首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelial hyperperme ability leading to vascular leak is an important consequence of sepsis and sepsis-induced lung injury. We previously reported that heat shock protein (hsp) 90 inhibitor pretreatment improved pulmonary barrier dysfunction in a murine model of sepsis-induced lung injury. We now examine the effects of hsp90 inhibitors on LPS-mediated endothelial hyperpermeability, as reflected in changes in transendothelial electrical resistance (TER) of bovine pulmonary arterial endothelial cells (BPAEC). Vehicle-pretreated cells exposed to endotoxin exhibited a concentration-dependent decrease in TER, activation of pp60(Src), phosphorylation of the focal adhesion protein paxillin, and reduced expression of the adherens junction proteins, vascular endothelial (VE)-cadherin and beta-catenin. Pretreatment with the hsp90 inhibitor, radicicol, prevented the decrease in TER, maintained VE-cadherin and beta-catenin expression, and inhibited activation of pp60(Src) and phosphorylation of paxillin. Similarly, when BPAEC hyperpermeability was induced by endotoxin-activated neutrophils, pretreatment of neutrophils and/or endothelial cells with radicicol protected against the activated neutrophil-induced decrease in TER. Increased paxillin phosphorylation and decreased expression of beta-catenin and VE-cadherin were also observed in mouse lungs 12 h after intraperitoneal endotoxin and attenuated in mice pretreated with radicicol. These results suggest that hsp90 plays an important role in sepsis-associated endothelial barrier dysfunction.  相似文献   

2.
The adherens junctional molecule, vascular endothelial cadherin (VE-cadherin), functions to maintain adherens junction stability and to suppress apoptosis of endothelial cells by forming a complex with vascular endothelial growth factor (VEGF) receptor 2 and members of the armadillo family of cytoplasmic proteins. In order to investigate the dynamics of the association of VE-cadherin with adherens junctions during the initial stages of angiogenesis, human umbilical cord endothelial cells (HUVECs) were stimulated with VEGF to undergo angiogenesis in type-I collagen three-dimensional culture. In confluent monolayers of HUVECs, VE-cadherin and its signaling partner, beta-catenin, as well as the paracellular transmembrane adhesion molecule platelet-endothelial cell adhesion molecule (PECAM-1), were all present in regions of cell-cell contact. Within 3 h of stimulation of angiogenesis, VE-cadherin and beta-catenin were lost from these regions. In contrast, the distribution pattern of PECAM-1 did not alter. After 6 h the majority of endothelial cells had migrated to form a network of capillary cords with cell-cell contacts that contained all three molecules. By metabolic labeling of HUVECs it was found that de novo synthesis of VE-cadherin was not essential for the formation of new adherens junctions. Coimmunoprecipitation and immunoblotting experiments showed that the VE-cadherin and beta-catenin remained associated after they were lost from adherens junctions. Detergent extraction of cells with Triton X-100 indicted that the majority of VE-cadherin and beta-catenin was Triton soluble, indicating that they are only weakly associated with the actin-based cytoskeleton.  相似文献   

3.
Thrombin-mediated changes in endothelial cell adherens junctions modulate vascular permeability. We demonstrate that the nonreceptor protein-tyrosine phosphatase SHP2 co-precipitates with VE-cadherin complexes in confluent, quiescent human umbilical vein endothelial cells. Ligand-binding blots using a SHP2-glutathione S-transferase fusion peptide established that SHP2 associates selectively with beta-catenin in VE-cadherin complexes. Thrombin treatment of human umbilical vein endothelial cells promotes SHP2 tyrosine phosphorylation and dissociation from VE-cadherin complexes. The loss of SHP2 from the cadherin complexes correlates with a dramatic increase in the tyrosine phosphorylation of beta-catenin, gamma-catenin, and p120-catenin complexed with VE-cadherin. We propose that thrombin regulates the tyrosine phosphorylation of VE-cadherin-associated beta-catenin, gamma-catenin, and p120-catenin by modulating the quantity of SHP2 associated with VE-cadherin complexes. Such changes in adherens junction complex composition likely underlie thrombin-elicited alterations in endothelial monolayer permeability.  相似文献   

