首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turner NC 《Plant physiology》1974,53(3):360-365
Diurnal changes in the vertical profiles of irradiance incident upon the adaxial leaf surface (I), leaf resistance (r1), leaf water potential (ψ), osmotic potential (π), and turgor potential (P) were followed concurrently in crops of maize (Zea mays L. cv. Pa602A), sorghum (Sorghum bicolor [L.] Moench cv. RS 610), and tobacco (Nicotiana tabacum L. cv. Havanna Seed 211) on several days in 1968 to 1970 when soil water potentials were low. The r1, measured with a ventilated diffusion porometer, of the leaves in the upper canopy decreased temporarily after sunrise [~0530 hours Eastern Standard Time] as I increased, but then r1 increased again between 0700 and 0830 hr Eastern Standard Time as the ψ, measured with a pressure chamber, decreased rapidly from the values of −7, −4 and −6 bars at sunrise to minimal values of −18, −22 and −15 bars near midday in the maize, sorghum, and tobacco, respectively. The π, measured with a vapor pressure osmometer, also decreased after sunrise, but not to the same degree as the decrease in ψ, so that a P of zero was reached in some leaves between 0730 and 0800 hours. The lower (more negative) π of leaves in the upper canopy than those in the lower canopy gave the upper leaves a higher P at a given ψ than the lower leaves in all three species; leaves at intermediate heights had an intermediate P. This difference between leaves at the three heights in the canopy was maintained at all values of ψ. The r1 remained unchanged over a wide range of P and then increased markedly at a P of 2 bars in maize, −1 bar in sorghum, and near zero P in tobacco: r1 also remained constant until ψ decreased to −17, −20, and −13 bars in leaves at intermediate heights in maize, sorghum, and tobacco, respectively. In all three species r1 of leaves in the upper canopy increased at more negative values of ψ than those at the base of the canopy, and in tobacco, leaves in the upper canopy wilted at more negative values of ψ than those in the lower canopy.  相似文献   

2.
Diurnal changes in the vertical profiles of irradiance incident upon the adaxial leaf surface (I), stomatal resistance (rs), leaf water potential (ψ), osmotic potential (π), and turgor potential (P) were followed concurrently in crops of maize (Zea mays L. var. Pa 602A), sorghum (Sorghum bicolor [L.] Moench var. RS610), and tobacco (Nicotiana tabacum L. var. Havanna Seed 211) on several days in 1968 to 1970 when soil water potentials were high. In all three crops the rs, measured with a ventilated diffusion porometer, the ψ, measured with the pressure chamber, the π, measured with a vapor pressure osmometer, and the calculated P, decreased from sunrise to reach minimum values near midday and then increased again in the afternoon. The diurnal range of all the variables was greater for leaves in the upper canopy than for those in the lower canopy. P was observed to decrease with decreasing ψ, but never became zero. Sorghum had a higher P at a ψ of, say −10 bars, than did maize, and maize had a higher P than tobacco at the same ψ. Moreover, at the same ψ the upper leaves in all canopies had a higher P than the lower leaves. When compared at high irradiances, rs did not increase as ψ declined to −13, −15, and −10 bars or as P declined to 0.3, 3.5, and 1.2 bars in maize, sorghum, and tobacco, respectively. The relation between rs and I in the upper, nonsenescent leaves of all three crops fits a hyperbolic curve, but the response varied with species and leaf senescence. The adaxial and abaxial epidermises had the same response of rs to I in maize and sorghum, whereas in tobacco the adaxial epidermis had a higher rs than the abaxial epidermis at all values of I. At equal values of I, tobacco had the lowest leaf resistance (rl) and maize had the highest rl. Senescent maize leaves had nonfunctional stomata, whereas the lowermost sorghum leaves had higher stomatal resistances on average than the other leaves.  相似文献   

