首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial dynamics during aerobic biodegradation of an alternating mixture of organic compounds was investigated experimentally in a continuous stirred tank bioreactor (CSTB). A mathematical model describing this system was developed and tested using the experimental results. A model microbial culture consisting of Pseudomonas sp. JS150, a monochlorobenzene (MCB) degrader, and Xanthobacter autotrophicus GJ10, a 1,2-dichloroethane (DCE) degrader, each with exclusive degradation capabilities, was used. The CSTB was inoculated with both microbial strains and exposed to an alternating sequence of the two compounds at noninhibitory concentrations. Concentrations of each microbial strain, of each organic compound, and of degradation product evolved, as well as specific microbial activities via oxygen uptake tests, were monitored. Reduction of the residual DCE discharged from the bioreactor after an MCB to DCE transition was successfully achieved by continuously feeding a low flow of a concentrated solution of both compounds.  相似文献   

2.
We have previously reported the disappearance of a specific strain degrading chlorobenzene from a functionally stable bioreactor. In the present work, we investigated this species succession and isolated a new dominant strain, identified as Pandoraea pnomenusa sp. strain MCB032. A specific 16S rRNA-targeted oligonucleotide probe was designed and validated to identify strain MCB032 using fluorescence in situ hybridisation (FISH). The results confirmed the presence of strain MCB032 in samples collected over time, and showed that it was primarily located within the biofilm. Denaturing gradient gel electrophoresis (DGGE) provided evidence that the species succession occurred early in the operating period. The application of these biomolecular tools highlighted the remarkable stability of this new strain during the 15 months of reactor operation. The succession was attributed to the competitive kinetic behaviour of strain MCB032, which exhibited faster growth (micro(max) = 0.34 h(-1)) and higher substrate affinity (K(s) = 0.35 mg L(-1)) than strain JS150. Finally, this study contributed to the characterisation of the recently established Pandoraea genus, an emerging group in the biodegradation field.  相似文献   

3.
A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquid films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick. The TCE diffusion coefficients in the GJ10 biofilms were apparently constant at about the water value. The change in the diffusion coefficient for the JS150 biofilms is attributed to the influence of eddy diffusion and convective flow on transport in the thinner (<1-mm thick) biofilms.  相似文献   

4.
A nucleic acid-based approach was used to investigate the dynamics of a microbial community dominated by Xanthobacter autotrophicus GJ10 in the degradation of synthetic wastewater containing 1,2-dichloroethane (DCE). This study was performed over a 140-day period in a nonsterile continuous stirred-tank bioreactor (CSTB) subjected to different operational regimens: nutrient-limiting conditions, baseline operation, and the introduction of glucose as a cosubstrate. The microbial community was analyzed by a combination of fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE). Under nutrient-limiting conditions, DCE degradation was restricted, but this did not affect the dominance of strain GJ10, determined by FISH to comprise 85% of the active population. During baseline operation, DCE degradation improved significantly to over 99.5% and then remained constant throughout the subsequent experimental period. DGGE profiles revealed a stable, complex community, while FISH indicated that strain GJ10 remained the dominant species. During the addition of glucose as a cosubstrate, DGGE profiles showed a proliferation of other species in the CSTB. The percentage of strain GJ10 dropped to 8% of the active population in just 5 days, although this did not affect the DCE biodegradation performance. The return to baseline conditions was accompanied by the reestablishment of strain GJ10 as the dominant species, suggesting that this system responds robustly to external perturbations, both at the functional biodegradation level and at the individual strain level.  相似文献   