4.
The adhesion of highly activated neutrophils to cerebral microvascular endothelial cells (MVECs) may contribute to disruption and hyperpermeability of the blood-brain barrier (BBB) after cardiac surgery with prolonged cardiopulmonary bypass (CPB). A correlation between CPB duration and neutrophil-mediated BBB damage has not been investigated on the cellular level yet. Therefore, we studied the effects of neutrophils from cardiac surgery patients with CPB time <80 min (group I; n=8) and >80 min (group II; n=8) on the integrity of cultured porcine MVEC. Ex vivo, neutrophils of group II but not of group I significantly degraded the zonula adherens molecule beta-catenin whereas VE-cadherin and occludin were not modified. The transendothelial electric resistance as a measure for the integrity of the endothelial monolayers was reduced over time in both groups. In conclusion, prolonged CPB time entails neutrophil-mediated decrease in MVEC beta-catenin expression, and thus may be an important trigger for BBB disruption.  相似文献   

5.
Rat lung microvascular endothelial cell monolayers were exposed to donor plasma from burned rats (25% total body surface area) at 1:3 dilution for 30 min. Immunofluorescence analysis revealed that concomitant with gap formation alterations were seen in the adherens junction (AJ) proteins beta-catenin and vascular endothelial-cadherin. Both of these components were shown to exist in a smooth, uniform arrangement at the cell periphery in untreated cells. However, upon exposure to burn plasma, this uniformity was lost, and the AJ proteins showed a disrupted, zipper-like pattern at the cells' edge. In addition, these proteins were absent from areas of gap formation between the cells, and an increase in punctate staining throughout the cells suggests they were internalized in response to burn plasma. Measurements of both transendothelial electrical resistance and FITC-albumin flux across the cell monolayer were used to assess barrier integrity. Our study found that exposure to burn plasma rapidly caused the electrical resistance across confluent monolayers to decrease and albumin flux to increase, phenomena associated with barrier dysfunction. Furthermore, all the above responses to burn plasma were attenuated when cells were pretreated with the PKC inhibitor bisindolylmaleimide, suggesting that PKC is required for burn-induced pulmonary endothelial dysfunction.  相似文献   

6.
Vascular endothelial-cadherin (VE-cadherin) controls endothelial cell-cell adhesion and preserves endothelial integrity. In order to maintain endothelial barrier function, VE-cadherin function is tightly regulated through mechanisms that involve protein phosphorylation and cytoskeletal dynamics. Here, we show that loss of VE-cadherin function results in intercellular gap formation and a drop in electrical resistance of monolayers of primary human endothelial cells. Detailed analysis revealed that loss of endothelial cell-cell adhesion, induced by VE-cadherin-blocking antibodies, is preceded by and dependent on a rapid activation of Rac1 and increased production of reactive oxygen species. Moreover, VE-cadherin-associated beta-catenin is tyrosine-phosphorylated upon loss of cell-cell contact. Finally, the redox-sensitive proline-rich tyrosine kinase 2 (Pyk2) is activated and recruited to cell-cell junctions following the loss of VE-cadherin homotypic adhesion. Conversely, the inhibition of Pyk2 activity in endothelial cells by the expression of CRNK (CADTK/CAKbeta-related non-kinase), an N-terminal deletion mutant that acts in a dominant negative fashion, not only abolishes the increase in beta-catenin tyrosine phosphorylation but also prevents the loss of endothelial cell-cell contact. These results implicate Pyk2 in the reduced cell-cell adhesion induced by the Rac-mediated production of ROS through the tyrosine phosphorylation of beta-catenin. This signaling is initiated upon loss of VE-cadherin function and is important for our insight in the modulation of endothelial integrity.  相似文献   