3.
Water potential (ψ), the osmotic potential (ψπ), and the pressure potential (ψp) of detached cotyledons isolated from Cucumis sativus L. cv Marketer seedlings after 0, 1.5, and 3 days growth with and without zeatin were determined. From zero time to 3 days, cotyledons incubated without exogenous zeatin exhibited a slight decrease in ψ (from −0.4 to −1.0 bars), while those grown with zeatin developed even more negative values (about −4 bars). Both groups showed rising ψπ values (decreases in solutes per unit volume), but this rise was more dramatic in those treated with zeatin. These data indicate that the capacity of zeatin-treated cotyledons to take up water more rapidly than controls and thus expand faster must be due to wall loosening, as reflected in ψp values which declined during 3 days from about +11 bars to about +1.4 bars.

It was also found that freshly detached cotyledons or those grown without exogenous zeatin exhibited osmoregulation in polyethylene glycol (PEG) solutions. That is, while cotyledons initially lost H2O into certain PEG solutions, their ψ values decreased over time and they began absorbing water after 1 to 4 hours. After 3 days growth, zeatin-treated cotyledons had lost most of this capacity of osmoregulate. It seems likely that osmoregulation in cotyledons not treated with zeatin is due to wall loosening rather than changes in ψπ. Zeatin-treated cotyledons with already loosened walls may not have this option to deal with water stress and thus simply come to equilibrium with external PEG solutions.

  相似文献   

4.
The pressure probe, which is routinely used to measure the turgor potential (Ψp) of individual epidermal cells in Tradescantia virginiana (L.), has also been used to sample small volumes of vacuolar fluid from these same cells (as low as 0.02 nl) for measurement of cellular solute (osmotic) potential (Ψs) in a micro freezing point osmometer. The water potential components Ψp and Ψo have been used to calculate the total water potential of individual epidermal cells (Ψcell) which has then been directly compared to the total leaf water potential (Ψleaf) measured psychrometrically. The relation of Ψleaf and Ψcell to leaf transpiration indicates that in T. virginiana, a relatively straightforward relation exists between the level of water flow through the leaf tissue, and the ΔΨ within the leaf, between two points along the water flow pathway. Substantial agreement was found between the two independent, in situ methods of measuring Ψ when extrapolated to zero transpiration conditions. These results are discussed with respect to the thermodynamics of water transport in plant tissues.  相似文献   

5.
Wright JP  Fisher DB 《Plant physiology》1983,73(4):1042-1047
Severed aphid stylets were used to follow the kinetics of sieve tube turgor and osmotic pressure (π) responses following step changes in water potential applied to the cambial surface of willow (Salix exigua Nutt.) bark strips. The kinetics of the turgor response were monitored with a pressure transducer. In separate experiments, the kinetics of the π response were followed by freezing point determinations on stylet exudate. The sieve tube volumetric elastic modulus in the bark strips was about 21 bars, but may be higher in intact stems. The membrane hydraulic conductivity was about 5 × 10−3 centimeters per second per bar; several factors make it difficult to estimate its value accurately. Differences in the turgor pressure (P) and π responses, as well as the relatively more rapid initial turgor response to a water potential (ψ) change, suggested a time-dependent component in sieve tube wall elasticity.

Our observations were generally not supportive of the idea that sieve tubes might osmoregulate. However, the bark strip system may not be suitable for addressing that question.

Separate measurements of ψ, P, and π demonstrate that the relationship predicted by the fundamental cell water potential equation, ψ = P − π, is applicable within experimental error (± 0.4 bar) to sieve tube water relations.