5.
A nucleic acid-based approach was used to investigate the dynamics of a microbial community dominated by Xanthobacter autotrophicus GJ10 in the degradation of synthetic wastewater containing 1,2-dichloroethane (DCE). This study was performed over a 140-day period in a nonsterile continuous stirred-tank bioreactor (CSTB) subjected to different operational regimens: nutrient-limiting conditions, baseline operation, and the introduction of glucose as a cosubstrate. The microbial community was analyzed by a combination of fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE). Under nutrient-limiting conditions, DCE degradation was restricted, but this did not affect the dominance of strain GJ10, determined by FISH to comprise 85% of the active population. During baseline operation, DCE degradation improved significantly to over 99.5% and then remained constant throughout the subsequent experimental period. DGGE profiles revealed a stable, complex community, while FISH indicated that strain GJ10 remained the dominant species. During the addition of glucose as a cosubstrate, DGGE profiles showed a proliferation of other species in the CSTB. The percentage of strain GJ10 dropped to 8% of the active population in just 5 days, although this did not affect the DCE biodegradation performance. The return to baseline conditions was accompanied by the reestablishment of strain GJ10 as the dominant species, suggesting that this system responds robustly to external perturbations, both at the functional biodegradation level and at the individual strain level.  相似文献   

6.
A novel method for the determination of microbial growth kinetics on hydrophobic volatile organic compounds (VOC) has been developed. A stirred tank reactor was operated as a fed-batch system to which the VOC was continuously fed via the gas phase, assuring a constant VOC concentration in the mineral medium. A flow of air was saturated with the VOC, and then mixed with a further flow of air, to obtain a predetermined VOC concentration. Thus, different VOC concentrations in the mineral medium could be obtained by altering the VOC concentration in the feed gas. The growth kinetics of Xanthobacter autotrophicus GJ10 on 1,2-dichloroethane (DCE) and of Pseudomonas sp. strain JS150 on MonoChloroBenzene (MCB) were assessed using this method. The growth of strain JS150 was strongly inhibited at MCB concentrations higher than 160 mg l−1, and the results were fitted using a piecewise function. The growth kinetics of strain GJ10 were described by the Luong model where maximum growth rate μmax = 0.12 h−1, substrate saturation constant K S = 7.8 mg l−1, and maximum substrate concentration S m (above which growth is completely inhibited) = 1080 mg l−1. Varying nitrogen and oxygen flows enabled the effect of oxygen concentration on the growth kinetics of Pseudomonas JS150 to be determined. Received: 30 November 1998 / Received revision: 19 March 1999 / Accepted: 20 March 1999  相似文献   

7.
Pandoraea sp. strain MCB032 was isolated as an emerging chlorobenzene degrader from a functionally stable bioreactor where species succession had occurred. In this study, two gene clusters encoding chlorobenzene metabolic functions have been cloned. Within the cbs gene cluster, CbsA and CbsB are similar to the chlorobenzene dioxygenase and the cis-chlorobenzene dihydrodiol dehydrogenase in Ralstonia sp. JS705 and shown to transform chlorobenzene to 3-chlorocatechol. The clc gene cluster shows strong similarity to the clc genes of Ralstonia sp. JS705 and encodes chlorocatechol 1,2-dioxygenase (ClcA) and other enzymes, which catalyze the conversion of chlorocatechol to 3-oxoadipate. The Michaelis constants (K m) values of ClcA for catechol, 3-methylcatechol and 3-chlorocatechol were determined as 10.0, 8.9 and 3.4 μM, respectively. CbsX, a putative transport protein present in the cbs cluster of strain MCB032 but not in those of other chlorobenzene degraders, shows 76 and 53% identities to two previously identified transport proteins involved in toluene degradation, TbuX from Ralstonia pickettii PKO1 and TodX from Pseudomonas putida F1. The presence of the transport protein in strain MCB032 likely provides a mechanistic explanation for its higher chlorobenzene affinity and may well be the basis for the competitive advantage of this strain in the bioreactor.  相似文献   