7.
VEGF and TGF-beta1 induce angiogenesis but have opposing effects on vascular endothelial cells: VEGF promotes survival; TGF-beta1 induces apoptosis. We have previously shown that TGF-beta1 induces endothelial cell apoptosis via up-regulation of VEGF expression and activation of signaling through VEGF receptor-2 (flk-1). In context with TGF-beta1, VEGF signaling is transiently converted from a survival into an apoptotic one. VEGF promotes cell survival in part via activation of PI3K/Akt by a mechanism dependent on the formation of a multi-protein complex that includes flk-1 and the adherens junction proteins VE-cadherin and beta-catenin. Here we report that TGF-beta1 induces rearrangement of the adherens junction complex by separating flk-1 from VE-cadherin and increasing beta-catenin association with both flk-1 and VE-cadherin. This rearrangement is caused neither by changes in adherens junction mRNA or protein expression nor by post-translational modification, and requires VEGF signaling through flk-1. These results show that the adherens junction is an important regulatory component of TGF-beta1-VEGF interaction in endothelial cells.  相似文献   

8.
Sphingosine 1-phosphate (S1P) rapidly increases endothelial barrier function and induces the assembly of the adherens junction proteins vascular endothelial (VE)-cadherin and catenins. Since VE-cadherin contributes to the stabilization of the endothelial barrier, we determined whether the rapid, barrier-enhancing activity of S1P requires VE-cadherin. Ca(2+)-dependent, homophilic VE-cadherin binding of endothelial cells, derived from human umbilical veins and grown as monolayers, was disrupted with EGTA, an antibody to the extracellular domain of VE-cadherin, or gene silencing of VE-cadherin with small interfering RNA. All three protocols caused a reduction in the immunofluorescent localization of VE-cadherin at intercellular junctions, the separation of adjacent cells, and a decrease in basal endothelial electrical resistance. In all three conditions, S1P rapidly increased endothelial electrical resistance. These findings demonstrate that S1P enhances the endothelial barrier independently of homophilic VE-cadherin binding. Junctional localization of VE-cadherin, however, was associated with the sustained activity of S1P. Imaging with phase-contrast and differential interference contrast optics revealed that S1P induced cell spreading and closure of intercellular gaps. Pretreatment with latrunculin B, an inhibitor of actin polymerization, or Y-27632, a Rho kinase inhibitor, attenuated cell spreading and the rapid increase in electrical resistance induced by S1P. We conclude that S1P rapidly closes intercellular gaps, resulting in an increased electrical resistance across endothelial cell monolayers, via cell spreading and Rho kinase and independently of VE-cadherin.  相似文献   

9.
In this paper we report that the assembly of interendothelial junctions containing the cell type-specific vascular endothelial cadherin (VE- cadherin or cadherin-5) is a dynamic process which is affected by the functional state of the cells. Immunofluorescence double labeling of endothelial cells (EC) cultures indicated that VE-cadherin, alpha- catenin, and beta-catenin colocalized in areas of cell to cell contact both in sparse and confluent EC monolayers. In contrast, plakoglobin became associated with cell-cell junctions only in tightly confluent cells concomitantly with an increase in its protein and mRNA levels. Furthermore, the amount of plakoglobin coimmunoprecipitated with VE- cadherin, increased in closely packed monolayers. Artificial wounding of confluent EC monolayers resulted in a major reorganization of VE- cadherin, alpha-catenin, beta-catenin, and plakoglobin. All these proteins decreased in intensity at the boundaries of EC migrating into the lesion. In contrast, EC located immediately behind the migrating front retained junctional VE-cadherin, alpha-catenin, and beta-catenin while plakoglobin was absent from these sites. In line with this observation, the amount of plakoglobin coimmunoprecipitated with VE- cadherin decreased in migrating EC. These data suggest that VE- cadherin, alpha-catenin, and beta-catenin are already associated with each other at early stages of intercellular adhesion and become readily organized at nascant cell contacts. Plakoglobin, on the other hand, associates with junctions only when cells approach confluence. When cells migrate, this order is reversed, namely, plakoglobin dissociates first and, then, VE-cadherin, alpha-catenin, and beta-catenin disassemble from the junctions. The late association of plakoglobin with junctions suggests that while VE-cadherin/alpha-catenin/beta- catenin complex can function as an early recognition mechanism between EC, the formation of mature, cytoskeleton-bound junctions requires plakoglobin synthesis and organization.  相似文献   