  相似文献   

6.
Acclimation of photosynthesis to low leaf water potentials   总被引:21,自引:9,他引:12       下载免费PDF全文
Photosynthesis is reduced at low leaf water potentials (Ψl) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. We evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and Ψl, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower Ψl, in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantum yield and the capacity to fix CO2 at all partial pressures of CO2, and in vitro by photosystem II activity of isolated organelles, was inhibited at low Ψl but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low Ψl.  相似文献   

7.
Pressure volume curves for Alternanthera philoxeroides (Mart.) Griseb. (alligator weed) grown in 0 to 400 millimolar NaCl were used to determine water potential (Ψ), osmotic potential (ψs), turgor potential (ψp) and the bulk elastic modulus (ε) of shoots at different tissue water contents. Values of ψs decreased with increasing salinity and tissue Ψ was always lower than rhizosphere Ψ. The relationship between ψp and tissue water content changed because ε increased with salinity. As a result, salt-stressed plants had larger ranges of positive turgor but smaller ranges of tissue water content over which ψp was positive. To our knowledge, this is the first report of such a salinity effect on ε in higher plants. These increases in ε with salinity provided a mechanism by which a large difference between plant Ψ and rhizosphere Ψ, the driving force for water uptake, could be produced with relatively little water loss by the plant. A time-course study of response after salinization to 400 millimolar NaCl showed Ψ was constant within 1 day, ψs and ψp continued to change for 2 to 4 days, and ε continued to change for 4 to 12 days. Changes in ε modified the capacity of alligator weed to maintain a positive water balance and consideration of such changes in other species of higher plants should improve our understanding of salt stress.  相似文献   

8.
This study combines existing hydraulic principles with recently developed methods for probing leaf hydraulic function to determine whether xylem physiology can explain the dynamic response of gas exchange both during drought and in the recovery phase after rewatering. Four conifer species from wet and dry forests were exposed to a range of water stresses by withholding water and then rewatering to observe the recovery process. During both phases midday transpiration and leaf water potential (Ψleaf) were monitored. Stomatal responses to Ψleaf were established for each species and these relationships used to evaluate whether the recovery of gas exchange after drought was limited by postembolism hydraulic repair in leaves. Furthermore, the timing of gas-exchange recovery was used to determine the maximum survivable water stress for each species and this index compared with data for both leaf and stem vulnerability to water-stress-induced dysfunction measured for each species. Recovery of gas exchange after water stress took between 1 and >100 d and during this period all species showed strong 1:1 conformity to a combined hydraulic-stomatal limitation model (r2 = 0.70 across all plants). Gas-exchange recovery time showed two distinct phases, a rapid overnight recovery in plants stressed to <50% loss of leaf hydraulic conductance (Kleaf) and a highly Ψleaf-dependent phase in plants stressed to >50% loss of Kleaf. Maximum recoverable water stress (Ψmin) corresponded to a 95% loss of Kleaf. Thus, we conclude that xylem hydraulics represents a direct limit to the drought tolerance of these conifer species.  相似文献   

9.
Water deficits during seed filling often decrease seed size in soybean (Glycine max L.). The physiological basis for this response is not known but may result from direct effects of low seed water potential (Ψw) on the seed filling process. To determine whether low Ψw occurred in reproductive tissues of soybean, we monitored the water status (Ψw, Ψs, and Ψp) of leaf, pericarp, and seed (embryo and testa) tissue of greenhouse-grown plants subjected to a brief water deficit during the linear period of seed growth. Water deficits were imposed by withholding water and monitored in the reproductive tissues by thermocouple psychrometry. When water was abundant, leaf, pericarp, and seed Ψw were −0.5 to −0.7 megapascal at midday. When water was withheld, leaf Ψw decreased to −2.3 megapascals within 6 days. Pericarp Ψw also decreased to −1.9 megapascal during this time. Pericarp Ψs followed the decline in Ψw, but osmotic adjustment was not evident as the pericarp lost turgor completely by day 6. However, seed Ψw, Ψs, and Ψp were not significantly different from the controls. These results indicate that the water status of the developing seeds of soybean is not altered by short-term water deficits severe enough to inhibit the metabolic activity of the maternal plant. Maintenance of a favorable water status may be important for the conservation of seed growth rate exhibited by soybean under dry conditions.  相似文献   