8.
Wastewaters containing organic compounds have been treated using extractive membrane bioreactors (EMBs). During treatment, a biofilm normally develops on the surface of the membrane, on the biological side. This study investigates the dynamics of biofilm growth in an EMB exposed to an alternating sequence of organic compounds. Microbial dynamics of both suspended and attached cultures were investigated experimentally in a single-tube extractive membrane bioreactor (STEMB), which comprised a continuous stirred-tank bioreactor (CSTB) coupled to eight single-tube extractive membrane modules (STEMMs) via a recirculating biomedium. A model microbial culture consisting of a Burkholderia sp. strain JS150 (ATCC No. 51283), able to degrade monochlorobenzene, and a Xanthobacter autotrophicus sp. strain GJ10 (ATCC No. 43050), able to degrade 1, 2-dichloroethane, was used. Both microbial strains exhibited exclusive degradative capabilities. The CSTB was monitored by quantification of individual strains and by product and organic compound evolution. To investigate the biofilm growth dynamics, eight STEMMs were run in parallel with the same operating conditions. Every week, STEMMs were stopped for biofilm analysis and the organic compound in the wastewater was changed. Biofilm growth was investigated by quantification of individual strains, by evaluation of the overall biofilm growth, and by microscopic analysis. A biofilm composed of both strains was developed and maintained during the whole experiment in the STEMMs. The biofilm that developed on the membrane improved the response of the system to changes in the wastewater.  相似文献   

9.
Aims: To determine the kinetics of substrate fluxes in a microbial community in order to elucidate the roles of the community members. Methods and Results: The kinetics of substrate sharing in a bacterial consortium were measured by a new analytical approach combining immunostaining, stable isotope probing and fluorescence‐activated cell sorting (FACS). The bacterial consortium, consisting of four strains and growing on 4‐chlorosalicylate (4‐CS), was pulse‐dosed with the degradation intermediate [U‐13C]‐4‐chlorocatechol (4‐CC). Cells were stained with strain‐specific antibodies sorted by FACS and the 13C‐incorporation into fatty acids of the two most abundant members of the community was determined by isotope ratio mass spectrometry. From the two most abundant strains, the primary degrader Pseudomonas reinekei MT1 incorporated the labelled substrate faster than strain Achromobacter spanius MT3 but the maximal incorporation in strain MT3 was almost three times higher than in MT1. Conclusions: It has been reported that strain MT1 produces 4‐CC as an intermediate but has a lower LD50 for it than strain MT3; therefore, MT3 still degrades 4‐CC when the concentrations of 4‐CC are already too toxic, even lethal, for MT1. By degrading 4‐CC, produced by MT1, MT3 protects the entire community against this toxin. The higher affinity but lower tolerance of strain MT1 for 4‐chlorocatechol compared to strain MT3 explains the complementary function these two strains have in the consortium adding exceptional stability to the entire community. Significance and Impact of the Study: The novel approach can reveal carbon fluxes in microbial communities generating quantitative data for systems biology of the microbial community.  相似文献   

10.
The success of engineered microbiological systems is evident in the global application of activated sludge communities to remediate coking effluent. However, there is a lack of understanding of the microbiology underlying treatment efficiency and stability. In this study, two functionally distinct activated sludge pools, treating the same effluent and operating under the same conditions, were examined to establish a relationship between overall diversity and/or functional diversity with respect to process stability. Molecular profiling, sequencing and RNA-based stable isotope probing were used to examine the bacterial diversity, general composition and functional composition of the most abundant members of the two communities. The inferior process stability in one of the pools could not be explained by reduced total bacterial diversity or evenness. RNA-based stable isotope probing revealed that both pools harboured an abundant phenol-degrading Acidovorax species, and that the pool of inferior stability accommodated an additional closely related phenol-degrading Acidovorax species at high abundance. These results are discussed in the context of deterministic and stochastic models of microbial community assembly.  相似文献   

11.
Interspecies interactions and changes in the rate and extent of biodegradation in mixed culture-mixed substrate studies were investigated. A binary mixed culture of Pseudomonas putida F1 and Burkholderia sp. JS150 degraded toluene, phenol, and their mixture. Both toluene and phenol can serve as sole sources of carbon and energy for both P. putida F1 and strain JS150. To investigate the population dynamics of this system, a fluorescent in-situ hybridization method was chosen because of its ability to produce quantitative data, its low standard error, and the ease of use of this method. When the binary mixed culture was grown on toluene or phenol alone, significant interactions between the species were observed. These interactions could not be explained by a pure-and-simple competition model and were substrate dependent. Strain JS150 growth was slightly inhibited when grown with P. putida F1 on phenol, and P. putida F1 grew more rapidly than expected. Conversely, when the two species were grown together on toluene alone, P. putida F1 was inhibited while strain JS150 was unaffected. During growth of the mixed culture on a combination of toluene and phenol, the interactions were similar to that observed during growth on phenol alone; P. putida F1 growth was enhanced while strain JS150 was unaffected. Because of the observed interspecies interactions, monoculture kinetic parameters were not sufficient to describe the mixed culture kinetics in any experiment. This is one of the first reports of microbial population dynamics in which molecular microbial ecology and mathematical modeling have been combined. The use of the 16S-rRNA-based method allowed for observation and understanding of interspecies interactions that were not observable with standard culture-based methods. These results suggest the need for more investigations that account for both substrate and microbial interactions when predicting the fate of organic pollutants in real systems.  相似文献   

