution of the acidic PLA(2)s in pit viper venom.  相似文献   

7.
W Yuan  D M Quinn  P B Sigler  M H Gelb 《Biochemistry》1990,29(25):6082-6094
The action of the phospholipases A2 (PLA2s) from Naja naja naja, Naja naja atra, and Crotalus atrox venoms as well as the enzyme from porcine pancreas on a number of short-chain, water-soluble substrates was studied. The inhibition of these enzymes by short-chain phosphonate- and thiophosphonate-containing phospholipid analogues was also examined. The kinetic patterns observed for the action of the venom PLA2s on substrates containing phosphocholine head groups all deviated from a classical Michaelis-Menten-type behavior. With a substrate containing an anionic head group, the kinetic pattern observed was more normal. In contrast, Michaelis-Menten-type behavior was observed for the action of the porcine pancreatic PLA2 acting on all of the substrates studied. A short-chain phospholipid analogue in which the enzyme-susceptible ester was replaced with a phosphonate group was found to be a tight-binding inhibitor of the venom PLA2s with IC50 values that were some 10(4)-10(5)-fold lower than the concentration of substrate used in the assay. The degree of inhibition was found to depend dramatically on the stereochemical arrangement of substituents in the inhibitor which strongly suggests that the inhibitors are binding directly to the active site of the PLA2s. By comparison, the phosphonate analogue functioned as a poor inhibitor of the porcine pancreatic PLA2. Direct inhibitor binding studies indicated that the short-chain phosphonate inhibitor bound weakly to the venom enzymes in the absence of the short-chain substrates. Several other unusual features of the inhibition were also observed. The data are interpreted in terms of a model in which the enzyme and substrate form a lipid-protein aggregate at substrate concentrations below the critical micelle concentration (cmc). Possible reasons for the selective binding of the inhibitor to the enzyme-substrate microaggregate are discussed.  相似文献   

8.
Callosellasma rhodostoma (Malayan pitviper) is a monotypic Asian pitviper of medical importance. Three acidic phospholipases A2 (PLA2s) and one basic PLA2-homolog were purified from its venom while 10 cDNAs encoding distinct PLA2s were cloned from venom glands of a Thailand specimen of this species. Complete amino-acid sequences of the purified PLA2s were successfully deduced from their cDNA sequences. Among the six un-translated PLA2 cDNAs, two apparently result from recombination of its Lys49-PLA2 gene with its Asp49-PLA2 genes. The acidic PLA2s inhibit platelet-aggregation, while the noncatalytic PLA2-homolog induces local edema. This basic PLA2-homolog contains both Asp49 and other, unusual substitutions unique for the venom Lys49-PLA2 subtype (e.g. Leu5, Trp6, Asn28 and Arg34). Three-dimensional modelling of the basic protein revealed a heparin-binding region, and an abnormal calcium-binding pocket, which may explain its low catalytic activity. Oxidation of up to six of its Met residues or coinjection with heparin reduced its edema-inducing activity but methylation of its active site His48 did not. The distinct Arg/Lys-rich and Met-rich region at positions 10-36 of the PLA2 homolog presumably are involved in its heparin-binding and the cell membrane-interference leading to edema and myotoxicity.  相似文献   

9.
10.
We used a PCR-based method to determine the genomic DNA sequences encoding phospholipases A2 (PLA2s) from the venoms of Vipera aspis aspis (V. a. aspis), Vipera aspis zinnikeri (V. a. zinnikeri), Vipera berus berus (V. b. berus) and a neurotoxic V. a. aspis snake (neurotoxic V. a. aspis) from a population responsible for unusual neurotoxic envenomations in south-east France. We sequenced five groups of genes, each corresponding to a different PLA2. The genes encoding the A and B chains of vaspin from the neurotoxic V. a. aspis, PLA2-I from V. a. zinnikeri, and the anticoagulant PLA2 from V. b. berus are described here. Single nucleotide differences leading to amino-acid substitutions were observed both between genes encoding the same PLA2 and between genes encoding different PLA2s. These differences were clustered in exons 3 and 5, potentially altering the biological activities of PLA2. The distribution and characteristics of the PLA2 genes differed according to the species or subspecies. We characterized for the first time genes encoding neurotoxins from the V. a. aspis and V. b. berus snakes of central France. Genes encoding ammodytins I1 and I2, described previously in Vipera ammodytes ammodytes (V. am. ammodytes), were also present in V. a. aspis and V. b. berus. Three different ammodytin I1 gene sequences were characterized: one from V. b. berus, the second from V. a. aspis, V. a. zinnikeri and the neurotoxic V. a. aspis, and the third from the neurotoxic V. a. aspis. This third sequence was identical with the reported sequence of the V. am. ammodytes ammodytin I1 gene. Genes encoding monomeric neurotoxins of V. am. ammodytes venom, ammodytoxins A, B and C, and the Bov-B LINE retroposon, a phylogenetic marker found in V. am. ammodytes genome, were identified in the genome of the neurotoxic V. a. aspis. These results suggest that the population of neurotoxic V. a. aspis snakes from south-east France may have resulted from interbreeding between V. a. aspis and V. am. ammodytes.  相似文献   