10.
Endothelial hyperpermeability is a hallmark of an inflammatory reaction and contributes to tissue damage in severe infections. Loss of endothelial cell–cell adhesion leads to intercellular gap formation allowing paracellular fluid flux. Although Staphylococcus aureus α-toxin significantly contributed to staphylococci disease, little is known about its mechanism of endothelial hyperpermeability induction. Here, we demonstrate that in a model of isolated perfused rat ileum discontinuation of capillary vascular-endothelial-cadherin (VE-cadherin) was observed after bolus application of S. aureus α-toxin being inhibited by the endogenous peptide adrenomedullin (ADM). In vitro, α-toxin exposure induced loss of immunoreactivity of VE-cadherin and occludin in human cultured umbilical vein endothelial cells. Likewise, ADM blocked α-toxin-related junctional protein disappearance from intercellular sites. Additionally, cyclic AMP elevation was shown to stabilize endothelial barrier function after α-toxin application. Although no RhoA activation was noted after endothelial α-toxin exposure, inhibition of Rho kinase and myosin light chain kinase blocked loss of immunoreactivity of VE-cadherin and occludin as well as intercellular gap formation. In summary, stabilization of endothelial junctional integrity as indicated by interendothelial immunostaining might be an interesting approach to stabilize endothelial barrier function in severe S. aureus infections.Andreas C. Hocke and Bettina Temmesfeld-Wollbrueck have contributed equally to this article.  相似文献   

11.
VE-cadherin is the essential adhesion molecule in endothelial adherens junctions, and the regulation of protein tyrosine phosphorylation is thought to be important for the control of adherens junction integrity. We show here that VE-PTP (vascular endothelial protein tyrosine phosphatase), an endothelial receptor-type phosphatase, co-precipitates with VE-cadherin, but not with beta-catenin, from cell lysates of transfected COS-7 cells and of endothelial cells. Co-precipitation of VE-cadherin and VE-PTP required the most membrane-proximal extracellular domains of each protein. Expression of VE-PTP in triple-transfected COS-7 cells and in CHO cells reversed the tyrosine phosphorylation of VE-cadherin elicited by vascular endothelial growth factor receptor 2 (VEGFR-2). Expression of VE-PTP under an inducible promotor in CHO cells transfected with VE-cadherin and VEGFR-2 increased the VE-cadherin-mediated barrier integrity of a cellular monolayer. Surprisingly, a catalytically inactive mutant form of VE-PTP had the same effect on VE-cadherin phosphorylation and cell layer permeability. Thus, VE-PTP is a transmembrane binding partner of VE-cadherin that associates through an extracellular domain and reduces the tyrosine phosphorylation of VE-cadherin and cell layer permeability independently of its enzymatic activity.  相似文献   