12.
Pseudomonas sp. strain JS150 was isolated as a nonencapsulated variant of Pseudomonas sp. strain JS1 that contains the genes for the degradative pathways of a wide range of substituted aromatic compounds. Pseudomonas sp. strain JS150 grew on phenol, ethylbenzene, toluene, benzene, naphthalene, benzoate, p-hydroxybenzoate, salicylate, chlorobenzene, and several 1,4-dihalogenated benzenes. We designed experiments to determine the conditions required for induction of the individual pathways and to determine whether multiple substrates could be biodegraded simultaneously. Oxygen consumption studies with whole cells and enzyme assays with cell extracts showed that the enzymes of the meta, ortho, and modified ortho cleavage pathways can be induced in strain JS150. Strain JS150 contains a nonspecific toluene dioxygenase with a substrate range similar to that found in strains of Pseudomonas putida. The presence of the dioxygenase along with multiple pathways for metabolism of substituted catechols allows facile extension of the growth range by spontaneous mutation and degradation of mixtures of substituted benzenes and phenols. Chlorobenzene-grown cells of strain JS150 degraded mixtures of chlorobenzene, benzene, toluene, naphthalene, trichloroethylene, and 1,2- and 1,4-dichlorobenzenes in continuous culture. Under similar conditions, phenol-grown cells degraded a mixture of phenol, 2-chloro-, 3-chloro, and 2,5-dichlorophenol and 2-methyl- and 3-methylphenol. These results indicate that induction of appropriate biodegradative pathways in strain JS150 permits the biodegradation of complex mixtures of aromatic compounds.  相似文献   

13.
Pseudomonas sp. strain JS150 was isolated as a nonencapsulated variant of Pseudomonas sp. strain JS1 that contains the genes for the degradative pathways of a wide range of substituted aromatic compounds. Pseudomonas sp. strain JS150 grew on phenol, ethylbenzene, toluene, benzene, naphthalene, benzoate, p-hydroxybenzoate, salicylate, chlorobenzene, and several 1,4-dihalogenated benzenes. We designed experiments to determine the conditions required for induction of the individual pathways and to determine whether multiple substrates could be biodegraded simultaneously. Oxygen consumption studies with whole cells and enzyme assays with cell extracts showed that the enzymes of the meta, ortho, and modified ortho cleavage pathways can be induced in strain JS150. Strain JS150 contains a nonspecific toluene dioxygenase with a substrate range similar to that found in strains of Pseudomonas putida. The presence of the dioxygenase along with multiple pathways for metabolism of substituted catechols allows facile extension of the growth range by spontaneous mutation and degradation of mixtures of substituted benzenes and phenols. Chlorobenzene-grown cells of strain JS150 degraded mixtures of chlorobenzene, benzene, toluene, naphthalene, trichloroethylene, and 1,2- and 1,4-dichlorobenzenes in continuous culture. Under similar conditions, phenol-grown cells degraded a mixture of phenol, 2-chloro-, 3-chloro, and 2,5-dichlorophenol and 2-methyl- and 3-methylphenol. These results indicate that induction of appropriate biodegradative pathways in strain JS150 permits the biodegradation of complex mixtures of aromatic compounds.  相似文献   