11.
A great mystery in the mechanism of phospholipase A2 (PLA2) and many other lipolytic enzymes is the "interfacial activation" induced by micellar but not monomeric substrates. Equally mysterious is the lack of interfacial activation in bee venom PLA2, as opposed to PLA2s from pancreas and other sources. We have probed these problems using the conformationally restricted short-chain cyclopentano-analogues of diacylphosphatidylcholine (Cp-DCnPC, all-trans isomer). In the reaction catalyzed by bovine pancreatic PLA2, Cp-DC8PC behaved differently from DC8PC in that its monomers and micelles showed comparable activities (but lower than the activity of DC8PC). This result suggests that the activity of PLA2 can be regulated by substrate conformation and supports the "substrate conformation model" (Wells, M. A. (1974) Biochemistry 13, 2248-2257), but raises a question as to whether Cp-DC8PC mimics monomers or micelles of DC8PC. Conformational analysis by 1H NMR revealed that monomeric Cp-DC8PC was conformationally restricted near the carbonyl region, a property characteristic of micelles. Thus, monomeric CP-DC8PC can be considered as a conformational analogue of micelles, but the important structural feature lies in the CH2COO region instead of the glycerol backbone. CP-DC8PC was then used to test a previous proposal that the bee venom PLA2 hydrolyzes monomers but not micelles (which would predict little or no activity for Cp-DC8PC since its conformation is micelle-like whether below or above its critical micelle concentration). The results showed that Cp-DC8PC is a relatively good substrate for the bee venom PLA2 in comparison with the pancreatic PLA2. This and other evidence together suggest that the bee venom PLA2 is not sensitive to the conformation of monomeric and micellar substrates and hydrolyzes both monomers and micelles. The results in both PLA2s demonstrate the usefulness of cyclopentano-phospholipids in probing the mechanism of phospholipases and the roles of substrate conformation in the catalysis of PLA2.  相似文献   

12.
Snake venom myotoxic phospholipases A(2) contribute to much of the tissue damage observed during envenomation by Bothrops asper, the major cause of snake bites in Central America. Several myotoxic PLA(2)s have been identified, but their mechanism of myotoxicity is still unclear. To aid in the molecular characterization of these venom toxins, the complete open reading frames encoding two Lys(49) and one Asp(49) basic PLA(2) myotoxins from the Central American snake B. asper (terciopelo) were obtained by cDNA cloning from venom gland poly-adenylated RNA. The amino acid sequence deduced from the myotoxins II and III open reading frames corresponded in each case to one of the reported amino acid sequence isoforms. The sequence of a new myotoxin IV-like sequence (MT-IVa) contains conservative Val-->Leu(18) and Ala-->Val(23) substitutions when compared with the reported N-terminus of the native myotoxin IV, suggesting minor isoform variations among specimens of a single species. Sequence alignment studies indicated significant (>75% sequence identity) identities with other crotalid venom Lys(49) PLA(2)s, particularly bothropstoxin I/Ia isoforms of B. jararacussu and myotoxin II of B. asper.  相似文献   

13.
To achieve our aim of understanding the interactions between direct current and enzymes in solution, we exposed reconstituted Crotalus atrox venom to direct electric current by immersing two platinum thread electrodes connected to a voltage generator (between 0 and 8 V) into a reaction mixture for a few seconds. Then, we assayed the residual activity of phospholipases A(2) (PLA(2)),metalloproteinases, and phosphodiesterases, abundant in crotaline snake venoms and relevant in the pathophysiology of envenomation, characterized by hemorrhage, pain, and tissue damage. C. atrox venom phospholipase A(2) and metalloproteinases were consistently and irreversibly inactivated by direct current (between 0 and 0.7 mA) exposure. In contrast, C. atrox venom phosphodiesterases were not affected. Total protein content and temperature of the sample remained the same. Secretory pancreatic phospholipase A(2), homologue to snake venom phospholipases A(2), was also inactivated by direct current treatment. In order to understand the structural reasoning behind PLA(2) inactivation, circular dichroism measurements were conducted on homogeneous commercial pancreatic phospholipase A(2), and it was found that the enzyme undergoes structural alterations upon direct current exposure.  相似文献   