12.
Endothelial cells exposed to shear stress realigned and elongated in the direction of flow through the coordinated remodeling of their adherens junctions and actin cytoskeleton. The elaborate networks of VE-cadherin complexes in static cultures became more uniform and compact in response to shear. In contrast, the cortical actin present in static cultures was reorganized into numerous stress fiber bundles distributed parallel to the direction of flow. Exposure to shear did not significantly alter the expression of the junctional proteins VE-cadherin, beta-catenin, and alpha-catenin, but the composition of the junctional complexes did change. We detected a marked decrease in the alpha-catenin associated with VE-cadherin complexes in endothelial monolayers subjected to shear. This loss of alpha-catenin, the protein that links beta-catenin-bound cadherin to the actin cytoskeleton, was not due to decreased quantities of beta-catenin associated with VE-cadherin. Instead, the loss of alpha-catenin from the junctional complexes coincided with the increased tyrosine phosphorylation of beta-catenin associated with VE-cadherin. The change in beta-catenin phosphorylation closely correlated with the shear-induced loss of the protein tyrosine phosphatase SHP-2 from VE-cadherin complexes. Thus, the functional interaction of alpha-catenin with VE-cadherin-bound beta-catenin is regulated by the extent of tyrosine phosphorylation of beta-catenin. This, concomitantly, is regulated by SHP-2 associated with VE-cadherin complexes.  相似文献   

13.
Breakdown of the inner blood-retinal barrier and the blood-brain barrier is associated with changes in tight and adherens junction-associated proteins that link vascular endothelial cells. This study aimed to test the hypothesis that transforming growth factor (TGF)-β1 increases the paracellular permeability of vascular endothelial monolayers through tyrosine phosphorylation of VE-cadherin and claudin-5. Bovine retinal and human brain capillary endothelial cells were grown as monolayers on coated polycarbonate membranes. Paracellular permeability was studied by measuring the equilibration of (14)C-inulin or fluorescence-labelled dextran. Changes in VE-cadherin and claudin-5 expression were studied by immunocytochemistry (ICC) and quantified by cell-based enzyme linked immunosorbent assays (ELISA). Tyrosine phosphorylation of VE-cadherin and claudin-5 was studied by ICC, immunoprecipitation and Western blotting. We found that exposure of endothelial cells to TGF-β1 caused a dose-dependent increase in paracellular permeability as reflected by increases in the equilibration of (14)C-inulin. This effect was enhanced by the tyrosine phosphatase inhibitor orthovanadate and attenuated by the tyrosine kinase inhibitor lavendustin A. ICC and cell-based ELISA revealed that TGF-β1 induced both dose- and time-dependent decreases in VE-cadherin and claudin-5 expression. Assessment of cell viability indicated that changes in these junction-associated proteins were not due to endothelial death or injury. ICC revealed that tyrosine phosphorylation of endothelial monolayers was greatly enhanced by TGF-β1 treatment, and immunoprecipitation of cell lysates showed increased tyrosine phosphorylation of VE-cadherin and claudin-5. Our results suggest that tyrosine phosphorylation of VE-cadherin and claudin-5 is involved in the increased paracellular permeability of central nervous system-derived vascular endothelium induced by TGF-β1.  相似文献   

14.
Snake venom metalloproteinases (SVMPs) are structurally and functionally similar to matrix metalloproteinases (MMPs). We have previously demonstrated that a SVMP, named gaminelysin, can induce endothelial cell apoptosis [Biochem J. 357 (2001) 719]. In this study, the action mechanism of graminelysin in causing endothelial cell apoptosis was further investigated. We showed that the apoptosis was initiated with cell shape change and extracellular matrix degradation and occurred before cell detachment. Cleaved forms of MMP-2 might act in concert with graminelysin to cause apoptosis. During apoptosis, adherens junctions, including VE-cadherin and beta- and gamma-catenin were cleaved and alpha-catenin was decreased. VE-cadherin and beta-catenin at cell periphery were decreased and the discontinuity in alignment was found as observed with immunofluorescence microscopy. This was accompanied with a diffuse beta-catenin staining in the cytoplasm and a decreased F-actin stress fibers in some rounded cells. The decrease of VE-cadherin and beta-catenin in Triton-insoluble fractions confirmed that the association of adherens junctions with actin cytoskeleton was altered during apoptosis. Graminelysin-induced cleavage in adherens junctions was paralleled with the changes in paracellular permeability. We also detected the activation of caspase-3 and the decrease of Bcl-2/Bax ratio during apoptosis. However, caspase inhibitors showed differential effects in blocking the cleavage of PARP, adherens junctions, and DNA fragmentation. Taken together, the data presented suggest that metalloproteinase can control cell fates via the degradation of matrix proteins, the change of cell shape, and the cleavage of adherens junctions.  相似文献   