14.
The effect of a microbial consortium-based (MCB) biocontrol product, composed of Bacillus subtilis, Trichoderma harzianum strain and diatomaceous earth as a carrier, on potato yield, and potential modes of action for its effect were investigated. The MCB product (300 kg ha−1) was added to furrows in which the potato seed tubers each year for 3 years (2016, 2017 and 2018), while potato planting without the MCB product treatment served as the control. A metagenomic analysis indicated that bacterial phylotypes dominated the microbial community, with a relatively small contribution of archaea and fungal taxa. The relative abundance of beneficial bacterial taxa increased significantly in response to the MCB product treatment. Notably, a higher relative abundance of bacterial taxa with carbon fixation, carbon-degrading and nitrogen metabolism properties were observed in the MCB product-treated potato rhizosphere. This was also reflected in the identification of a greater abundance of genes encoding enzymes involved in nitrogen metabolism, carbon fixation and carbon degradation pathways in the conducted metagenomic analysis. The greater relative abundance of these beneficial bacterial taxa in the rhizosphere of MCB product-treated plots, as well as the higher abundance of genes associated with the indicated cellular processes, were associated with an increase in tuber yield. The observed changes in microbial community structure at an early stage of tuber development appears to have a beneficial impact on tuber yield.  相似文献   

15.
Cultivation-independent analyses were applied to study the structural diversity of the bacterial community which developed in groundwater inoculated microcosms actively metabolizing monochlorobenzene (MCB) under anaerobic conditions. Addition of 13C-labelled MCB demonstrated that the community produced 13CO2 as a metabolite at slightly increasing rates over a period of 1,051 days while no 13C-methane evolved. Genetic profiles of partial 16S rRNA genes generated with the single-strand conformation polymorphism (SSCP) technique by PCR from directly extracted total DNA revealed that, despite the long incubation period, six replicate microcosms were characterized by almost the same microbial members. Nine distinguishable contributors to the SSCP-profiles were characterized by DNA sequencing, revealing the presence of different members from the phyla Proteobacteria, Fibrobacteres and from the candidate division OD1. DNA-stable isotope probing (SIP) was applied to distinguish the actual MCB metabolizing bacteria from the other community members. This study reveals for the first time the structural diversity of an anaerobic MCB metabolizing bacterial community. However, it also demonstrates the limitations of SIP to detect bacteria slowly metabolizing carbon sources under anaerobic conditions.  相似文献   

16.
Qu Y  Zhou J  Wang J  Song Z  Xing L  Fu X 《Biodegradation》2006,17(1):83-91
One high-effective bromoamine acid (1-amino-4-bromoanthraquinone-2-sulfonic acid, BAA) degrading strain was isolated previously with the ability to use BAA as sole source of carbon and nitrogen. It was identified as Sphingomonas xenophaga QYY by 16S rDNA sequence analysis and physio-biochemical tests. In this study, bioaugmentation of BAA degradation with suspended and immobilized cells of strain QYY was investigated. The optimal degradation conditions were as follows: temperature 30 °C, pH 6.0–7.0, 150 rev min−1 and the immobilized cells maintained degradation activity to BAA after 60 days storage at 4 °C. The structure of BAA was evidently changed according to the analysis of total organic carbon removal of BAA (about 50%) and the UV–VIS spectra changes during the biodegradation. Bioaugmented systems exhibited stronger abilities degrading BAA than the non-bioaugmented control ones. And microbial community dynamics of augmented systems was revealed by amplified ribosomal DNA restriction analysis (ARDRA), a modern DNA fingerprint technique. The results indicated that the microbial community dynamics was substantially changed throughout the augmentation process. This study suggests that it is feasible and potentially useful to enhance BAA degradation using bioaugmentation with the immobilized cells of BAA-degrading bacterium.  相似文献   