10.
Terry N  Ulrich A 《Plant physiology》1973,51(4):783-786
Sugar beet plants (Beta vulgaris L. var. F5855441) were germinated and cultured under standardized environmental conditions for 28 days. Potassium deficiency was then induced by withholding K from the culture solution. Changes in CO2 and water vapor exchange rates and surface temperatures of individual attached leaves were measured with time after K cut-off, along with changes in the concentrations of the leaf minerals K, Na, Ca, Mg, Fe, Mn, Cu, and Zn. During the 1st week after K cut-off the concentration of Na in the leaf blade increased from 200 to 1000 milliequivalents per kilogram dry matter while K decreased from 1500 to 300 milliequivalents per kilogram. During the subsequent 2 weeks, both Na and K concentrations decreased. The concentrations of other leaf minerals, except Mn, were little affected by K cut-off. Photosynthetic CO2 uptake per unit area decreased linearly with time after cut-off and attained one-third of the control rate after 21 days. Low K apparently decreased photosynthesis through an increase in mesophyll resistance to CO2 (rm) from 2.8 to 5.3 seconds per centimeter in 21 days. Leaf (mainly stomatal) diffusion resistance (r1) increased only slowly during the first 15 days from 0.3 to 0.5 second per centimeter, eventually reaching 1.6 seconds per centimeter at 21 days. Low K progressively decreased the photorespiratory evolution of CO2 into CO2-free air, but steadily increased the rate of CO2 evolution in dark.  相似文献   

11.
Published and additional data for polyethylene glycol 8000 (PEG), formerly PEG 6000, solution water potentials (Ψ) are compared. Actual bars Ψ over the concentration range of 0 to 0.8 gram PEG per gram H2O and temperature (T) range of 5 to 40°C are best predicted (probably within ± 5%) by this equation: Ψ = 1.29[PEG]2T − 140[PEG]2 − 4.0[PEG]. Although transformable through division by [PEG] to virial equation form, results indicate that the coefficients are not virial. Mannitol (MAN) interacts with PEG to produce Ψ significantly lower than additive. Vapor pressure osmometer (VPO) data for MAN-PEG synergism compared favorably with those from thermocouple hygrometry; and VPO data showing the interactions between PEG and four salts are presented. The synergism of MAN-PEG and of NaCl-PEG are related linearly to the concentration of solute added with PEG.  相似文献   

12.
A leaf chamber has been designed which allows the measurement of both CO2 and water vapor exchange in Spinacia oleracea leaf discs. The center of the disc lies within a cylindrical gas chamber and its margins are enclosed within a cavity through which water or various metabolites can be pumped. In saturating light and normal atmospheres, the leaf discs have a relatively low resistance to H2O vapor transfer (rw = 1.87 seconds per centimeter) and can support high rates of photosynthesis for several hours. The abaxial surface of a disc had a higher resistance to water vapor transfer (rw = 3.22 seconds per centimeter) than the adaxial (rw = 2.45 seconds per centimeter) despite having a higher stomatal frequency (abaxial, 105/square millimeter; adaxial, 58/square millimeter). In 2% O2, the discs required an internal concentration of CO2 of 115 microliters per liter to support one-half of the maximal velocity of apparent photosynthesis (average value, 66 milligrams CO2 per square decimeter per hour). In 20% O2, the comparable values are 156 microliters per liter and 56 milligrams CO2 per square decimeter per hour. In air, apparent photosynthesis saturated at intensities (750 microeinsteins per square meter per second) well below that of daylight but, when the internal CO2 was raised to 700 to 900 microliters per liter, photosynthesis was not saturated even at daylight intensities (2025 microeinsteins per square meter per second). The distribution of Prussian blue crystals, formed after ferrocyanide feeding, showed that water entered the disc via the vasculature. When 25-minute pulses of orthophosphate were provided in the feeding solution, there were concentration-dependent increases in both rw and rm leading to inhibition of photosynthesis. The orthophosphate-dependent inhibitions were reversible.  相似文献   