14.
In order to better understand the function of acidic phospholipases A2 (PLA2s) from snake venoms, expressed sequence tags (ESTs) that code for acidic PLA2s were isolated from a cDNA library prepared from the poly(A)+ RNA of venomous glands of Bothrops jararacussu. The complete nucleotide sequence (366 bp), named BOJU-III, encodes the BthA-I-PLA2 precursor, which includes a signal peptide and the mature protein with 16 and 122 amino acid residues, respectively. Multiple comparison of both the nucleotide and respective deduced amino acid sequence with EST and protein sequences from databases revealed that the full-length cDNA identified (BOJU III--AY145836) is related to an acidic PLA2 sharing similarity, within the range 55-81%, with acidic phospholipases from snake venoms. Moreover, phylogenetic analysis of amino acid sequences of acidic PLA2s from several pit viper genera showed close evolutionary relationships among acidic PLA2s from Bothrops, Crotalus, and Trimeresurus. The molecular modeling showed structural similarity with other dimeric class II PLA2s from snake venoms. The native protein BthA-I-PLA2, a nontoxic acidic PLA2 directly isolated from Bothrops jararacussu snake venom, was purified and submitted to various bioassays. BthA-I-PLA2 displayed high catalytic activity and induced Ca2+-dependent liposome disruption. Edema induced by this PLA2 was inhibited by indomethacin and dexamethasone, thus suggesting involvement of the cyclo-oxygenase pathway. BthA-I-PLA2 showed anticoagulant activity upon human plasma and inhibited phospholipid-dependent platelet aggregation induced by collagen or ADP. In addition, it displayed bactericidal activity against Escherichia coli and Staphylococcus aureus and antitumoral effect upon breast adrenocarcinoma as well as upon human leukemia T and Erlich ascitic tumor. Following chemical modification with p-bromophenacyl bromide, total loss of the enzymatic and pharmacological activities were observed. This is the first report on the isolation and identification of a cDNA encoding a complete acidic PLA2 from Bothrops venom, exhibiting bactericidal and antitumoral effects.  相似文献   

15.
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A(2) (PLA(2)s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing M(r) approximately 14,000 for the monomer and 28,000Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA(2)s from snake venoms, MTX-I belonging to Asp49 PLA(2) class, enzymatically active, and MTX-II to Lys49 PLA(2)s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA(2) and anticoagulant activities, corroborating the importance of residue His48 and Ca(2+) ions for the enzymatic catalysis. Both PLA(2)s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA(2) proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer.  相似文献   

16.
Oxyuranus scutellatus toxin 1 (OS1) and toxin 2 (OS2) are two monochain phospholipases A2 isolated from the venom of Taipan. Their iodinated derivatives have been used to characterize phospholipase A2 receptors on rabbit skeletal muscle cells in culture. Both ligands recognize one family of binding sites on myotube membranes with a Bmax of 1.9 to 2.2 pmol/mg of protein and dissociation constant values of 7.4 pM for 125I-OS2 and 38 pM for 125I-OS1. Other snake venom phospholipases A2 are able to inhibit 125I-OS2 binding to the muscle receptor. Competition experiments with these unlabeled phospholipases A2 define a pharmacological profile of the muscle receptor very different from the previously described pharmacological profile of the neuronal phospholipase A2 receptors. The number of 125I-OS2 receptors in skeletal muscle cells increases during in vitro cell maturation but there is no clear relation between the increase of Bmax and the fusion of myoblasts into myotubes. The phospholipase A2 binding protein from myotubes has been identified both by cross-linking experiments and by purification studies. It is composed of only one subunit of Mr 180,000.  相似文献   