17.
Burkholderia sp. strain JS150 is able to metabolize a wide range of alkyl-and chloroaromatic hydrocarbons through multiple, apparently redundant catabolic pathways. Previous research has shown that strain JS150 is able to synthesize enzymes for multiple upper pathways as well as multiple lower pathways to accommodate variously substituted catechols that result from degradation of complex mixtures of monoaromatic compounds. We report here the genetic organization and functional characterization of a gene cluster, designated tbc (for toluene, benzene, and chlorobenzene utilization), which has been cloned as a 14.3-kb DNA fragment from strain JS150 into vector pRO1727. The cloned DNA fragment expressed in Pseudomonas aeruginosa PAO1c allowed the recombinant to grow on toluene or benzene and to transform chlorobenzene, trichloroethylene, phenol, and cresols. The tbc genes are organized into two divergently transcribed operons, tbc1 and tbc2, each comprised of six open reading frames. Similarity searches of databases revealed that the tbc1 and tbc2 genes showed significant homology to multicomponent cresol and phenol hydroxylases and to toluene and benzene monooxygenases, respectively. Deletion mutagenesis and product analysis were used to demonstrate that tbc2 plays a role in the initial catabolism of the unactivated alkyl- or chloroaromatic substrate and that the tbc1 gene products play a role in the catabolism of the first metabolite that results from transformation of the initial substrate. Phylogenetic analysis was used to compare individual components of these tbc monooxygenases with similar sequences in the databases. These results provide further evidence for the existence of multiple, functionally redundant alkyl- and chloroaromatic monooxygenases in strain JS150.  相似文献   

18.
A screening of 27 fungal strains for degradation of the phenylurea herbicide isoproturon was performed and yielded 15 strains capable of converting the herbicide to polar metabolites. The zygomycete fungus Cunninghamella elegans strain JS/2 isolated from an agricultural soil converted isoproturon to several known hydroxylated metabolites. In addition, unknown metabolites were produced in minor amounts. Inducible degradation was indicated by comparing resting cells pregrown with or without isoproturon. This shows that strain JS/2 is capable of partially degrading isoproturon and that one or more of the enzymes involved are inducible upon isoproturon exposure.  相似文献   

19.
Microbial biodegradation and biotransformation reactions are essential to most bioremediation processes, yet the specific organisms, genes, and mechanisms involved are often not well understood. Stable isotope probing (SIP) enables researchers to directly link microbial metabolic capability to phylogenetic and metagenomic information within a community context by tracking isotopically labeled substances into phylogenetically and functionally informative biomarkers. SIP is thus applicable as a tool for the identification of active members of the microbial community and associated genes integral to the community functional potential, such as biodegradative processes. The rapid evolution of SIP over the last decade and integration with metagenomics provide researchers with a much deeper insight into potential biodegradative genes, processes, and applications, thereby enabling an improved mechanistic understanding that can facilitate advances in the field of bioremediation.  相似文献   

20.
Cultures of the newly isolated bacterial strains AD20, AD25, and AD27, identified as strains of Ancylobacter aquaticus, were capable of growth on 1,2-dichloroethane (DCE) as the sole carbon and energy source. These strains, as well as two other new DCE utilizers, were facultative methylotrophs and were also able to grow on 2-chloroethanol, chloroacetate, and 2-chloropropionate. In all strains tested, DCE was degraded by initial hydrolytic dehalogenation to 2-chloroethanol, followed by oxidation by a phenazine methosulfate-dependent alcohol dehydrogenase and an NAD-dependent aldehyde dehydrogenase. The resulting chloroacetic acid was converted to glycolate by chloroacetate dehalogenase. The alcohol dehydrogenase was induced during growth on methanol or DCE in strain AD20, but no activity was found during growth on glucose. However, in strain AD25 the enzyme was synthesized to a higher level during growth on glucose than on methanol, and it reached levels of around 2 U/mg of protein in late-exponential-phase cultures growing on glucose. The haloalkane dehalogenase was constitutively produced in all strains tested, but strain AD25 synthesized the enzyme at a level of 30 to 40% of the total cellular protein, which is much higher than that found in other DCE degraders. The nucleotide sequences of the haloalkane dehalogenase (dhlA) genes of strains AD20 and AD25 were the same as the sequence of dhlA from Xanthobacter autotrophicus GJ10 and GJ11. Hybridization experiments showed that the dhlA genes of six different DCE utilizers were all located on an 8.3-kb EcoRI restriction fragment, indicating that the organisms may have obtained the dhlA gene by horizontal gene transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号