13.
Ni BR  Bradford KJ 《Plant physiology》1992,98(3):1057-1068
Mathematical models were developed to characterize the physiological bases of the responses of tomato (Lycopersicon esculentum Mill. cv T5) seed germination to water potential (ψ) and abscisic acid (ABA). Using probit analysis, three parameters were derived that can describe the germination time courses of a seed population at different ψ or ABA levels. For the response of seed germination to reduced ψ, these parameters are the mean base water potential (¯ψb, MPa), the standard deviation of the base water potential among seeds in the population (σψb, MPa), and the “hydrotime constant” (θH, MPa·h). For the response to ABA, they are the log of the mean base ABA concentration ([unk]ABAb, m), the standard deviation of the base ABA concentration among seeds in the population (σABAb, log[m]), and the “ABA-time constant” (θABA, log[m]·h). The values of ¯ψb and [unk]ABAb provide quantitative estimates of the mean sensitivity of germination rate to ψ or ABA, whereas σψb and σABAb account for the variation in sensitivity among seeds in the population. The time constants, θH and θABA, indicate the extent to which germination rate will be affected by a given change in ψ or ABA. Using only these parameters, germination time courses can be predicted with reasonable accuracy at any medium ψ according to the equation probit(g) = [ψ - (θH/tg) - ¯ψb]/σψb, or at any ABA concentration according to the equation probit(g) = [log[ABA] - (θABA/tg) - log[[unk]ABAb]]/σABAb, where tg is the time to radicle emergence of percentage g, and ABA is the ABA concentration (m) in the incubation solution. In the presence of both ABA and reduced ψ, the same parameters can be used to predict seed germination time courses based upon strictly additive effects of ψ and ABA in delaying the time of radicle emergence. Further analysis indicates that ABA and ψ can act both independently and interactively to influence physiological processes preparatory for radicle growth, such as the accumulation of osmotic solutes in the embryo. The models provide quantitative values for the sensitivity of germination to ABA or ψ, allow evaluation of independent and interactive effects of the two factors, and have implications for understanding how ABA and ψ may regulate growth and development.  相似文献   

14.
Uricase and allantoinase in glyoxysomes   总被引:1,自引:2,他引:1  
In fat-degrading tissues of seedlings of seven different plant species examined, uricase activity (urate:O2 oxidoreductase, EC 1.7.33) was associated with particulate fractions. After equilibrium density centrifugation on sucrose density gradients the enzyme activity was recovered in the glyoxysomal band (density: 1.25 grams per cubic centimeter). Allantoinase is also present in glyoxysomes but, equally, in the proplastid region (density: 1.22 grams per cubic centimeter). Xanthine oxidase, xanthine dehydrogenase, allantoicase, and urease were not detected in glyoxysomes from castor bean endosperm. Uricase in these particles shows its maximal activity at pH 8.9. The apparent Km is 7.4 μm. Urate concentrations greater than 120 μm as well as certain other purine compounds inhibit the enzyme. Cyanide at a concentration of 10 μm is a potent inhibitor. 2,6-Dichlorophenolindophenol did not substitute for oxygen as electron acceptor.  相似文献   

15.
Gross W 《Plant physiology》1989,91(4):1476-1480
The intracellular distribution of enzymes, participating in the β-oxidation of fatty acids in the eucaryotic alga Cyanidium has been studied. After separating the organelles from a crude homogenate on a linear flotation gradient, the enzymes enoyl-CoA hydratase, hydroxyacyl-CoA dehydrogenase, and thiolase were present in the mitochondrial fraction (density: 1.19 gram per cubic centimeter). Activity of an acyl-CoA synthetase was found in the mitochondrial fraction as well as in a band where mitochondrial membrane apparently had accumulated (density: 1.17 gram per cubic centimeter). None of these enzymes were present in the peroxisomes (density: 1.23 gram per cubic centimeter). Results from cell fractionation as well as properties of β-oxidation enzymes indicate a mitochondrial location of fatty acid degradation also in the algae Galdieria sulphuraria and Cyanidioschyzon merolae.  相似文献   