15.
4-Hydroxy-2-nonenal (4-HNE), one of the major biologically active aldehydes formed during inflammation and oxidative stress, has been implicated in a number of cardiovascular and pulmonary disorders. 4-HNE has been shown to increase vascular endothelial permeability; however, the underlying mechanisms are unclear. Hence, in the current study, we tested our hypothesis that 4-HNE-induced changes in cellular thiol redox status may contribute to modulation of cell signaling pathways that lead to endothelial barrier dysfunction. Exposure of bovine lung microvascular endothelial cells (BLMVECs) to 4-HNE induced reactive oxygen species generation, depleted intracellular glutathione, and altered cell-cell adhesion as measured by transendothelial electrical resistance. Pretreatment of BLM-VECs with thiol protectants, N-acetylcysteine and mercaptopropionyl glycine, attenuated 4-HNE-induced decrease in transendothelial electrical resistance, reactive oxygen species generation, Michael protein adduct formation, protein tyrosine phosphorylation, activation of ERK, JNK, and p38 MAPK, and actin cytoskeletal rearrangement. Treatment of BLMVECs with 4-HNE resulted in the redistribution of FAK, paxillin, VE-cadherin, beta-catenin, and ZO-1, and intercellular gap formation. Western blot analyses confirmed the formation of 4-HNE-derived Michael adducts with the focal adhesion and adherens junction proteins. Also, 4-HNE decreased tyrosine phosphorylation of FAK without affecting total cellular FAK contents, suggesting the modification of integrins, which are natural FAK receptors. 4-HNE caused a decrease in the surface integrin in a time-dependent manner without altering total alpha5 and beta3 integrins. These results, for the first time, revealed that 4-HNE in redox-dependent fashion affected endothelial cell permeability by modulating cell-cell adhesion through focal adhesion, adherens, and tight junction proteins as well as integrin signal transduction that may lead dramatic alteration in endothelial cell barrier dysfunction during heart infarction, brain stroke, and lung diseases.  相似文献   

16.
Protein tyrosine phosphorylation is tightly regulated through the actions of both protein tyrosine kinases and protein tyrosine phosphatases. In this study, we demonstrate that protein tyrosine phosphatase inhibition promotes tyrosine phosphorylation of endothelial cell-cell adherens junction proteins, opens an endothelial paracellular pathway, and increases both transendothelial albumin flux and neutrophil migration. Tyrosine phosphatase inhibition with sodium orthovanadate or phenylarsine oxide induced dose- and time-dependent increases in [14C]bovine serum albumin flux across postconfluent bovine pulmonary artery endothelial cell monolayers. These increases in albumin flux were coincident with actin reorganization and intercellular gap formation in both postconfluent monolayers and preformed endothelial cell capillary tubes. Vanadate (25 microM) increased tyrosine phosphorylation of endothelial cell proteins 12-fold within 1 h. Tyrosine phosphorylated proteins were immunolocalized to the intercellular boundaries, and several were identified as the endothelial cell-cell adherens junction proteins, vascular-endothelial cadherin, and beta-, gamma-, and p120-catenin as well as platelet endothelial cell adhesion molecule-1. Of note, these tyrosine phosphorylation events were not associated with disassembly of the adherens junction complex or its uncoupling from the actin cytoskeleton. The dose and time requirements for vanadate-induced increases in phosphorylation were comparable with those defined for increments in transendothelial [14C]albumin flux and neutrophil migration, and pretreatment with the tyrosine kinase inhibitor herbimycin A protected against these effects. These data suggest that protein tyrosine phosphatases and their substrates, which localize to the endothelial cell-cell boundaries, regulate adherens junctional integrity, the movement of macromolecules and cells through the endothelial paracellular pathway, and capillary tube stability.  相似文献   