17.
Aoki J  Inoue A  Makide K  Saiki N  Arai H 《Biochimie》2007,89(2):197-204
Phospholipase A1 (PLA1) is an enzyme that hydrolyzes phospholipids and produces 2-acyl-lysophospholipids and fatty acids and is conserved in a wide range of organisms. Mammals have several enzymes that exhibit PLA1 activity in vitro. The extracellular PLA1s include phosphatidylserine (PS)-specific PLA1 (PS-PLA1), membrane-associated phosphatidic acid (PA)-selective PLA1s (mPA-PLA1alpha and mPA-PLA1beta), hepatic lipase (HL), endothelial lipase (EL) and pancreatic lipase-related protein 2 (PLRP2), all of which belong to the pancreatic lipase gene family. The former three PLA1s differ from other members in their substrate specificities, structural features and gene organizations, and form a subfamily in the pancreatic lipase gene family. PS-PLA1, mPA-PLA1alpha and mPA-PLA1beta exhibit only PLA1 activity, while HL, EL and PLRP2 show triacylglycerol-hydrolyzing activity in addition to PLA1 activity. The tertiary structures of lipases have two surface loops, the lid and the beta9 loop. The lid and the beta9 loop cover the active site in its closed conformation. An alignment of amino acid sequences of the pancreatic lipase gene family members revealed two molecular characteristics of PLA1s in the two surface loops. First, lipase members exhibiting PLA1 activity (PS-PLA1, mPA-PLA1alpha and mPA-PLA1beta, EL, guinea pig PLRP2 and PLA1 from hornet venom (DolmI)) have short lids. Second, PS-PLA1, mPA-PLA1alpha, mPA-PLA1beta and DolmI, which exhibit only PLA(1) activity, have short beta9 loops. Thus, the two surface loops appear to be involved in the ligand recognition. PS-PLA1 and mPA-PLA1s specifically hydrolyze PS and PA, respectively, producing their corresponding lysophospholipids. Lysophosphatidylserine and lysophosphatidic acid have been defined as lipid mediators with multiple biological functions. Thus, these PLA1s have a role in the production of these lysophospholipid mediators.  相似文献   

18.
A novel phospholipase A(2) (PLA(2)) gene, named PfPLA 6, was found in a 6,328-bp NIS-1(5')-a segment in the Protobothrops flavoviridis (Habu, Crotalinae) genome. A comparison of the aligned nucleotide sequences of Viperidae (Viperinae and Crotalinae) venom PLA(2) genes, including PfPLA 6, revealed the deletion of a 12-bp segment called S1EX 1 and a 55-bp segment called S2EX 1 in exon 1 and the interposition of a 219-bp segment called SINT 2 (SINE) in intron 2. A classification of Viperidae PLA(2) genes based on these structural modes indicated that the A-type genes (without SINE), including PfPLA 6, are evolutionarily ancestral to the B-type (Viperinae) and C-type (Crotalinae) PLA(2) genes (both with SINE). Since PfPLA 6 is a pseudogene, an active prototype of PfPLA 6 can be assumed to be the ancestral PLA(2) gene. Putative evolutionary processes from this A-type prototype PLA(2) gene to descendent PLA(2) genes are discussed.  相似文献   

19.
Piratoxins (PrTX) I and III are phospholipases A2 (PLA2s) or PLA2 homologue myotoxins isolated from Bothrops pirajai snake venom, which also induce myonecrosis, bactericidal activity against Escherichia coli, disruption of artificial membranes, and edema. PrTX-III is a catalytically active hemolytic and anticoagulant Asp49 PLA2, while PrTX-I is a Lys49 PLA2 homologue, which is catalytically inactive on artificial substrates, but promotes blockade of neuromuscular transmission. Chemical modifications of His, Lys, Tyr, and Trp residues of PrTX-I and PrTX-III were performed, together with cleavage of the N-terminal octapeptide by CNBr and inhibition by heparin and EDTA. The lethality, bactericidal activity, myotoxicity, neuromuscular effect, edema inducing effect, catalytic and anticoagulant activities, and the liposome-disruptive activity of the modified toxins were evaluated. A complex pattern of functional differences between the modified and native toxins was observed. However, in general, chemical modifications that significantly affected the diverse pharmacological effects of the toxins did not influence catalytic or membrane disrupting activities. Analysis of structural changes by circular dichroism spectroscopy demonstrated significant changes in the secondary structure only in the case of N-terminal octapeptide cleavage. These data indicate that PrTX-I and PrTX-III possess regions other than the catalytic site, which determine their toxic and pharmacological activities.  相似文献   

20.
When it is gel filtered on Sephadex in the absence of calcium ions, basic phospholipase A2 from Naja nigricollis venom elutes as a dimer. In order to study the possibility of this dimerization from a structural point of view, three-dimensional models of both monomeric and dimeric N. nigricollis phospholipases A2 have been graphically built on the basis of homologies with the phospholipases A2 from pancreatic bovine and Crotalus atrox venom. The building of a dimeric model is made possible by the deletion of a particular loop of the bovine structure. The predicted models of N. nigricollis phospholipase A2 have been checked using molecular mechanics and molecular dynamics techniques according to a suitable protocol which has been developed starting from refined X-ray structures of phospholipases A2 as the test case. The observed stability of the dimeric model, in the absence of calcium, agrees with the hypothesis of the dimerization of the basic phospholipase A2. Particularly, Arg31, which replaces the hydrophobic residue present in pancreatic bovine and C.atrox venom phospholipases A2, contributes to this stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号