16.
Changes in the water relations parameters of developing somatic embryogenic and xygotic European larch (Larix decidua) were studied. Water release curves were generated by suspending tissue samples over unsaturated NaCl solutions until they reached vapor equilibration with the surrounding air. Twenty solutions were used whose water potentials ranged from −0.05 to −10 MPa. Water release curves were obtained by plotting paired values of tissue relative water content (RWC) and solution potential. Curves were derived for embryonic larch at various stages of development and for hypocotyls and roots from germinated zygotic and somatic embryos. The ability to resist dehydration increased markedly with development. Stage 1 tissue, which consisted of clusters of loosely associated nonchlorophyllous cells, had extremely low bulk elastic modulus (ε) (1.91 MPa) and apoplastic water content (A) (0.023), relatively high osmotic potential (Ψπ) (−0.53 MPa), and lost turgor at 0.56 RWC. In contrast, mature embryoids with primary roots, hypocotyl, and cotyledons (stage 3) had an almost 4-fold increase in A (0.089), significantly higher ε (3.49 MPa), and lower Ψπ (−0.88 MPa) and lost turgor at 0.66 RWC. Hypocotyl tissue from germinated somatic embryos lost turgor at 0.74 RWC and had higher ε, A, and solute accumulation than pregerminated tissue. Hypocotyl tissue resisted dehydration more strongly than root tissue, and differences between root and hypocotyl water relation parameters were more pronounced in xygotic than in somatic seedlings. Highest dehydration resistance was in zygotic hypocotyls. The characterization of the water relations of tissue cultures should allow the development of more consistent and reliable desiccation protocols to induce maturation of embryos and produce synchronously germinating seed.  相似文献   

17.
Photosynthetic gas exchange, plant-water relations characteristics, and stable carbon isotope discrimination (Δ) were evaluated for five Coffea arabica L. genotypes growing under two soil moisture regimes in the field. The Δ of leaf tissue was strongly correlated (r = −0.95) with inherent water use efficiency (ratio of assimilation to stomatal conductance; A/g). The variation in inherent water use efficiency (WUE) among genotypes was 30% for plants irrigated weekly. The higher WUE exhibited by some of these plants resulted from reduced g rather than increased photosynthetic capacity at a given g. Withholding irrigation for 1 month caused Δ to decline substantially in expanding leaf tissue of all genotypes. A strong correlation (r = 0.92) was found between Δ and plant hydraulic efficiency estimated as the ratio of g to the diurnal range in leaf water potential (Ψl). The Δ values for plants irrigated weekly adequately predicted drought-induced changes in Δ (r = 0.99) and midday Ψl (r = 0.95). The results indicated that Δ might be used to evaluate several aspects of plant performance and response to specific environmental conditions, once suitable background physiological data have been gathered.  相似文献   

18.
The effects of heat shock on the synthesis of α-amylase and on the membranes of the endoplasmic reticulum (ER) of barley (Hordeum vulgare) aleurone were studied. Heat shock, imposed by raising the temperature of incubation from 25°C to 40°C for 3 hours, inhibits the accumulation of α-amylase and other proteins in the incubation medium of barley aleurone layers treated with gibberellic acid and Ca2+. When ER is isolated from heat-shocked aleurone layers, less newly synthesized α-amylase is found associated with this membrane system. ER membranes, as indicated by the activities of NADH cytochrome c reductase and ATP-dependent Ca2+ transport, are not destroyed by heat stress, however. Although heat shock did not reduce the activity of ER membrane marker enzymes, it altered the buoyant density of these membranes. Whereas ER from control tissue showed a peak of marker enzyme activity at 27% to 28% sucrose (1.113-1.120 grams per cubic centimeter), ER from heat-shocked tissue peaked at 30% to 32% sucrose (1.127-1.137 grams per cubic centimeter). The synthesis of a group of proteins designated as heat-shock proteins (HSPs) was stimulated by heat shock. These HSPs were localized to different compartments of the aleurone cell. Several proteins ranging from 15 to 30 kilodaltons were found in the ER and the mitochondrial/plasma membrane fractions of heat-shocked cells, but none of the HSPs accumulated in the incubation medium of heat-shocked aleurone layers.  相似文献   