17.
18.
The hyperpermeability response of microvessels in inflammation involves complex signaling reactions and structural modifications in the endothelium. Our goal was to determine the role of Src-family kinases (Src) in neutrophil-mediated venular hyperpermeability and possible interactions between Src and endothelial barrier components. We found that inhibition of Src abolished the increases in albumin permeability caused by C5a-activated neutrophils in intact, perfused coronary venules, as well as in cultured endothelial monolayers. Activated neutrophils increased Src phosphorylation at Tyr416, which is located in the catalytic domain, and decreased phosphorylation at Tyr527 near the carboxyl terminus, events consistent with reports that phosphorylating and transforming activities of Src are upregulated by Tyr416 phosphorylation and negatively regulated by Tyr527 phosphorylation. Furthermore, neutrophil stimulation resulted in association of Src with the endothelial junction protein beta-catenin and beta-catenin tyrosine phosphorylation. These phenomena were abolished by blockage of Src activity. Taken together, our studies link for the first time neutrophil-induced hyperpermeability to a pathway involving Src kinase activation, Src/beta-catenin association, and beta-catenin tyrosine phosphorylation in the microvascular endothelium.  相似文献   

19.
The majority of the leukocytes cross the endothelial lining of the vessels through cell-cell junctions. The junctional protein Vascular Endothelial (VE)-cadherin is transiently re-distributed from sites of cell-cell contacts during passage of leukocytes. VE-cadherin is part of a protein complex comprising p120-catenin and beta-catenin as intracellular partners. Beta-catenin connects VE-cadherin to alpha-catenin. This VE-cadherin-catenin complex is believed to dynamically control endothelial cell-cell junctions and to regulate the passage of leukocytes, although not much is known about the role of alpha- and beta-catenin during the process of transendothelial migration (TEM). In order to study the importance of the interaction between alpha- and beta-catenin in TEM, we used a cell-permeable version of the peptide encoding the binding site of alpha-catenin for beta-catenin (S27D). The data show that S27D interferes with the interaction between alpha- and beta-catenin and induces a reversible decrease in electrical resistance of the endothelial monolayer. In addition, S27D co-localized with beta-catenin at cell-cell junctions. Surprisingly, transmigration of neutrophils across endothelial monolayers was blocked in the presence of S27D. In conclusion, our results show for the first time that the association of alpha-catenin with the cadherin-catenin complex is required for efficient leukocyte TEM.  相似文献   

20.
The plasma membranes of endothelial cells reaching confluence undergo profound structural and functional modifications, including the formation of adherens junctions, crucial for the regulation of vascular permeability and angiogenesis. Adherens junction formation is accompanied by the tyrosine dephosphorylation of adherens junctions proteins, which has been correlated with the strength and stability of adherens junctions. Here we show that cholesterol is a critical determinant of plasma membrane remodeling in cultures of growing cow pulmonary aortic endothelial cells. Membrane cholesterol increased dramatically at an early stage in the formation of confluent cow pulmonary aortic endothelial cell monolayers, prior to formation of intercellular junctions. This increase was accompanied by the redistribution of caveolin from a high density to a low density membrane compartment, previously shown to require cholesterol, and increased binding of the annexin II-p11 complex to membranes, consistent with other studies indicating cholesterol-dependent binding of annexin II to membranes. Furthermore, partial depletion of cholesterol from confluent cells with methyl-beta-cyclodextrin both induced tyrosine phosphorylation of multiple membrane proteins, including adherens junctions proteins, and disrupted adherens junctions. Both effects were dramatically reduced by prior complexing of methyl-beta-cyclodextrin with cholesterol. Our results reveal a novel physiological role for cholesterol regulating the formation of adherens junctions and other plasma membrane remodeling events as endothelial cells reach confluence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号