19.
Transpiration- and growth-induced water potentials in maize   总被引:15,自引:5,他引:10       下载免费PDF全文
Recent evidence from leaves and stems indicates that gradients in water potential (ψw) necessary for water movement through growing tissues are larger than previously assumed. Because growth is sensitive to tissue ψw and the behavior of these gradients has not been investigated in transpiring plants, we examined the water status of all the growing and mature vegetative tissues of maize (Zea mays L.) during high and low rates of transpiration. The ψw measured in the mature regions of the plant responded primarily to transpiration, while the ψw in the growing regions was affected both by transpiration and growth. The transpiration-induced potentials of the mature tissue formed a gradient of decreasing ψw along the transpiration stream while the growth-induced potentials formed a gradient of decreasing ψw from the transpiration stream to the expanding cells in the growing tissue. The growth-induced gradient in ψw within the leaf remained fairly constant as the xylem ψw decreased during the day and was associated with a decreased osmotic potential (ψs) of the growing region (osmotic adjustment). The growth-induced gradient in ψw was not caused by excision of the tissue because intact maize stems exhibited a similar ψw. These observations support the concept that large gradients in ψw are required to maintain water flow to expanding cells within all the vegetative tissues and suggest that the maintenance of a favorable gradient in ψw for cell enlargement may be an important role for osmotic adjustment.  相似文献   

20.
At low water potential (ψw), dehydration reduces the symplast volume of leaf tissue. The effect of this reduction on photosynthetic capacity was investigated. The influence of osmotic adjustment on this relationship was also examined. To examine these relationships, comparative studies were undertaken on two wheat cultivars, one that osmotically adjusts in response to water deficits (`Condor'), and one that lacks this capacity (`Capelle Desprez'). During a 9-day stress cycle, when water was withheld from plants grown in a growth chamber, the relative water content of leaves declined by 30% in both cultivars. Leaf osmotic potential (ψs) declined to a greater degree in Condor plants. Measuring ψs at full turgor indicated that osmotic adjustment occurred in stressed Condor, but not in Capelle plants. Two methods were used to examine the degree of symplast (i.e. protoplast) volume reduction in tissue rapidly equilibrated to increasingly low ψw. Both techniques gave similar results. With well-watered plants, symplast volume reduction from the maximum (found at high ψw for each cultivar) was the same for Condor and Capelle. After a stress cycle, volume was maintained to a greater degree at low ψw in Condor leaf tissue than in Capelle. Nonstomatally controlled photosynthesis was inhibited to the same degree at low ψw in leaf tissue prepared from well-watered Condor and Capelle plants. However, photosynthetic capacity was maintained to a greater degree at low ψw in tissue prepared from stressed Condor plants than in tissue from stressed Capelle plants. Net CO2 uptake in attached leaves was monitored using an infrared gas analyzer. These studies indicated that in water stressed plants, photosynthesis was 106.5% higher in Condor than Capelle at ambient [CO2] and 21.8% higher at elevated external [CO2]. The results presented in this report were interpreted as consistent with the hypothesis that there is a causal association between protoplast (and presumably chloroplast) volume reduction at low ψw and low ψw inhibition of photosynthesis. Also, the data indicate that osmotic adjustment allows for maintenance of relatively greater volume at low ψw, thus reducing low ψw inhibition of chloroplast photosynthetic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号